SW-仿真分析教学教材
- 格式:ppt
- 大小:5.89 MB
- 文档页数:43
第一章斯沃数控仿真软件概述1.1 斯沃数控仿真软件简介南京斯沃软件技术有限公司开发FANUC、SINUMERIK、MITSUBISHI、广州数控GSK、华中世纪星HNC、北京凯恩帝KND、大连大森DASEN数控车铣及加工中心仿真软件,是结合机床厂家实际加工制造经验与高校教学训练一体所开发的。
通过该软件可以使学生达到实物操作训练的目的,又可大大减少昂贵的设备投入。
斯沃数控仿真软件包括八大类,28个系统,62个控制面板。
具有FANUC、SIEMENS(SINUMERIK)、MITSUBISHI、广州数控GSK、华中世纪星HNC、北京凯恩帝KND系统、大连大森DASEN、南京华兴WA编程和加工功能,学生通过在PC机上操作该软件,能在很短时间内掌握各系统数控车、数控铣及加工中心的操作,可手动编程或读入CAM数控程序加工,教师通过网络教学,可随时获得学生当前操作信息。
1.2 斯沃数控仿真软件的功能★国内第一款自动免费下载更新的数控仿真软件★真实感的三维数控机床和操作面板★动态旋转、缩放、移动、全屏显示等功能的实时交互操作方式★支持ISO-1056准备功能码(G代码)、辅助功能码(M代码)及其它指令代码★支持各系统自定义代码以及固定循环★直接调入UG、PRO-E、Mastercam等CAD/CAM后置处理文件模拟加工★Windows系统的宏录制和回放★AVI文件的录制和回放★工件选放、装夹★换刀机械手、四方刀架、八方刀架★基准对刀、手动对刀★零件切削,带加工冷却液、加工声效、铁屑等★寻边器、塞尺、千分尺、卡尺等工具★采用数据库管理的刀具和性能参数库★内含多种不同类型的刀具★支持用户自定义刀具功能★加工后的模型的三维测量功能★基于刀具切削参数零件光洁度的测量第二章斯沃数控仿真软件操作2.1 软件启动界面2.1.1 试用版启动界面图2.1-1(1)在左边文件框里选择试用版;(2)在右边的窗口处点击选择所要使用的数控系统(3)如果需要超级使用可以选择(4)选择系统完成之后,点击Try It 进入系统界面2.1.2网络版启动界面图2.1-2(1)在左边文件框内选择网络版(2)在右边的第一个条框内选择所要使用的系统名称(3)在User里选择用户名,输入密码(4)在Remember Me 和Remember My Password 中进行选择(5)输入服务器的IP地址(6)点击Sign in 进入系统界面(7)启动SSCNCSRV.exe,进入SERVER主界面,如下图:图2.1-3(8)单击工具栏中的“用户状态”图标,将会显示所有用户的状态,如下图图2.1-4(9)在用户状态列表中选择一个用户,然后点击工具栏上的"设置教师机"图标将其设为教师机(10)单击"用户管理"图标,弹出"用户管理"对话框,如下图:在这个对话框中添加用户名和姓名,以及该用户的权限。
SolidWorks_Simulation教程SolidWorks Simulation是一款用于进行结构、热分析和流体流动仿真的软件。
它能够帮助工程师们在设计产品的早期阶段就进行各种仿真分析,从而提高产品的质量和性能。
本文将介绍SolidWorks Simulation的基本工作流程和一些常用的功能。
首先,我们需要导入我们要进行仿真分析的零件或装配体。
在SolidWorks中,我们可以使用实体建模功能来创建零件和装配体,然后将其导入到Simulation环境中。
在导入之前,我们需要将零件或装配体的材料属性和边界条件定义好。
一旦我们导入了零件或装配体,我们就可以开始进行各种仿真分析。
在SolidWorks Simulation中,有三种主要类型的分析:结构分析、热分析和流体流动分析。
我们可以根据实际需要选择哪一种类型的分析。
对于结构分析,我们可以对零件或装配体的强度、刚度和变形进行分析。
我们可以定义荷载、约束条件和材料属性,并使用有限元法对零件或装配体进行离散化。
然后,我们可以进行静态分析、动态分析或疲劳分析,以评估产品在不同工况下的性能。
对于热分析,我们可以对零件或装配体的温度分布和热传导进行分析。
我们可以定义热源、边界条件和材料属性,并使用有限元法对零件或装配体进行离散化。
然后,我们可以进行稳态分析或瞬态分析,以评估产品在不同工况下的热性能。
对于流体流动分析,我们可以对液体或气体在零件或装配体中的流动行为进行分析。
我们可以定义流体的物理属性、边界条件和流动类型,并使用有限元法对零件或装配体进行离散化。
然后,我们可以进行稳态分析或瞬态分析,以评估产品在不同工况下的流体流动性能。
在进行仿真分析之后,我们可以查看结果并进行后处理。
SolidWorks Simulation提供了各种可视化工具,如色谱图、云图和矢量图,以帮助我们理解仿真结果。
我们还可以从结果中提取关键信息,如最大应力、最大变形和最大温度,以评估产品的性能。
实验一 SolidWorks运动仿真一、实验目的1.掌握SolidWorks图形装配方法2.掌握SolidWorks装配图的motion分析操作方法二、实验内容完成下列3个模型的装配及运动仿真图1压榨机机构图2凸轮机构图3夹紧机构三、实验步骤压榨机机构的装配与仿真3.1 压榨机机构的装配3.1.1 选择【文件】/【新建】/【装配体】命令,建立一个新装配体文件。
依次将机架和压榨杆添加进来,添加机架与压榨杆的同轴心配合。
如图4。
再将滑块添加进来,添加滑块与压榨杆的重合配合,如图5。
图4机架与压榨杆的同轴心配合图5滑块与压榨杆的重合配合3.1.2 添加滑块端面与机架端面的重合配合,以及滑块前视基准面与机架前视基准面的重合配合(点击图形区域左边的装配体下的机架前的“+”号即可找到前视基准面)最后将滑块拖动到中间位置。
图6机架与滑块的重合配合图7机架与滑块前视基准面的重合配合3.2 压榨机机构的运动仿真3.2.1 仿真前先将“solidworks motion ”插件载入,单击工具栏中按钮“”的下三角形,选择其中的“插件”,在弹出的“插件”设置框中,选中“solidworks motion”的前后框,如下图8所示。
在装配体界面,单击左下角的【运动算例】,再在【算例类型】下拉列表中选择【motion 分析】如下图9所示。
图8载入插件图9 motin 分析3.2.2 添加实体接触:单击工具栏上的“接触按钮”,在弹出的属性管理器中【接触类型】栏内选择“实体接触”,在【选择】栏内,点击视图区中压榨杆和滑块,“材料”栏内都选择“steel (dry)”, 单击“确定”按钮“”,如下图10所示。
同理再为滑块与机架添加实体接触,参数设置与压榨杆与滑块之间的一样。
图10添加实体接触3.2.3 添加驱动力:物体对压榨杆的反作用力即为驱动力,故在压榨杆上添加一恒力即可。
单击工具栏中的“力”按钮“”,在弹出的【力/扭矩】属性管理器中,【类型】选择“力”,【方向】选择“只有作用力”,“作用零件和作用应用点”,选择压榨杆上表面,单击改变力的方向向下,【力函数】选择“常量”,大小输入50牛顿,单击确定按钮。
SolidWorks_Simulation教程SolidWorks是一种三维CAD软件,可以用于设计和模拟物理系统。
SolidWorks Simulation是SolidWorks的一个模块,它可以用于进行结构、流体和热传递等各种仿真分析。
本教程将介绍SolidWorksSimulation的基本使用方法。
1. 启动SolidWorks并创建一个新的部件文档。
选择适当的模板,例如“英制部件”。
2. 在新建部件中,选择“评估”选项卡,然后选择“模拟Xpress”。
3.在弹出的窗口中,选择要进行的仿真类型,例如“静态仿真”。
4.在仿真设置向导中,定义要仿真的材料属性。
可以选择现有材料库中的材料,也可以定义新的材料。
6.在“区域”页上,定义要进行仿真的区域。
这可以是整个部件或特定的几何区域。
8.完成设置后,单击“运行仿真”按钮开始仿真分析。
9.在仿真运行完成后,可以查看仿真结果。
选择“报告”选项卡上的“结果”按钮。
这将显示不同的结果图,例如位移、应力、应变等。
10.根据需要进行结果分析。
可以选择并查看不同的结果图,调整显示参数,比较不同的设计方案等。
11. 如果需要修改部件的设计,则可以返回到SolidWorks中进行修改。
然后再次运行仿真以验证更改后的设计。
12.导出结果。
可以导出仿真结果以便进一步分析或与他人共享。
选择“文件”选项卡上的“导出图像”或“导出3D图形”按钮来导出结果。
总的来说,SolidWorks Simulation是一款强大的工具,可以帮助设计师分析和优化他们的设计。
通过本教程,您应该能够了解SolidWorks Simulation的基本使用方法,并开始进行各种仿真分析。
但请注意,这只是起点,深入了解和应用SolidWorks Simulation需要更多的实践和学习。
SolidWorksSimulation有限元分析培训教程1SolidWorksSimulation有限元分析培训教程1SolidWorks Simulation是一种基于有限元分析(FEA)的软件工具,它能够帮助工程师们更好地理解和预测产品在不同工况下的性能。
本文将介绍SolidWorks Simulation有限元分析培训教程的第一部分内容。
SolidWorks Simulation有限元分析培训教程的第一部分主要涵盖了以下几个方面的内容:介绍有限元分析的基本原理和应用、软件界面的介绍和操作、建立有限元模型、设置边界条件、进行求解和结果分析。
首先,教程会介绍有限元分析的基本原理和应用。
有限元分析是一种数值计算方法,通过将实际结构或系统分割成有限数量的小元素,再通过求解这些小元素之间的相互作用,从而得到整个结构或系统的行为和性能。
有限元分析广泛应用于产品设计和工程分析领域,能够帮助工程师们更好地优化产品设计,提高产品的性能和可靠性。
同时,教程还会介绍如何设置边界条件。
边界条件是有限元分析中非常重要的一部分,它决定了结构或系统在分析过程中的约束和加载情况。
教程将会介绍如何设置约束条件和加载条件,如固定支撑、力加载、压力加载等。
最后,教程会介绍如何进行求解和结果分析。
求解是有限元分析的核心过程,它通过数值方法求解有限元模型的方程组,得到结构或系统的响应结果。
教程将会介绍如何进行求解,以及如何对求解结果进行后处理和分析,如应力分析、位移分析、变形分析等。
综上所述,SolidWorks Simulation有限元分析培训教程的第一部分内容涵盖了有限元分析的基本原理和应用、软件界面的介绍和操作、建立有限元模型、设置边界条件、进行求解和结果分析等方面的内容。
通过学习这些内容,工程师们能够更好地掌握SolidWorks Simulation有限元分析的基本技能,从而能够更好地应用于产品设计和工程分析中。
SolidWorks_Simulation图解应⽤教程_四_线性静态分析假设载荷和所引发的反应之间的关系是线性的。
例如,若将载荷量加倍,反应(位移、应变、应⼒及反作⽤⼒等)也将加倍。
所有实际结构在某个⽔平的载荷作⽤下都会以某种⽅式发⽣⾮线性变化。
在某些情况下,线性分析可能已经⾜够。
但在其他许多情况下,由于违背了所依据的假设条件,因此线性求解会产⽣错误结果。
造成⾮线性的原因有材料⾏为、⼤型位移和接触条件。
您可以利⽤⾮线性算例来解决线性问题,其结果可能会由于过程的不同⽽稍有不同。
⼀、⾮线性分析线性静态分析假设载荷和所引发的反应之间的关系是线性的。
例如,若将载荷量加倍,反应(位移、应变、应⼒及反作⽤⼒等)也将加倍。
所有实际结构在某个⽔平的载荷作⽤下都会以某种⽅式发⽣⾮线性变化。
在某些情况下,线性分析可能已经⾜够。
但在其他许多情况下,由于违背了所依据的假设条件,因此线性求解会产⽣错误结果。
造成⾮线性的原因有材料⾏为、⼤型位移和接触条件。
您可以利⽤⾮线性算例来解决线性问题,其结果可能会由于过程的不同⽽稍有不同。
在⾮线性静态分析中,不考虑像惯性和阻尼⼒这样的动态效果。
线性分析基于静态和线性假设,因此只要这些假设成⽴,线性分析就有效。
当其中⼀个(或多个)假设不成⽴时,线性分析将会产⽣错误的预测,此时必须使⽤⾮线性分析建⽴⾮线性模型。
如果下列条件成⽴,线性假设成⽴。
(1)模型中的所有材料都符合虎克定律,即应⼒与应变成正⽐。
有些材料只有在应变较⼩时才表现出这种⾏为。
当应变增加时,应⼒与应变的关系成⾮线性。
有些材料即使当应变较⼩时也表现为⾮线性⾏为。
材料模型是材料⾏为的数学模拟。
如果材料的应⼒与应变关系是线性的,该材料被称为是线性。
线性分析可以⽤来分析具有线性材料并假定没有其他类型的⾮线性模型。
线性材料可以是同向性、正交各向异性或各向异性。
当模型中的材料在指定载荷的作⽤下表现出⾮线性应⼒、应变⾏为时,就必须使⽤⾮线性分析。