当前位置:文档之家› 数列知识在高中物理教学中的应用

数列知识在高中物理教学中的应用

数列知识在高中物理教学中的应用
数列知识在高中物理教学中的应用

数列知识在高中物理教学中的应用

摘要:运用数学工具解决物理问题的能力,在历年的高考大纲中都是一项必不

可少的能力要求。近年来,数学与物理相结合的问题更是高考的热点,也是难点。而有关数列知识的应用在高考物理试题中出现的频率越来越高。所以,重视数列

知识在物理题中的应用范围及其应用的方法,是广大考生在高考备考中不容忽视

的重要环节。而本文将对此类问题作简要的归纳和分析。

关键词:数列知识;高中物理;应用

凡涉及数列求解的物理问题,都具有多过程、重复性的共同特点。但每一个

重复过程均不是原来的完全重复,是一种变化了的重复。随着物理过程的重复,

某些物理量逐步发生着“前后有联系的变化”。而该类问题求解的关键是确立相关

物理量的数列关系,在此过程中涉及到的基本方法有两种:方法一、数学归纳法:(1)逐个分析开始的几个物理过程;(2)利用数学归纳法从中找出物理量的变化通项

公式;方法二、递推公式法:(1)分析物理过程,确立物理过程的重复特点;(2)利

用相关量第n项与第(n-1)项的递推关系找出物理量的变化通项公式。

有些物理问题中还需要用到等差数列求和、等比数列求和公式进行计算题1:(07全国I)24(18分)如图所示,质量为m的由绝缘材料制成的球与质量

为M=19m的金属球并排悬挂。现将绝缘球拉至与竖直方向成θ=60°的位置自由释放,下摆后在最低点处与金属球发生弹性碰撞。在平衡位置附近存在垂直于纸

面的磁场。已知由于磁场的阻尼作用,金属球将于再次碰撞前停在最低点处。求

经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于45°。

以上的例题充分地展示出数列知识在物理教学中的应用,运用数列知识可以

使物理问题变得简单起来。因此,教师对此要多总结、多归纳,这样才能使物理

教学的效率得以提高。

作者单位:广西宾阳中学

邮政编码:530400

数列复习知识点总结

数列 一、知识梳理 1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. 2.通项公式:如果数列 {}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =. 3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式. 4.数列的前n 项和与通项的公式 ①n n a a a S +++= 21; ②?? ?≥-==-) 2() 1(11n S S n S a n n n . 5. 数列的表示方法:解析法、图像法、列举法、递推法. 6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列. ①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如:.,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使 +∈≤N n M a n ,. ⑥无界数列:对于任何正数M ,总有项n a 使得 M a n >. 等差数列 1.等差数列的概念 如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差. 2.通项公式与前n 项和公式 ⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差. ⑵前n 项和公式2)(1n n a a n S += 或d n n na S n )1(2 1 1-+=. 3.等差中项 如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项. 即:A 是a 与b 的等差中项?b a A +=2?a ,A ,b 成等差数列. 4.等差数列的判定方法 ⑴定义法:d a a n n =-+1 (+∈N n ,d 是常数)?{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )?{}n a 是等差数列. 5.等差数列的常用性质 ⑴数列 {}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列; ⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd . ⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a ) ⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+; ⑸若等差数列 {}n a 的前n 项和n S ,则? ?? ???n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则n n a a S S nd S S 1 , +==-奇偶奇偶 ;

数列知识点归纳及例题分析

《数列》知识点归纳及例题分析 一、数列的概念: 1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: (1)0,-3,8,-15,24,....... (2)21,211,2111,21111,...... (3), (17) 9 ,107,1,23 2.n a 与n S 的关系:???≥-==-) 2(,) 1(,11n S S n a a n n n 注意:强调2,1≥=n n 分开,注意下标;n a 与n S 之间的互化(求通 项) 例2:已知数列}{n a 的前n 项和???≥+==2,11 ,32n n n S n ,求n a . 3.数列的函数性质: (1)单调性的判定与证明:定义法;函数单调性法 (2)最大(小)项问题: 单调性法;图像法 (3)数列的周期性:(注意与函数周期性的联系)

例3:已知数列}{n a 满足????? <<-≤≤=+121,12210,21n n n n n a a a a a ,531 =a ,求2017a . 二、等差数列与等比数列 1.等比数列与等差数列基本性质对比(类比的思想,比较相同之处和不同之处)

例题: 例4(等差数列的判定或证明):已知数列{a n }中,a 1=35,a n =2-1 a n -1 (n ≥2,n ∈N * ),数列{b n }满足b n =1a n -1 (n ∈N *). (1)求证:数列{b n }是等差数列; (2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 ∵a n =2-1 a n -1 (n ≥2,n ∈N * ),b n =1 a n -1 . ∴n ≥2时,b n -b n -1=1a n -1-1 a n -1-1 = 1? ?? ??2-1a n -1-1 -1 a n -1-1 =a n -1 a n -1-1-1a n -1-1 =1. ∴数列{b n }是以-5 2 为首项,1为公差的等差数列.

数列知识点归纳及

数列知识点归纳及例题分析

《数列》知识点归纳及例题分析 一、数列的概念: 1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: (1)0,-3,8,-15,24,....... (2)21,211,2111,21111,...... (3), (17) 9 ,107,1,23 2.n a 与n S 的关系:???≥-==-)2(,) 1(,11n S S n a a n n n 注意:①强调2,1≥=n n 分开,注意下标;②n a 与n S 之间的互化(求通项) 例2:已知数列}{n a 的前n 项和???≥+==2 ,11 ,32n n n S n ,求n a . 3.数列的函数性质: (1)单调性的判定与证明:①定义法;②函数单调性法 (2)最大(小)项问题:①单调性法;②图像法 (3)数列的周期性:(注意与函数周期性的联系) 例3:已知数列}{n a 满足?? ??? <<-≤≤=+121,12210,21n n n n n a a a a a ,531 =a ,求2017a . 二、等差数列与等比数列 1.等比数列与等差数列基本性质对比(类比的思想,比较相同之处和不同之处) 等差数列 等比数列 定义 1n n a a d +-=(d 是常数1,2,3n =,…) 1 n n a q a +=(q 是常数,且0≠q ,1,2,3n =,…) 通项 公式 ()11n a a n d =+- ()n m a a n m d =+- 11n n a a q -= 推广:n m n m a a q -= 求和 公式 () 112 n n n S na d -=+=()12n n a a + ()111 (1)1(1)11n n n na q S a q a a q q q q =?? =-?-=≠? --? 中项 公式 2 n k n k a a A -++=(*,,0n k N n k ∈>>) k n k n a a G +-±=(*,,0n k N n k ∈>>)

超全数列基本知识点复习讲义

等差数列 一、数列 定义:有序的一列数 表示方法:1)最常见的枚举法:1,2,3,4,5,6…… 2)★★★通项公式:()n a f n =,理解:数列是一种特殊的函数,特殊在定义域上,定义 域n 是从1开始的自然数,所以说,数列又可以从函数解析式的角度来分析数列特征 3)递推关系:1 ()n n a f a +=,理解:递推公式是最直观的,比如说等差数列就是后一项和前一项的 差相等,但是递推公式不利于分析数列的性质,比如想知道第100项是多少,就需要由递推公式去推出通项公 式 4)求和公式:n S ,理解:n S 和n a 的关系11 (2) (1)n n S S n S n --≥??=?(记⑤) ★★★难点:递推公式?通项公式 通项公式?求和公式 ☆☆☆一般考察思路:/n n a S ?递推公式?通项公式n S ??不等式(中间截取一段或者几段) 二、等差数列 1. 递推公式:1n n a a d +=+(d 可以是0) ()n m a a n m d =+- 2. 通项公式:1(1)()n a a n d f n =+-=(可以把这个式子看成一个关于n 的一次函数(记①)) 1(dn a d =+-)(一次项系数为d (记②),这个式子递增递减的变化取决于公差d (记③)) 3. 求和公式: 1()2 n n a a n S += (把n a 的式子代入)1(1) 2 n n na d -=+ (更常用) 21=()22d d n a n +-(可看成二次函数,无常数项。二次项系数为2 d ,决定开口方向。(记④) ?从函数的角度看一个数列的n S 有没有最大值和最小值是由d 的正负决定的) 考点1:由数列函数性质速算通项公式和求和公式 例题1.已知一个等差数列{}n a ,2 5a =,57a =,求通项公式 解析:1)通常解法:求通项公式,求1a 求d 52233a a d -= = ,1133a =,1132211 (1)(1)=3333 n a a n d n n =+-=+-?+ 2)口算解法:把n a 看成一个函数1(n a dn a d =+-)(由②,只需要记住一次项系数为d ) 所以23n a n = +一个数,然后代入2a ,解得那个数是113 例题2.1)已知数列{}n a 的通项公式是25n a n =+,求n S 解析:由①知,通项公式为关于n 的一次函数,则n a 是等差数列 常规解法:21221(1) 7,9,2,7262 n n n a a d a a S n n n -===-==+ ?=+ 口算解法:(函数的角度)由②,知道2d =,由④知,2 2 n d S n =+一个数n ?2=n +一个数n ? 想求得这个数只需要代入一个n S 即可,21171S a ===+一个数1?,可知,这个数为6 所以26n S n n =+ 2)已知数列{}n a 的前n 项和为23n S n n =-,求{}n a 的通项公式 解析:由④,n S 是没有常数项的二次函数,所以{}n a 是等差数列 由口算解法,可知6n a n =+一个数,由112S a ==,64n a n =-

高考数学题型全归纳:数列在生活中的应用(含答案)

数列在生活中的应用 在实际生活和经济活动中、很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析、从而予以解决。与此同时,数列在艺术创作上也有突出的作用! 数学家华罗庚曾经说过:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、日用之繁、无处不用数学。这是对数学与生活关系的精彩描述。 首先, 我重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策、购置房地产按揭货款(公积金贷款)制度的推出、极大地刺激了人们的消费欲望、扩大了内需、有效地拉动了经济增长。 众所周知、按揭货款(公积金贷款)中都实行按月等额还本付息。这个等额数是如何得来的、此外若干月后、还应归还银行多少本金、这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。 若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形、得(an+1-a/p)/(an-a/p)=1+p. 由此可见、{an-a/p}是一个以a1-a/p为首项、1+p为公比的等比数列。日常生活中一切有关按揭货款的问题、均可根据此式计算。 (二)有关数列的其他经济应用问题 数列知识除在个人投资理财方面有较为广泛的应用外、在企业经营管理上也是不可或缺的。一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题、但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。因此、解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。 (三)数列在艺术中的广泛应用

高中数学数列知识点总结精华版

一、数列 1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. ⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列. ⑵在数列中同一个数可以重复出现. ⑶项a n 与项数n 是两个根本不同的概念. ⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列 2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =. 3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式. 4.数列的前n 项和与通项的公式 ①n n a a a S +++= 21; ②???≥-==-)2()1(11n S S n S a n n n . 5. 数列的表示方法:解析法、图像法、列举法、递推法. 6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列. ①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使+∈≤N n M a n ,. ⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 1、已知*2()156 n n a n N n =∈+,则在数列{}n a 的最大项为(答:125); 2、数列}{n a 的通项为1 +=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为(答:n a <1+n a ); 3、已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-); 4、一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式) (1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是 ()(答:A )

最新数列基础知识

数列 基础知识梳理 一、数列 1、数列的定义 数列是按照一定顺序排列着的一列数,在函数的意义下,数列是某一定义域为正整数或它 的有限子集{1,2,3,4,……,n}的函数,即当自变量从小到大依次取值时对应的一列函数值, 其图像是无限个或有限个孤立的点,数列的一般形式为印,a2,a3,|l(,a n ,通常简记为{a n},其中a n是数列的第n项,也叫通项。 1){a n}与a n是不同的概念,{a n}表示数列a1l a2,a3^|,an^L而a.表示的是这个数 列的第n项 2)数列与集合的区别 集合中元素性质:确定性,无序性,互异性; 数列中数的性质:确定性,有序性,可重复性。 2、数列的通项公式 当一个数列{a n}的第n项a n与项数n之间的函数关系可以用一个公式a^ f n来表示,就把这个公式叫数列{a n}的通项公式,可根据数列的通项公式算出数列的各项,也可判断给定的数是否为数列{a n}中的项或可确定是第几项。但不是所有数列都可以写出通项公式,数列的通项公式也不唯一。 3、数列的表示方法 数列看成一个特殊的函数,所有从函数的观点出发,数列的表示方法有以下三种: 1)解析法:通项公式和递推公式两种; 2)列表法 3)图像法(数列的图像是一系列孤立的点)4、数列的分类 (1)有穷数列和无穷数列 (2)单调数列,搬动数列,常数列 5、a n与S n的关系 S( n =1) n 一IS n —Sn4(n^2) 6、等差数列 1)定义:一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,

这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示 定义的表示为:a n -a n 一1 = d (n ?二 N *,n 丄2)或者 a n : -a n = d (n ?二 N *) 公差d 可正可负或为零,为零时,数列为常数列。 2)等差数列的通项公式 a n =印 n -1 d, a .二 a m n -m d d = a n ~am (n = m) n —m 3)等差数列的增减性 d .0=等差数列「aj 为递增数列; d ::0=等差数列「a/为递减数列; d=0=等差数列CaJ 为常数列。 4 )等差中项 a +b 任意两个数a,b 有且仅有一个等差中项 ,即。 2 A 二~~ = a,A,b 三个数构成等差数列。 2 5)等差数列前n 项和公式(倒序相加法) n & a n S i ; 2 n (n —1) 5 d. 2 + x , n (n T ) d 2 『 d 第二个公式 q = na 1 d 可整理成 S n n …I 印 n 2 2 I 2丿 pl pl A 二一启二印-一则S n =An 2 ? B n , S n 可看成是关于n 的二次函数(常数项为 2 2 那么可以得出一下结论: (1) 当d -0是,S n 有最小值;当d :::0是,S n 有最大值; (2) { a n }是等差数列二 S n 二 An 2 ? Bn. 对于第二个公式要求 a n ,a m 是数列中的项即可,也可表示为 n -1

北京四中数学高考总复习:数列的应用之知识讲解、经典例题及答案

北京四中数学高考总复习:数列的应用之知识讲解、经典例题及答案

北京四中数学高考总复习:数列的应用之知识讲解、经典例题及答案 知识网络: 目标认知 考试大纲要求: 1.等差数列、等比数列公式、性质的综合及实际应用; 2.掌握常见的求数列通项的一般方法; 3.能综合应用等差、等比数列的公式和性质,并能解决简单的实际问题. 4.用数列知识分析解决带有实际意义的或生活、工作中遇到的数学问题. 重点: 1.掌握常见的求数列通项的一般方法; 3.用数列知识解决带有实际意义的或生活、工作中遇到的数学问题 难点:

用数列知识解决带有实际意义的或生活、工作中遇到的数学问题. 知识要点梳理 知识点一:通项与前n项和的关系 任意数列的前n项和; 注意:由前n项和求数列通项时,要分三步进行: (1)求, (2)求出当n≥2时的, (3)如果令n≥2时得出的中的n=1时有 成立,则最后的通项公式可以统一写成一个形式,否则就只能写成分段的形式. 知识点二:常见的由递推关系求数列通项的方法1.迭加累加法: , 则,,…, 2.迭乘累乘法:

, 则,,…, 知识点三:数列应用问题 1.数列应用问题的教学已成为中学数学教学与研究的一个重要内容,解答数学应用问题的核心是建立数学模型,有关平均增长率、利率(复利)以及等值增减等实际问题,需利用数列知识建立数学模型. 2.建立数学模型的一般方法步骤. ①认真审题,准确理解题意,达到如下要求: ⑴明确问题属于哪类应用问题; ⑵弄清题目中的主要已知事项; ⑶明确所求的结论是什么. ②抓住数量关系,联想数学知识和数学方法,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子表达. ③将实际问题抽象为数学问题,将已知与所求联系起来,据题意列出满足题意的数学关系式(如

数列知识点及常用解题方法归纳总结

数列知识点及常用解题方法归纳总结 一、 等差数列的定义与性质 () 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ?=+2 ()()前项和n S a a n na n n d n n = +=+ -112 12 {}性质:是等差数列a n ()若,则;1m n p q a a a a m n p q +=++=+ {}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232-- ()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则 ;421 21 a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52 a S an bn a b n n n ?=+ 0的二次函数) {}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2 项,即: 当,,解不等式组可得达到最大值时的值。a d a a S n n n n 11 000 0><≥≤?? ?+ 当,,由可得达到最小值时的值。a d a a S n n n n 11000 <>≤≥?? ?+ {}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123 (由,∴a a a a a n n n n n ++=?==----12113331 ()又·,∴S a a a a 3132 22 33113 = +===

数列全章知识点总结

数列知识点题型方法总复习 一.数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函 数,数列的通项公式也就是相应函数的解析式。如 (1)已知* 2 () 156 n n a n N n = ∈+,则在数列{}n a 的最大项为__(125); (2)数列}{n a 的通项为1 +=bn an a n ,其中 b a ,均为正数,则n a 与1+n a 的大小关系为___(n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(3λ>-);(4)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数 列}{n a 满足)(* 1N n a a n n ∈>+,则该函数的图象是(A ) A B C D 二.等差数列的有关概念: 1.等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。如设{}n a 是等差数列,求证:以b n = n a a a n +++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。 2.等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = 210n +;(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______ 8 33 d <≤ 3.等差数列的前n 和:1()2n n n a a S += ,1(1) 2n n n S na d -=+。如(1)数列 {}n a 中,*11(2,)2 n n a a n n N -=+≥∈,32n a =,前n 项和15 2n S =-,则13a =-,10n =; (2)已知数列 {}n a 的前n 项和2 12n S n n =-,求数列{||}n a 的前n 项和n T (答:2* 2* 12(6,) 1272(6,) n n n n n N T n n n n N ?-≤∈?=?-+>∈??). 4.等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2 a b A +=。 提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、 d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d ) 三.等差数列的性质: 1.当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率 为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. 2.若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数 列。

高中数学数列知识点总结

数列基础知识点和方法归纳 1. 等差数列的定义与性质 定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()() 1112 2 n n a a n n n S na d +-= =+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界 项, 即:当100a d ><,,解不等式组10 0n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由10 0n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{} n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶, 1 += n n a a S S 偶 奇. (7)项数为奇数12-n 的等差数列{} n a ,有

高三复习数列知识点总结

数列专题解析方法 一、数列通项公式的求解 类型一:观察法 例 1: 写出下列数列的一个通项公式 (1)3,5,9,17,33 ,; (2)11,22,33,44, ; 2345 (3)7,77.777.7777. (4)2, 1,10, 17,26, ; 3 7 9 11 (5)3,9,25,65, ; 2 4 8 16 类型二:公式法 (1) a n a1 (n 1)d a m (n m)d 例 2:已知等差数列a n 中,a1 1,a3 3,求a n 的通项公式 n 1 n m (2)a n a1q n1 a m q n m 例 3:已知等比数列a n 中,a2 6,6a1 a3 30, 求a n 的通项公式类型三:利用“ S n ”求解 S1,(n 1) (1) (1) a n n S n S n 1(n 2)

例 4:已知数列a n 的前n项和S n n2 24n(n N* ),求a n 的通项公例 5:已知数列a n 的前n项和为S n,且有a1 3,4S n 6a n a n 1 4S n 1,求a n 的通项公式 例 6:已知数列a n 的前n 项和为S n,且有a1 1,a n 1 2S n 1(n 1), 求a n 的通项公式 例 7:已知正数数列a n 的前n项和为S n ,且对任意的正整数n满足 2 S n a n 1, 求a n 的通项公式 (2)S n S n 1的推广 例 8:设数列a n满足a13a232a33n 1a n n,n N*求a n的通项公 3 式 类型四:累加法 形如a n 1 a n f (n)或a n a n 1 f (n)型的递推数列(其中f(n)是关于n 的函数) (1)若 f (n)是关于n的一次函数,累加后可转化为等差数列求和例 9:a n 1 a n 2n 1,a1 2, 求a n 的通项公式 (2)若 f (n)是关于n的指数函数,累加后可转化为等比数列求和例 10:a n 1 a n 2n,a1 2, 求a n 的通项公式 (3)若 f (n) 是关于n 的二次函数,累加后可分组求和 例11:a n 1 a n n n 1,a1 1, 求a n 的通项公式 (4)若 f (n)是关于n的分式函数,累加后可裂项求和 例 12:a n 1 a n 21,a1 1, 求a n的通项公式 n 2 2n n 类型五:累乘法 形如an1f(n)或an f (n)型的递推数列(其中f(n)是关于n的函数) a n a n 1

数列基础知识点

数列基础知识点 1.概念与公式: ①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列; 2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2 ) 1(2)(11d n n na a a n S n n -+=+= ②等比数列:1°.定义若数列q a a a n n n =+1 }{满足 (常数),则}{n a 称等比数列;2°.通项公式:;1 1k n k n n q a q a a --==3°.前n 项和公式:),1(1) 1(111≠--=--= q q q a q q a a S n n n 当q=1时.1na S n = 2.简单性质: ①首尾项性质:设数列,,,,,:}{321n n a a a a a 1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =?=?=?--n n n a a a a a a ②中项及性质: 1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2 b a A += 2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ?=? ④顺次n 项和性质:见习题册page28复习题B 组第2题: 1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=n k n n k n n k k k k a a a 1 21 31 2,,则组成公差为n 2d 的等差数 列; 2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=n k n n k n n k k k k a a a 1 21 31 2,,则 组成公差为q n 的等比数 列.(注意:当q =-1,n 为偶数时这个结论不成立)

(完整版)高中数学数列基础知识与典型例题

数学基础知识例题

数学基础知识与典型例题(第三章数列)答案 例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12 211 =---n n n n S S 设n n n S b 2 = 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2 3 22111=== a S b , ∴ 21 2 +=n S n n ,∴12)12(-+=n n n S ,∴当2n ≥时 212)32(--+=-=n n n n n S S a ∴????+=-2 2 )32(3n n n a (1)(2)n n =≥,1 2)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11 1 -+-=n n a n n a ∵11=a ,∴312=a ,31423?=a ,3142534??=a ,3 1 4253645???=a , ∴)1(234)1()1(123)2)(1(+=???-+????--=n n n n n n n a n ΛΛ,∴122+==n n a n S n n . 例4.解:)111(2)1(23211+-=+=++++= n n n n n a n Λ∴12)111(2)111()3 1 21()211(2+= +-=??????+-++-+-=n n n n n S n Λ 例5.A 例6. 解:1324321-+++++=n n nx x x x S ΛΛ①()n n n nx x n x x x xS +-++++=-132132ΛΛ② ①-②()n n n nx x x x S x -++++=--1211ΛΛ, 当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n n n -++-=-+--=---=-++1111111111∴()() 21111x nx x n S n n n -++-=+; 当1=x 时,()2 14321n n n S n +=++++=ΛΛ 例7.C 例8.192 例9.C 例10. 解:14582 54 54255358-=-? =?==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-?=a ∴14588-=a 例11.D 例12.C 例13.解:12311=-==S a , 当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n 例14. 解一:设首项为1a ,公差为d 则???? ????? = ??+??++=?+1732225662256)(635421112121 11d a d d a d a 5=?d 解二:??? ??==+2732354 奇偶偶奇S S S S ???==?162192奇偶S S 由 d S S 6=-奇偶5=?d 例15. 解:∵109181a a a a =,∴205 100 110918=== a a a a 例16. 解题思路分析: 法一:利用基本元素分析法 设{a n }首项为a 1,公差为d ,则71151 76772 151415752 S a d S a d ?? =+=?????=+=??∴ 121a d =-??=? ∴ (1)22n n n S -=-+∴ 15 2222 n S n n n -=-+=-此式为n 的一次函数 ∴ {n S n }为等差数列∴ 21944n T n n =- 法二:{a n }为等差数列,设S n =An 2 +Bn ∴ 2 72 157******** S A B S A B ?=?+=??=?+=?? 解之得:12 5 2 A B ?=????=-??∴ 21522n S n n =-,下略 注:法二利用了等差数列前n 项和的性质 例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ② 由①: a a q 24+=代入②得:2=a 或9 5 =a 从而5=q 或13 ∴原来三个数为2,10,50或9 338 ,926,92 例18.70 例19. 解题思路分析: ∵ {a n }为等差数列∴ {b n }为等比数列 ∴ b 1b 3=b 22,∴ b 23=81,∴ b 2=21,∴ 1312178 14 b b b b ? +=????=??,∴ 13218b b =???=??或 12182b b ?=?? ?=? ∴ 13212()24n n n b --== 或 1251 428n n n b --=?= ∵ 1 ()2n a n b =,∴ 12 log n n a b =,∴ a n =2n -3 或 a n =-2n +5 例20. 2392 n n +

数列应用题专题训练

数列应用题专题训练 高三数学备课组 以数列知识作为背景的应用题是高中应用题中的常见题型,要正确快速地求解这类问题,需要在理解题意的基础上,正确处理数列中的递推关系。 一、储蓄问题 对于这类问题的求解,关键是要搞清:(1)是单利还是复利;(2)存几年。 单利是指本金到期后的利息不再加入本金计算。设本金为P元,每期利率为r,经过n期,按单利计算的本利和公式为Sn=P(1+nr)。 复利是一种计算利率的方法,即把前一期的利息和本金加在一起做本金,再计算下一期的利息。设本金为P,每期利率为r,设本利和为y,存期为x,则复利函数式为y=P(1+r)x。 例1、(储蓄问题)某家庭为准备孩子上大学的学费,每年6月30日在银行中存入2000元,连续5年,有以下两种存款的方式: (1)如果按五年期零存整取计,即每存入a元按a(1+n·6.5%)计本利(n为年数); (2)如果按每年转存计,即每存入a元,按(1+5.7%)n·a计算本利(n为年数)。 问用哪种存款的方式在第六年的7月1日到期的全部本利较高? 分析:这两种存款的方式区别在于计复利与不计复利,但由于利率不同,因此最后的本利也不同。 解:若不计复利,5年的零存整取本利是 2000(1+5×0.065)+2000(1+4×0.065)+…+2000(1+0.065)=11950; 若计复利,则 2000(1+5%)5+2000(1+5%)4+…+2000(1+5%)≈11860元。 所以,第一种存款方式到期的全部本利较高。 二、等差、等比数列问题 等差、等比数列是数列中的基础,若能转化成一个等差、等比数列问题,则可以利用等差、等比数列的有关性质求解。 例2、(分期付款问题)用分期付款的方式购买家用电器一件,价格为1150元。购买当天先付150元,以后每月这一天都交付50元,并加付欠款的利息,月利率为1%。若交付150元以后的第

数列知识点总结及题型归纳

数 列 一、数列的概念 (1 项叫第1项(或首项)第n 项(也叫通项)记作n a ;数列的一般形式:1a ,2a ,3a (1)(2)2010(2例如:①:1 ,2 ,②:4131211,,,说明: ①{}n a 表示数列,n a 的通项公式; ② 同一个数列的(1)n -=1,21 ()1,2n k k Z n k -=-?∈?+=? ; (3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一个序号集合到另一 个数集的映射。从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值 n a 来代替()f n ,其图象是一 . 有穷数列和无穷数、 … … 和n S 与通项n a 的关系: 322 +=n ,求数列}{n a 的通项公式 2项起,每一项与它的d 表示。用递推公式表示为1)。 = (1)n d +-; d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,12497116a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64

2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B ) 3.等差数列,12-=n a n 题型三、等差中项的概念: 定义:如果a ,A ,b 2 a b A += a ,A , b 成等差数列?A (m n m n n a a a +-+=2) 例:1.(06全国I )设{}n a A .120 B .D .75 2.设数列{}n a 是单调递增的等差数列,前三项的和为12,前三项的积为 48,则它的首项是( ) A .1 B.2 C.4 D.8 题型四、等差数列的性质: ()n m a a n m d =+-, 且m n p q +=+,则 n 。 ) 127...a a a +++= (D )n n n 项和,已知23a =, 611a =,则7S 等于( )

数列知识在日常生活中的应用例谈

数列知识在日常生活中的应用例谈 发表时间:2012-03-26T09:56:05.130Z 来源:《现代教育科研论坛》2012年第2期供稿作者:李健 [导读] 数列知识有着广泛的应用,如生物种群数量变化,银行中的利息计算,人口增长,粮食增长、住房建设等等问题 李健(贵阳市第二十五中学贵州贵阳 550000) 数列知识有着广泛的应用,如生物种群数量变化,银行中的利息计算,人口增长,粮食增长、住房建设等等问题,都会用到高中的数列知识。本文举例说明,有助于学生认识和理解数列知识。 例1:在植物组织培养过程中,某细胞在培养基中按照1个分裂为2个,2个分裂为4个,依次分裂下去进行增加,而且每15分钟分裂一次。那么,1小时后,这种细胞会增加到多少个? 解析:这是生物学上的一个比较常见的问题(细菌的分裂已是如此)。应用数列知识我们很快就会求得。 显然,a1=2,q=2,n=4,那么a4=a1 ×qn-1=2×23=16(个) 例2:某房地产公司推出的售房有两套方案:一种是分期付款的方案,当年要求买房户首付3万元,然后从第二年起连续十年,每年付款8000元;另一种方案是一次性付款,优惠价为9万元,若一买房户有现金9万元可以用于购房,又考虑到另有一项投资年收益率为5%,他该采用哪种方案购房更合算?请说明理由.(参考数据1.059≈1.551,1.0510≈1.628) 解析:如果分期付款,到第十一年付清后看其是否有结余,设首次付款后第n年的结余数为an, ∵a1=(9-3)×(1+0.5%)-0.8=6×1.05-0.8 a2=(6×1.05-0.8)×1.05-0.8=6×1.052-0.8×(1+1.05) …… a10=6×1.0510-0.8(1+1.05+…+1.059) =6×1.0510-0.8× =6×1.0510-16×(1.0510-1) =16-10×1.0510 ≈16-16.28=-0.28(万元) 所以一次性付款合算. 例3:假如某市2010年新建住房面积为4000平方米,其中,250平方米为中低价房,预计在今后若干年内该市每年新建住房面积平均不上一年增长8%,加50平方米,问到哪一年底该市历年新建的中低价房的累计面积将首次不少于4750平方米? 解析:设中低价房的面积构成数列{ an},由题意可以知道,an 为等差数列,a1=250,d=50 sn =250×n +[n(n-1)/2] ×50=25n2 +225n 令25n2 +225n≥4750,解之得到:n≥10或者n≤-19(不符合题意,舍去) 由此可知,要到2020年底该市历年新建的中低价房的累计面积将首次不少于4750平方米。 这里仅仅是举例说明了数列知识在实际生活中的应用的几个小问题,而数列知识在我们生活中的应用还有很多很多,希望大家注意收集这方面的问题,进行分析和综合归纳。为此,特举3例让大家练习。 学生练习: 1.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3小时,这种细菌由1个可繁殖成()。 A.511个 B.512个 C.1023个 D.1024个 2.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元。 (1)问第几年开始获利? (2)若干年后,有两种处理方案: (3)年平均获利最大时,以26万元出售该渔船; (4)总纯收入获利最大时,以8万元出售该渔船。 问哪种方案合算。 3.用分期付款的方式购买价格为25万元的住房一套,如果购买时先付5万元,以后每年付2万元再加上余款利息,签订购房合同后一年付款一次,再过一年又付款一次等等。商定年利息为10%,那么5年房主该付多少款项?购房款全部付清后,房主实际付了多少万元?

相关主题
文本预览
相关文档 最新文档