曲线梁桥的设计理论与工程应用
- 格式:pdf
- 大小:1.64 MB
- 文档页数:67
探讨曲线梁桥设计[摘要]:本文着重论述了连续桥设计中的几个技术问题,如:中横梁刚度对荷载分配的影响、支座偏心距对扭矩分配的影响、剪力滞后对翼缘板有效宽度影响等,并结合工程实践提出了解决问题的相应办法。
关键词:曲线梁桥;支座偏心距;有效宽度[abstract] : this paper focuses on the continuous bridge design of several technical problems, such as: the bar to the influence of the distribution stiffness load eccentricity, problems of torque distribution, effects of shear lag of flange plate effective width influence to wait, and combined with engineering practice, this paper proposes the corresponding measures to solve the problems.Keywords: curve beam bridge; Bearing eccentricity; Effective width1前言曲线梁桥是现代交通工程中一种重要桥型。
在公路及城市道路的立体交叉工程中,曲线梁桥是实现各方面交通联结的必要手段。
早期修建的曲线梁桥,由于受设计方法和施工工艺的限制,多建成钢筋混凝土简支梁,其上部结构略显笨重,且易开裂,给后期养护带来较大困难。
随着道路交通的迅猛发展,以及人们对审美观念的提高,目前随着预应力混凝土图技术的成熟和广泛应用,目前修建的曲线桥不仅仅只限于满足交通功能的需求,还要求满足人们的审美要求。
因而,多跨轻巧的连续曲线梁桥在现阶段互通立交匝道的设计中被普遍采用。
以工程实例浅谈道桥设计中的曲线桥梁设计摘要: 本文以工程实例,浅谈道桥设计中的曲线桥梁设计。
关键词: 道桥设计; 曲线梁设计; 普通钢筋混凝土结构abstract: this article with the project example, the design of curve and bridge on bridge design.keywords: bridge design; curve beam design; common reinforced concrete structure中图分类号:k928文献标识码: a 文章编号:在我国,城市道桥的建设快速发展,其中曲线梁桥在城市道路立交匝道桥中得到了越来越广泛的应用。
采用曲线桥的匝道结构具有以下特点: 匝道的宽度比较窄; 受平面布置的影响,多采用小半径并设置较大超高值; 多采用独柱墩等。
一、工程概况该匝道曲线桥梁设计方案是:桥面净宽为8m,采用10cm沥青铺装,设计车速40km/h,设计的荷载为公路—ⅰ级,温度荷载为结构体系温差±25 k。
桥梁上部结构为三跨一联普通钢筋混凝土连续曲线箱梁,位于圆曲线上,曲线半径为54m。
跨径组合为3 m×25 m。
主梁为单箱单室,斜腹板,梁高1.8 m。
箱梁顶板宽8m、底板宽4m、箱梁翼板悬臂1.6m。
腹板由跨中的40cm变化到顶部的60cm,顶板厚25cm、底板厚22cm。
支点处设横隔梁,中横隔梁宽2.0 m、端横隔梁宽1.2 m。
二、初步设计根据工程的实际情况,工程师多次实地考察,初步决定全桥采用抗扭支座。
支座形式布置如下:曲线内侧左侧中支座采用固定支座;曲线外侧左侧中支座采用横向位移单向支座;其余支座曲线内侧采用单向活动支座,外侧采用双向活动支座。
支座横向间距2.2 m。
由恒载(含收缩徐变)、汽车活载(最小)、温度梯度(最小)、整体温差(最小) 和支座沉降(最小)所引起的各部位反力和弯矩见表1。
144研究与探索Research and Exploration ·工艺流程与应用中国设备工程 2023.03 (下)由于曲线桥预应力、温度效应、活荷载效应等因素的影响,与常规的线性、半径桥相比,其受弯扭耦合、翘曲等因素影响较大,对其上、下结构的构造和加固处理产生了较大的难度,而弯曲桥的特殊力学现象是由桥长、跨、半径、墩台、支座等因素综合影响的结果。
1 小半径曲线桥梁设计的力学特性曲线梁桥的受力性能,其弯曲半径对梁体的弯曲有一定的影响,从而使其发生弯曲,从而使其既受到弯矩的作用,又受到扭力的作用,这就是弯扭耦合。
弯曲扭转耦合的结果是,弯曲箱梁桥的受力性能主要表现在下列方面。
(1)外梁外力不均匀因外梁外力过大、内梁卸载等原因,导致梁桥外缘的弯曲应力比内缘大,外缘的变形比内缘大,内梁和外梁的内力分布不均匀,内梁和外梁的受力不均匀,在箱梁上引起内腹筋和外腹板的受力不均。
在动载荷作用下,梁的支承部分会产生负向反作用力,严重时会导致梁与支撑分离。
(2)箱梁桥的挠曲变形曲线通常大于同直径的弯桥,其弯曲变形是由弯矩和扭力叠加而成。
(3)横向水平力车辆在曲线梁桥上行驶时,会对桥面产生水平的离心力,这是一种很好的方法。
预应力、混凝土收缩徐变和温度的改变,不仅会引起桥面的纵向水平力,而且还会引起横向的水平力。
由于外部载荷作用于桥梁,其横向水平力将导致梁身的截面力矩和桥墩的弯矩增加,从而导致桥面的侧向位移和侧向偏移。
(4)弯曲变形和变形对弯箱式桥梁来说,在弯曲和扭耦合作用下,其整体截面应力比直线桥梁要大,尤其是在弯曲和变形的影响下,这种问题更严重。
但其计算结果一般仅占基础弯矩和纯扭剪应力的5%~10%,经初步估计,在设计时可采用加横梁的方法,尽量减少断面的变形。
2 工程案例以江苏省常州市金坛区金坛高铁为例,采用3×25m 的连续梁桥作为研究对象。
项目地处江苏省金坛城区西南部、小桥村以南、金坛高铁枢纽金坛高铁站附近,地处常州市北部G233,S241东侧,金龙路以南,万嘉路以西。
曲线梁桥弯扭耦合效应研究概述曲线梁桥是一种常见的桥梁形式,具有较好的经济性和美观性,但在受到荷载作用下易出现弯扭耦合效应,即弯曲和扭转相互耦合。
这种耦合效应会导致桥梁的力学性能发生变化,从而影响桥梁的安全和使用寿命。
研究曲线梁桥的弯扭耦合效应对于设计和评估桥梁的性能具有重要意义。
本文将对曲线梁桥的弯扭耦合效应进行概述。
介绍了曲线梁桥的基本结构和荷载情况。
曲线梁桥通常由主梁、桥面板和支座等组成,荷载包括静态荷载和动态荷载。
静态荷载主要包括桥面自重、人行和车行荷载等,动态荷载主要包括车辆振动和风振等。
在荷载作用下,曲线梁桥会发生弯曲和扭转变形。
然后,介绍了弯扭耦合效应的机理。
曲线梁桥的弯曲变形和扭转变形是相互耦合的。
当桥梁发生弯曲变形时,其刚度发生变化,从而影响桥梁的扭转变形;反之,当桥梁发生扭转变形时,其弯曲刚度也会发生变化。
弯扭耦合效应的主要机理可以总结为“弯曲引起扭转,扭转反作用于弯曲”。
具体来说,弯曲作用会导致侧向位移,从而引起桥梁的扭转变形;而扭转反作用则会使桥梁的弯曲程度发生变化。
接着,简要介绍了曲线梁桥弯扭耦合效应的研究方法。
曲线梁桥弯扭耦合效应的研究主要从两个方面入手:实验和数值模拟。
实验方法主要利用物理试验台架对曲线梁桥进行静力和动力加载,并通过测量位移、应变等参数来研究其弯扭耦合效应。
数值模拟方法主要采用有限元方法对曲线梁桥进行建模,并通过求解非线性方程组来求解其弯曲和扭转变形。
这两种方法可以相互验证和补充,从而得到更准确的结果。
总结了曲线梁桥弯扭耦合效应的研究成果和应用前景。
曲线梁桥的弯扭耦合效应研究为桥梁的设计和评估提供了重要依据。
通过研究弯扭耦合效应,可以优化桥梁的结构设计,提高其抗弯和抗扭能力,增强桥梁的整体性能和安全性。
曲线梁桥弯扭耦合效应的研究还对于其他类型桥梁的研究具有参考价值,可以为桥梁工程的发展和创新提供理论和实践支撑。
曲线梁桥弯扭耦合效应的研究对于桥梁工程具有重要意义。
曲线梁桥弯扭耦合效应研究概述
一、曲线梁桥的简介
曲线梁桥是指在建设过程中呈现出弯曲形态的梁桥。
它通常用于弯曲河流或曲线道路等情况,具有空间上的优势。
曲线梁桥的特点是具有非轴对称性和变截面性质。
因此,在其运用过程中,需要特别关注其弯扭耦合效应。
弯扭耦合效应是指在曲线梁桥中,在桥梁的弯曲及扭转运动过程中,由于非轴对称性和变截面的影响而产生的相互联系的效应。
这种效应将会对桥梁的承载能力、刚度和变形等性能产生影响。
弯扭耦合效应的主要影响因素包括桥梁的几何形态、材料性能和外界荷载等。
其中,曲线梁桥的非轴对称性和变截面性质是最主要的因素。
为了解决曲线梁桥的弯扭耦合效应问题,许多学者对该问题进行了深入的理论研究。
首先,他们建立了曲线梁桥受弯曲和扭转共同作用下的非线性力学模型,方程中考虑了曲线梁桥的非轴对称性和变截面性质。
此外,他们还对桥墩的横向位移和旋转进行了分析研究,得出了桥墩与桥梁的耦合关系。
其次,许多学者使用有限元方法对曲线梁桥的弯扭耦合效应进行了计算和模拟,得到了桥面和桥墩的应力、变形和位移等数据,来评估桥梁的性能。
最后,一些学者还研究了曲线梁桥的构造方案和设计方法,以实现弯扭耦合效应的优化。
四、结论
曲线梁桥的弯扭耦合效应是影响其受力性能的重要因素。
一些学者对其进行了深入的理论研究,并提出了一些桥梁设计和施工中的优化方案。
因此,对于曲线梁桥的设计和建设,我们需要充分考虑这种效应,以保证桥梁的稳定性、可靠性和安全性。
桥梁工程中小半径曲线梁桥的设计要点摘要:随着我国城市交通压力的不断增加,大量的高架桥和立交桥被兴建,但是由于城市交通功能的要求和地形环境的诸多限制,这些桥梁多采用的是曲线型构造。
曲线型结构的桥梁受力比较复杂,其中以小半径梁桥最为特别,除了一般的受力外,还要承受扭矩和翘曲双力矩的共同作用,所以小半径曲线梁桥出现的问题较多。
本文就小半径曲线梁桥出现的问题做了相应的说明,并就这些问题进行了深入的探讨并着重说明了设计中要注意的要点。
关键词:桥梁工程;小半径曲线梁桥;设计要点Abstract: Along with the urban traffic increase of pressure, a lot of viaduct and flyovers be built, but because the city traffic function requirements and terrain environment many of the limitations of the Bridges take the form of a curve type structure. The structure of the bridge type curve stress is more complex, among them with small radius of the most special bridge, in addition to the stress of the general, but also bear torque and warp the joint action of double moment, so small radius of the problem of the curved girder Bridges is more. This paper is small radius of the problem of the curved girder Bridges related instructions, and these problems thoroughly discussed and the focus on the design to the main points of attention.Key Words: Bridge engineering; Small radius curve beam bridge; Design key points of the小半径曲线梁桥,虽说在现实生活中有了很广泛的应用,但是由于其承载量,预应力及温差引起的弯矩、扭矩等作用力的受力较复杂,因此很容易产生设计考虑不全面,支座脱空、移位甚至崩塌的问题,给人民生命财产安全带来了极大的隐患。
连续曲线梁桥设计探析文章论述了曲线桥梁的受力性,并且阐述了设计时要注意的要素。
标签:曲线梁桥;受力特点;结构设计1 概述曲线桥是当前的道桥项目中非常关键的一个组成部分,尤其是在最近几年它得到了非常广泛的应用。
对于那些互通型的立交匝道来讲,它的使用更是非常的明显。
在设计匝道的时候会受到很多要素的干扰,比如地形以及所在区域的规模等,这些要素的存在使得该项设计有如下的一些特征。
第一,此类桥的宽度不是很宽,通常匝道的尺寸在六米到十米之间。
第二,匝道本身是为了辅助道路转向的,在立交工程中会受到土地规模的影响,因此这类桥大多数是小尺寸的曲线桥。
第三,匝道桥的纵向坡度非常大,有时会横跨下方的车道,此时就使得桥的长度变长。
因为这种桥本身弯斜,形状特别,所以它的设计工作无法正常的开展。
2 曲线梁桥的平面及纵、横断面布置最近几年高速路在设计的时候更加的关注线形方面的内容,规定设计要合乎线形要求。
因此在布局桥梁平面的时候,要遵照总的线形布局规定,其纵坡也要和路线的纵坡保持一致。
通常为了应对截面的扭矩以及弯矩,在设计的时候常使用箱形的截面。
由于桥面超高的需要及梁体受扭时外边梁受力较大的需要,所以可以在其水平方向上把主梁设置成不一样的高度。
为了便于构造,方便建设,也可以将其设置成一样高度的,其超高横坡由墩台顶面形成。
3 曲线梁桥结构受力特点3.1 梁体的弯扭耦合作用一般来说,当受到外在力影响的时候,曲梁会出现一定的弯矩以及扭矩,两者会彼此影响,进而导致截面处在一种耦合的状态中,截面的拉力要较之于直梁大,这个特征是这种梁所特有的。
因为这种桥会承受较高的扭矩力,所以会发生变形现象,它的外侧的挠度要比相同尺寸的直桥大一些。
因为存在耦合作用,所以在桥上方会存在翘曲现象。
3.2 内外梁无法均匀受力对于曲梁桥来讲,因为其扭矩较大,所以会导致外梁发生超载而内梁出现卸载的情况,特别是当桥梁较宽的时候这种现象更加的明显。
因为两个梁的支点反力差别非常大,如果活载发生了偏移的话,内梁就会生成一种反向力,此时假如内梁无法承受这种力的话,就会使得梁体和支座分离。
浅论小半径曲线桥梁的设计摘要:随着我国现代化建设及交通事业的蓬勃发展,高速公路、山区公路、城市立交等的兴建,曲线桥梁得到了广泛的应用。
其结构线条平顺、流畅、明快,给人以美的享受。
在公路建设中,除特大桥梁外,一般要求桥梁的平面布置服从公路线形,在进行平、纵、横三方面综合设计时,应做到平面流畅、纵坡均衡、横断面合理,并避免长直线设计,此时,小半径曲线梁桥往往成为最优方案。
另外在山区公路展线、套沟,城市桥梁避开管线、文物,节省拆迁费用,减小建筑用地等方面有直接可观的经济效益。
文中将重点介绍曲线桥梁的受力特点以及设计过程中应注意的一些问题,并提出一些相应的措施。
关键词:小半径;曲线桥梁;偏心;翘曲1、概述小半径曲线桥梁的设计非常复杂,它的预应力效应、温度效应以及活载效应的影响面加载都不同于传统直线桥梁或者大半径桥,除受弯矩、剪力外,还存在弯扭耦合、翘曲现象的作用,给上下部结构的构造及配筋处理带来很大困难,并且曲线桥梁的特殊力学现象是由桥长、桥跨、半径、墩台、支座等多方面共同决定的,2、小半径曲线桥梁的结构受力特点2.1小半径曲线桥梁支座的布置形式曲线箱梁桥支座的布置型式通常采用三种形式:a.全部采用抗扭支承,b.两端设置抗扭支承,中间设单支点铰支承,c.两端设置抗扭支承,中间既有单支点铰支承,又有抗扭支承的混合式支承。
近年来,在曲线箱梁桥工程实际应用中,两端为抗扭支座(双支座),联内安置几个单点铰支座,即中支点下部采用独柱支承的曲线桥多次发生侧倾事故。
其主要原因多为主梁在偏心荷载作用下发生扭转,当转角大到一定程度时,支反力的下滑分力将超过支座侧向的约束能力,扭矩将全部转移到梁端造成曲线内侧支座脱空,主梁发生倾覆。
所以此类支座布置的形式在工程应用中已不多见。
对于小半径的曲线箱梁,通常全部采用抗扭支承。
通过内、外支座横桥向偏心的设置,来抵消主梁恒载因外弧半桥大于内弧半桥而产生的扭矩(如下图)。
即支座的偏心相当于将支座放在主梁的实际荷载重心线上。
浅析现代化曲线桥梁设计随着改革开放的力度加大,城市车辆的高速发展,交通运输也就十分的紧张,现代化的桥梁设计也就显得尤为重要,现代化的曲线桥梁设计是实现各方向交通的必要手段。
本篇文章主要在结构设计,结构计算等方面进行探讨,叙述了现代桥曲线桥梁设计的主要技术特点,能够为桥梁设计提供设计借鉴。
标签:桥梁设计;结构体系;结构计算;技术指标引言在现代化的今天,桥梁的重要性不言而喻,它是交通的枢纽,在城市交通中的地位不可取代。
而在我国桥梁设计体系和理论等等都不够完善,在现代化曲线桥梁设计的领域有许多的不足之处,还有较大的发展空间。
在我国经常使用的桥梁设计是预应力混凝土曲线桥梁,能够承受弯矩和剪力,并且还能承受一定的扭矩。
1 现代化曲线桥梁设计的意义目前曲线桥梁在现代化的公路及其道路交通中的数量逐年的增加,应用已经非常普遍了,在桥梁设计中应该从多方面进行全方位的考量,关于桥梁施工问题以及使用期安全性的问题等等,都是应该着重要改进的地方。
在现代化曲线桥梁设计中首要的任务是选择合理的结构方案,紧接着是对结构的分析和连接的设计也是不容忽视的,在这分析过程中要取用规定的安全系数和可靠的指标,这样可以保证桥梁结构的安全性。
在城市建设中,现代化的曲线桥梁设计意义重大,是一个城市的标志性建筑,这样一来就要不断的完善桥梁设计理论和结构的体系。
2 现代化桥梁结构设计2.1 桥梁结构设计的重要性为了跨越各种障碍,如河流,沟谷等,这就必须修建各种桥梁,因此桥梁建筑是城市交通线路中重要的组成部分。
我国的桥梁建筑在世界建筑史上就有辉煌的记载,如举世闻名的赵州桥,都是我国桥梁设计的典型代表。
桥梁的设计必须遵循基本原则,如安全,适用,经济,美观,在当今还必须有环保观念。
社会发展的今天,新兴技术日新月异的改变,在桥梁设计方面也是如此,必须与时俱进,采用新技术的同时采用新结构,新设备,新材料,认真学习国外的先进桥梁设计理念。
2.2 结构构造设计本桥平面位于曲线上,在沿跨长的各个控制截面上,除承受弯矩和剪力外,还承受一定的扭矩,故主桥采用单箱双室预应力混凝土连续箱梁,梁高 2.0m,跨中截面,箱梁底板保持4%的倾斜,顶板倾斜同桥面横坡,桥面横坡通过箱梁腹板高度调整而成。
曲线钢箱梁桥优化设计分析连续钢箱梁由于具备跨越能力大、施工速度快、可焊性好、容易更换以及施工技术相对比较成熟等突出优势,经常被用于城市立交的匝道橋设计之中。
但曲线梁桥的设计分析也较为复杂,近年来曲线梁桥事故时有发生。
本文从设计角度出发,介绍了曲线桥梁常见病害及其主要防治措施,针对工程实例探讨钢箱梁桥的受力特点及设计要点。
标签:曲线;钢箱梁桥;设计要点引言:随着我国城市化进程的不断加快,汽车保有量在不断增加,而为了有效保障交通的通畅,减轻车辆拥堵所带来的城市病,在很多大中型城市中都出现了不同规模的立交桥。
由于城市用地紧张,地下管线错综复杂,经常会出现小半径曲线钢箱梁桥。
曲线梁桥其分析设计过程与一般的桥梁设计相比,具有更大的难度,一旦设计不合理,就有可能在运营阶段带来严重的后果,因此,对该种形式的桥梁设计要点进行探讨具有重要的意义。
一、曲线钢箱梁桥的相关概述(一)曲线钢箱梁的常见病害及其成因第一,梁体向曲线外侧径向侧移。
曲线梁在汽车荷载的离心力和制动力长期反复作用下容易产生主梁向曲线外侧及汽车制动力方向的水平错位。
一般匝道桥都是单向行驶,所以这种作用力总是朝着固定方向,严重时可使主梁滑落。
造成这种情况的主要原因是支座布置不合理,全联支承体系抗扭能力及水平向抗滑动能力弱。
第二,梁体曲线内侧支座脱空或反力很小。
由于弯扭耦合效应,曲线结构会受到很大的扭转作用,同时由于钢梁自重较小,由恒载产生的预压力不大,导致端支座承担的扭矩大,当端横梁宽度不够、支座间距较小时就会出现支座脱空的现象。
第三,梁体整体倾覆。
钢箱梁较轻,活载占总比重相对于混凝土梁较大,在极限偏载行车工况下可能会出现梁体整体倾覆的现象。
现实中经常出现重车列队偏载在一侧行驶或停车的情况,往往设计时无法预料和验算。
第四,曲线梁内外侧梁长不同导致受力差异大、变形不协调,容易导致顶底板翘曲变形。
钢梁比混凝土梁受温度等影响更加明显。
通常,半径越小、桥宽越宽的曲线梁更容易因内外侧腹板梁长不同,引起变形差异并出现顶底板变形不协调而导致的翘曲变形,甚至导致焊缝的破坏、梁体受损。
曲线桥梁设计的计算分析摘要:随着中国公路的日益发达和路面等级的日益增加,曲线桥的运用日益普遍。
根据工程设计实际情况,对有关的曲线桥设计理论计算加以分析,并分别研究了曲线桥的设计结构、支承形式、内部力量计算及其计算机软件应用,希望对进一步提高曲线桥的工程设计技术水平,提供必要的理论指导意义。
关键词:曲线桥梁;设计;计算前言在现阶段,由于中国城镇化进程的加速,在城市系统中城市立交得以快速发展,同时我国的路面等级也得到了进一步提升,使曲线桥越来越受到设计者的重视。
在对城市中小桥平面进行布置设计的过程中必须服务于城市交流道路线形,因此根据城市立交桥匝道的布局选择了曲线桥的规划计算方法针进行了方案设计,并要求把异形桥的建筑设计手法运用到城市立交桥中。
通常,在曲线桥方案设计和施工过程中选择了采用就地施工的方式对箱形桥进行设计施工,其中以直代曲施工是在曲线桥方案设计施工中最常见的一个施工型建筑设计方式。
由于曲线的零点五径越大,以直代曲的直线段也就越大,但是在大桥建设工程曲线线形并没有受到太大的负面影响。
我们将对相关曲线桥梁设计计算过程加以分析与研究,为同类结构的建筑设计提出相应技术依据。
1曲线桥梁的设计构造通常,曲线桥梁的施工采取就地施工钢筋砼的方法,或者是使用预应力砼连续箱梁桥的方式。
对等截面连续曲线梁桥,其正立面布局选择以等跨径的方法较为理想,但也可选用不等跨度布局的方式方法[1]。
通常,桥梁所采用的最大跨径约为20m~60m,最高跨比约为1/15~1/25。
对变断面连续曲线箱梁桥,在其正立面布局设计中主要采取了中跨跨径不等于边跨跨径的布局方法,一般主跨径的边长是40m~70m,边跨跨径则为主跨跨径的0.6倍~0.8倍。
曲线桥梁支点截面的桥梁高度一般为中间横跨径的1/16~1/18,且最小高度不得少于1/20,跨中横截面桥梁高一般为中间支点截面桥梁高的1/1.5~1/2.5。
曲线桥梁的主梁一般采取盒形断面的方法,较为常用的盒型断面形式分为单箱单室、单箱双室、单箱多室、双箱单室、双箱双室和双箱多室等,当中单箱单室截面宽度的顶部长度通常不能超过14m,而单箱双室通常为20m,而双箱多室的顶部高度可以相当长但又不能大于40m,腹板则采取直腹层甚至是斜腹层的方法。
曲线梁桥弯扭耦合效应研究概述曲线梁桥是一种常见的桥梁结构形式,具有曲线形状的梁体。
在实际工程应用中,曲线梁桥受到车辆荷载及温度变化等外部因素的影响,容易出现弯扭耦合效应。
弯扭耦合效应是指梁在受力过程中既受弯矩又受扭矩的共同作用,而且这两种作用是相互影响的。
弯扭耦合效应对曲线梁桥的受力性能和安全性具有重要影响,因此对其进行研究具有重要的工程实践价值。
为了更好地理解和把握曲线梁桥弯扭耦合效应的特性,研究者们进行了大量的理论分析和实验研究。
本文将对曲线梁桥弯扭耦合效应的研究现状和进展进行概述,以期为相关领域的工程技术人员提供一定的参考和借鉴。
1. 弯扭耦合效应的基本特性曲线梁桥由于采用曲线形状的梁体,横截面的扭转刚度和弯曲刚度之间存在一定的耦合关系。
在实际工程中,曲线梁桥在受到车辆荷载作用时,容易出现梁体的扭转和弯曲同时发生,即弯扭耦合效应。
这种效应会导致桥梁在受力过程中出现非对称的应力分布情况,对结构的承载性能和稳定性造成一定的影响。
弯扭耦合效应的特性包括:一是梁体受到弯矩和扭矩的共同作用,弯矩会引起梁的挠曲变形,扭矩会引起梁的扭转变形,二者相互影响;二是梁体的非对称截面形状会导致扭转刚度和弯曲刚度的非均匀分布,不同截面处的弯扭耦合效应差异较大。
弯扭耦合效应会导致梁体的受力性能发生变化,对桥梁的安全性和使用寿命造成影响。
深入研究曲线梁桥弯扭耦合效应的特性及规律,对于提高桥梁的受力性能和安全稳定性具有重要的意义。
2. 理论分析曲线梁桥弯扭耦合效应的理论分析是深入研究该效应的重要途径之一。
研究者通过建立相应的数学模型和力学方程,对曲线梁桥在受力过程中弯扭耦合效应的发生机理和规律进行分析和探讨。
在理论分析方面,研究者通常采用弯曲耦合理论和扭转耦合理论相结合的方法,对弯扭耦合效应进行研究。
通过建立适当的受力模型和假设条件,可以得到曲线梁桥在弯扭耦合载荷作用下的受力状态和变形情况,进而为工程设计和构建提供理论依据。
对曲线连续梁桥设计的探讨摘要: 由于受原有地物或地形的限制,一些城市的立交桥梁和交叉工程的桥梁曲线半径比较小,桥墩基本上要设在指定位置,这种情况下只能考虑设计曲线梁桥,文章作者根据多年工作经验,且结合某工程实例,对曲线连续梁桥的设计进行的探讨。
关键词: 曲线连续梁桥梁格法扭矩设计一、曲线梁桥的受力特点曲线梁桥能很好地克服地形、地物的限制,可以让设计者较自由地发挥自己的想象,通过平顺、流畅的线条给人以美的享受。
但是曲线梁桥的受力比较复杂。
与直线梁相比,曲线梁的受力性能有如下特点:(1)轴向变形与平面内弯曲的耦合;(2)竖向挠曲与扭转的耦合;(3)它们与截面畸变的耦合。
其中最主要的是挠曲变形和扭转变形的耦合。
曲梁在竖向荷载和扭距作用下,都会同时产生弯距和扭距,并相互影响。
同时弯道内外侧支座反力不等,内外侧反力差引起较大的扭距。
在该扭矩作用下, 内外支座反力产生较大的差异, 甚至会产生负反力, 所以内力、支座反力须经过空间模型计算确定。
此外, 在曲线预应力混凝土连续梁中, 预应力束的平弯和竖弯将在竖直平面和径向平面内产生相应的作用力, 竖直平面的作用力除了提供抗弯承载能力外, 还会耦合扭矩; 径向平面的预应力将产生绕截面形心轴的的扭矩, 由于连续梁正弯矩段要长于负弯矩段, 因此预应力作用会使梁体向外侧翻转。
二、曲线梁桥的设计计算模型曲线箱梁的常用计算方法有曲线梁法(空间梁单元法)、梁格法、有限单元法(板壳元、三维实体元) 等。
应用板壳单元模型或实体单元模型分析,其计算结果准确、可靠, 但建模过程繁琐、分析费用较高、在一般通用的分析软件中较难实现预应力筋的模拟。
梁格法的等效梁格与曲线箱梁间有恰当的等代关系, 且具有概念清晰、易于理解的特点, 其内力计算结果对弯扭耦合作用有较高的灵敏度, 能较好地反映弯桥纵横向受力的特点, 且可以直接用于按规范检算截面, 因而得到普遍欢迎。
空间单梁模型具有建模简单方便的优点, 但其不能反映各腹板的受力差异,一般用于较大曲线半径的弯桥计算分析。