当前位置:文档之家› 变电站接地装置防腐措施研究

变电站接地装置防腐措施研究

变电站接地装置防腐措施研究
变电站接地装置防腐措施研究

变电站接地装置防腐措施研究

发表时间:2019-01-17T11:34:49.460Z 来源:《电力设备》2018年第26期作者:朱志辉

[导读] 摘要:变电站的接地系统是维护电力系统安全可靠运行、保证运行人员和电气设备安全的根本保障和重要措施。

(东北大学设计研究院(有限公司))

摘要:变电站的接地系统是维护电力系统安全可靠运行、保证运行人员和电气设备安全的根本保障和重要措施。近年来,随着电力系统容量的迅速扩大,入地短路电流的大幅升高、先进监控设备抗干扰能力的减弱,我们更应该密切关注接地技术,接地技术也渐渐发展成为一门与电气工程、电气安全、电磁场理论、数值计算方法、地质勘探及测量技术等科学相关的交叉学科。

关键词:电力系统;变电站;接地技术;接地装置;防腐措施

变电站的接地装置则在运行中起着非常关键的作用,是一次及二次设备的安全命脉,但因接地装置容易发生腐蚀,造成接地网局部断裂、接地线与接地网脱落,从而形成严重的接地隐患和构成事故。目前,为了减少故障几率,均对变电站腐蚀情况采取了一系列的应对措施,若能解决好变电站接地装置腐蚀难题,满足高、低压电气设备长期、安全生产要求,保障系统和设备的安全稳定运行,则能大大提高电网运行的经济效益和社会效益。

1腐蚀概述

1.1腐蚀的定义

腐蚀可以从三方面定义:(1)由于材料与环境反应而引起的材料破坏和变质;(2)除了单纯机械破坏以外的材料的一切破坏;(3)冶金的逆过程。

总之腐蚀是由于物质和环境反应而引起的损耗。金属的腐蚀是金属表面与周围介质发生化学和电化学反应引起的破坏现象。腐蚀过程是化学的、电化学的和物理的。化学腐蚀是指金属表面与周围介质发生化学反应而引起的腐蚀现象,其特点是腐蚀的过程中无电流产生;物理腐蚀是指单纯的物理溶解作用引起的破坏,如金属在高温溶盐、溶碱、液态金属相接触时就会出现这种腐蚀;电化学腐蚀时指金属表面与周围介质发生电化学反应而引起的腐蚀现象,其特点是腐蚀过程中有电流产生。

1.2接地装置的腐蚀环境

接地装置的腐蚀环境主要分大气腐蚀和土壤腐蚀两种,在变电站中常见的这两种腐蚀是接地引下线和电缆沟内的均压带、各种垂直和水平接地体的腐蚀。腐蚀的程度主要取决于用于保护构筑物和连接线埋在或浸没在腐蚀性环境中时会受到腐蚀的影响。土壤中的含水量、电阻率、通气性和松紧度、土壤的PH值及土壤含盐量都对腐蚀有着直接的影响。

1.3接地网腐蚀的相关危害

变电站接地网是防雷接地、保护接地、工作接地三者的统一;如果接地网损坏,雷电流就不能引入大地,雷电过电压对变电站设施及运行人员将造成危害;设备绝缘损害,危及人身安全,不能满足系统运行方式的需要,不能保证电气设备和二次系统在正常和事故状态下可靠工作。

2耐蚀接地材料

2.1柔性石墨复合接地体

柔性石墨接地体是采用石墨与纤维以及一定配比的粘合剂,通过辊压、热塑以及绞线成型工艺制备而成的复合接地材料,该材料能在极端土壤条件下有效地预防接地体的腐蚀。

2.2金属包覆型接地体

在碳钢表面包覆一层耐蚀金属也是一种有效的防蚀措施。铜覆钢既有钢的高强度、高热阻,又有铜的良好导电性与抗蚀性能,根据制备工艺接地网用铜覆钢可分为电镀铜覆钢、连铸铜覆钢和套管冷拉铜覆钢,研究表明铜覆钢在大部分土壤中都具有较高的耐蚀性,且铜覆钢导体能有效降低接地阻抗和网内电位差。但在截面暴露的情况下,铜/钢面积比越大,截面处越容易发生电偶腐蚀,所以在截面暴露时,连铸铜覆钢的电偶腐蚀发生程度较电镀铜覆钢严重。锌包钢作为接地体时,锌层腐蚀电位较低,当接地体截面暴露时锌层优先腐蚀从而起到保护基体碳钢作用,但锌层的腐蚀容易导致土壤中的锌浓度超标,此外,锌和钢热膨胀系数相差较大,Zn/Fe界面易产生较大内应力,导致界面产生裂纹。

2.3导电防腐涂料

研究发现在金属接地体表面制备一层导电涂层能起到良好的防蚀效果。采用炭黑作为导电填料制备的导电硅橡胶涂层体积电阻率稳定在10Ωcm数量级,理论计算和现场测试结果表明,只要防腐涂层的体积电阻率小于土壤体积电阻率,施加导电涂层后接地体的接地电阻不会升高。

3防腐措施

接地体在土壤中的腐蚀主要原因是由于导体表面的物理化学的不均匀性,或是因为与不同材料的导体相邻近或相接触,和土壤中的电解质溶液构成原电池而引起的。所以我们应该想办法消除形成腐蚀原电池的各种条件或尽量减缓极化反应速度。现将目前常用的几种防腐措施进行分析:

3.1正确选择导体材料。对接地体材料的选择应进行技术经济的全面分析比较。目前普遍采用的接地网导体是铜和钢两种。铜的抗腐蚀能力强,但与接地网连接或相邻的设备外壳、构架基础、电缆皮、水油气管道都是由钢铁或铅做成的,它们会与铜构成原电池,加速腐蚀。考虑到未镀锌的钢铁在土壤中的腐蚀速率为铜的4~5倍,而镀锌钢的腐蚀速率一般为铜的1~2倍,我们目前采用的是镀锌钢为接地网导体材料。但从长期运行的技术经济分析来说,采用铜接地体材料比钢接地体材料好。

3.2合理设计。设计中,在测量土壤电阻率的同时,测量该土壤对铜、钢、镀锌钢的腐蚀速率,并预期使用年限,考虑余度,考虑远期电网发展,计算按腐蚀要求所选导体截面与按热稳定要求所选导体截面相比较,取大者。

3.3采用阴极保护法。在变电站中埋入电位更负的活泼金属与被保护金属偶接,从而减缓或阻止腐蚀的作用。根据提供保护电流方式的不同,阴极保护法又可分为牺牲阳极和外加电流两种。

3.4合理施工。如为防止电偶腐蚀,缝隙腐蚀,应采用焊接,避免使用螺栓连接和压接。焊接工艺中首推放热焊。接地引下线由一般的防腐漆改为环氧沥青,也可考虑采用外包混凝土块的预制件作为接地引下线。另外还有保证接地体回填土的质量等。

XX变电站接地网大修工程施工方案

llOkVXX变电站 接地网大修工程施工方案 批准: 审查: 编写: XXXXXX电力建设有限公司

2012年7月

一.编制依据 (2) 二工程概况 (2) 三、施工流程图 五、施工组织安排 六. 主要施工方法 1.施工准备 (8) 2?施工方法 (9) 七、 ............................................. 质量控制 10 1?质量控制目标及要求 (10) 2.质量检查 (10) 八、 ......................................... 安全文明施工 11 九、 ...................... 接地工程施工危险点分析及预控措施 12 十.施工监督验收 (13)

一、编制依据 1、《电气装置安装工程接地装置施工及验收规范》(GB50169—2006) 2、《交流电气装置接地》(DL/T621-1977) 3、H OkVXX变电站接地网大修工程《设计方案》 4、《电力建设安全工作规程》(SDJ63-2002) 二、工程概况 工程名称:llOkVXX变电站接地网大修 工程地点:llOkVXX变电站 工程内容:对110RVXX变接地网大修工程进行施工,地网阻值现为0.7欧,对地网电阻进行降阻施工,施工结束后接地电阻值应满足小于0.5欧的要求。 HOkVXX变电站位于XXX县城内,于1998年建成投运,设110kV/35kV/10kV电压等级,llOkV为户外常规布置,35kV/10kV为户内开关柜布置,主控楼与10kV配电装置楼为一栋建筑,占地而积为66mX 77m。 XX变站址土壤表层为耕作土,下层为沙土,水分含量一般,土壤 电阻率较高,全站接地变电站采用复合接地网,以水平接地体为主,以垂直接地极为辅,接地网外沿闭合,接地网内敷设水平均压带,水平接地体深埋为0. 6mo在避雷针和装有辟雷器的地方应设集中接地装置。 水平接地体采用水平接地体采用40x6〃林彳热镀锌扁钢,垂直接地

变电站接地网优化设计

编号:SM-ZD-35401 变电站接地网优化设计Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

变电站接地网优化设计 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 摘要:接地网等间距布置存在地电位分布不均匀的问题。在建220 kV 新塘变电站采用了不等间距布置,即从地网边缘到中心,均压导体间距按负指数规律增加。运用GPC 接地参数计算程序对两种方法进行分析和计算,结果表明接地网优化设计能显著地改善导体的泄漏电流密度分布,使土壤表面的电位分布均匀,提高安全水平,节省钢材和施工费用。 关键词:变电站接地网设计 随着电力系统容量的不断增加,流经地网的入地短路电流也愈来愈大,因此要确保人身和设备的安全,维护系统的可靠运行,不仅要强调降低接地电阻,还要考虑地网上表面的电位分布。在以往接地设计中,接地网的均压导体都按3 m ,5 m ,7 m

,10 m 等间距布置,由于端部和邻近效应,地网的边角处泄漏电流远大于中心处,使地电位分布很不均匀,边角网孔电势大大高于中心网孔电势,而且这种差值随地网面积和网孔数的增加而加大。本文结合在建工程220 kV 新塘变电站的接地网设计,阐释了接地网不等间距布置的方法及其合理性。 1 接地网优化设计的合理性 1.1 改善导体的泄漏电流密度分布 面积为190 m ×170 m 的新塘变电站接地网,在导体根数相同的情况下,分别按10 m 等间距布置和平均10 m 不等间距布置。沿平行导体①、②、③、④、⑤的泄漏电流密度分布曲线。从此可见,不等间距布置的接地网,边上导体①的泄漏电流密度较等间距布置的接地网平均低15%左右;对于导体②的泄漏电流密度,这两种布置的接地网几乎相等(仅相差0.3%);对于中部导体③、④、⑤,不等间距

0.4KV变电所接地方式探讨

10/0.4KV变电所接地方式探讨 10/0.4KV变电所的接地,变压器中性线套管出线应在何处接地,不同的规范标准有多种不同的接地方式。 根据民用建筑电气设计与施工防雷接地03D501(08D800-8)图集,TN-S、TN-C、TN-C-S 系统变压器中性线(PNE)的接地安装方式均为自变压器套管处采用电缆穿保护管敷设接至变压器室接地端子板上(即变压器处直接接地)。同时在低压配电柜内对TN-C方式的PEN 母排、PN-C-S方式的PN母排又进行了接地,可谓是两处接地。

韩老师推荐TN-S方式单台变压器较为合理的接线方式为图7、图8所示。

根据上述两图的接地方式,增加了变压器外壳至低压配电柜PE母排的这段导体。 (原文:连接变压器外壳至低压配电柜PE母排的这段导体为变压器的保护接地导体,在变压器本身发生接地故障时,该段导体会流过故障电流,因此要求其截面不应小于低压开关柜PE母排截面)。 图7变压器外壳与中性线套管出线直接在变压器室接地,图8则在低压配电柜内接地,均为一处接地。 上述接地方式与众多文章介绍中认为低压配电柜与变压器之间的联接采取五线制是没有必要相违背。变压器外壳与PE母排相连接介决了变压器低压侧绕组发生对外壳短路时,接地故障电流以最短路径返回变压器中性点问题。缺憾是增加了变压器至低压配电室一段PE 母排。 按照国际电工IEC/60364标准的规定,一建筑物内的PEN线因含有通过三相不平衡电流的中性线,只能在建筑物内作一点接地。如果多点接地,部分中性线电流将通过其它并联通路返回电源,此部分被称为杂散电流可能导致电气火灾,设备干扰等不良后果。并规定不允许在变压器处直接接地,只允许在变电所低压配电柜内进行接地。 下图为众多老师、专家所认可推荐的在同一电源可引出TN-S、TN-C、TN-C-S、TT系统的接地方式:

XX变电站接地网大修工程施工方案

110kVXX变电站 接地网大修工程施工方案 批准: 审查: 编写: XXXXXX电力建设有限公司 2012年7月

目录 一、编制依据1 二、工程概况2 三、接地网施工流程图3 四、施工总体要求3 五、施工组织安排4 六、主要施工方法5 1.施工准备 (5) 2.施工方法 (6) 七、质量控制10 1.质量控制目标及要求 (10) 2.质量检查 (10) 八、安全文明施工11 九、接地工程施工危险点分析及预控措施12 一、编制依据 1、《电气装置安装工程接地装置施工及验收规范》(GB50169—2006)

2、《交流电气装置接地》(DL/T621-1977) 3、110kVXX 变电站接地网大修工程《设计方案》 4、《电力建设安全工作规程》(SDJ63-2002) 二、工程概况 工程名称:110kVXX 变电站接地网大修 工程地点:110kVXX 变电站 工程内容:对110kVXX 变接地网大修工程进行施工,地网阻值现为0.7欧,对地网电阻进行降阻施工,施工结束后接地电阻值应满足小于0.5欧的要求。 110kVXX 变电站位于XXX 县城内,于1998年建成投运,设110kV/35kV/10kV 电压等级,110kV 为户外常规布置,35kV/10kV 为户内开关柜布置,主控楼与10kV 配电装置楼为一栋建筑,占地面积为66m ×77m 。 XX 变站址土壤表层为耕作土,下层为沙土,水分含量一般,土壤电阻率较高,全站接地变电站采用复合接地网,以水平接地体为主,以垂直接地极为辅,接地网外沿闭合,接地网内敷设水平均压带,水平接地体深埋为0.6m 。在避雷针和装有辟雷器的地方应设集中接地装置。水平接地体采用水平接地体采用2 406mm ?热镀锌扁钢,垂直接地体采用2 50505mm ??热镀锌角钢。 计划施工时间:计划2012年07月13日开工,于2012年08月13日竣工。

变电站接地设计及防雷技术正式样本

文件编号:TP-AR-L6587 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 变电站接地设计及防雷 技术正式样本

变电站接地设计及防雷技术正式样 本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 引言 变电站接地系统的合理与否是直接关系到人身和 设备安全的重要问题。随着电力系统规模的不断扩 大,接地系统的设计越来越复杂。变电站接地包含工 作接地、保护接地、雷电保护接地。工作接地即为电 力系统电气装置中,为运行需要所设的接地;保护接 地即为电气装置的金属外壳、配电装置的构架和线路 杆塔等,由于绝缘损坏有可能带电,为防止其危及人 身和设备的安全而设的接地;雷电保护接地即为为雷 电保护装置向大地泄放雷电流而设的接地。变电站接

地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。 1 变电站接地设计的必要性 接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。因此,没有合理而良好的接地装置,就不能有效地防雷。从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为接地装置。接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。 变电站的接地网上连接着全站的高低压电气设备的接地线、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。如果接地电阻较大,在发生电力

基于变电站接地系统应用的研究

基于变电站接地系统应用的研究 发表时间:2019-08-30T16:42:07.120Z 来源:《基层建设》2019年第16期作者:潘家豪 [导读] 摘要:本文主要对变电站接地系统应用进行分析和了解。 佛山市南海区南三路7号供电所大厦 摘要:本文主要对变电站接地系统应用进行分析和了解。电力系统的接地问题是一个看似简单、而实际上却非常复杂又至关重要的问题,它直接关系到人身及设备的安全。为了正确应用接地技术,提高电网防雷击,避免短路电流造成人员伤害,有必要对电网接地技术进行深入的研究。 关键词:变电站;接地系统;分类;作用 引言 接地系统对于维护电力系统的安全可靠运行以及保障电气设备与运行人员安全有着至关重要的意义。所谓接地就是将电力系统及其电气设备的某些部分与大地相连接,提供故障电流及雷电流的泄流通道,稳定电位。就其功能而言主要分为:工作接地、保护接地和防雷接地。一个良好的接地系统是这三者的统一,可以在短路故障电流或雷击等大电流冲击入地时及时抑制接地网的地电位升高,将电流顺利由接地体引入地下,确保站内工作人员和电气设备的安全。 一、接地系统的基本概念 接地,比较直观的就是接大地。实际上,接地是一个系统级的概念,接大地已经不能清晰地描述系统接地的概念了。为了清楚表达接地的概念,可以引用亨利.奥特的定义:“接地是为电流返回其源提供的低阻抗通道”。从工程实用观点来看就是在线路或电气设备发生接地故障时为故障电流流回电源提供一条低电阻路径。因此,接地就是把电气系统、电路或设备与大地连接,或者与范围广泛且能用来代替大地的等效金属导体连接。其目的在于确定与之相连接的导体电位并使之大致维持在大地电位或维持在代替大地的等效金属导体的电位,以便传导电流来往于大地或等效金属导体之间。 接地的目的主要是防止人身触电伤亡、保证电力系统正常运行、保护输电线路和变配电设备以及用电设备绝缘免遭损坏;预防火灾、防止雷击损坏设备和防止静电放电的危害等。接地的作用主要是利用接地极把故障电流或雷电流快速自如地泄放进大地土壤中,以达到保护人身安全和电气设备安全的目的。 二、接地系统分类 1.工作接地 为了满足电力系统或电气设备的运行要求,而将电力系统的某一点进行接地,称为工作接地,如电力系统的中性点接地、电力系统中性经消弧线圈接地、在直流系统中还包括相线接地等。工作接地是为电路正常工作而提供的一个基准电位。这个基准电位一般设定为零,该基准电位可以设为电路系统中的某一点、一段或一块等,当该基准电位与大地连接时,视为相对的零电位。工作接地的接地线是电气设备工作回路的一个组成部分,其作用是稳定电网对地电位,从而可使对地绝缘降低,如发电机或变压器的中性点接地。其功能是保证电力系统在正常及故障情况下具有适当的运行条件,保证电力设备绝缘所需的工作条件和保证继电保护及自动装置的正常工作。 2.防雷接地 为了防止雷电过电压对人身或设备产生危害而设置的过电压保护设备的接地,称为防雷接地,如避雷针、避雷器的接地。防雷接地的作用是被雷电电流引入大地。建筑物和电气设备的防雷主要是用避雷器。在架空输电线路的设计中,防雷设计是决定输电线路可靠性的一个重要因素。随着电网的发展,由于雷击输电线路引起的事故也日益增多,尤其在雷电活动强烈、土壤电阻率高、地形复杂的地区,雷击输电线路而引起的变电站跳闸开率导致事故率更高,这将给社会带来巨大的经济损失。接地是避雷技术最重要的环节,不管是直击雷、感应雷、或其他形式的雷,最终都是把雷电流送入大地。因此没有合理而良好的接地系统是不可能可靠接地避雷的。接地电阻越小,散流就越快,被雷击物体高电位保持时间就越短,危险性就越小。 3.保护接地 保护接地是指电气装置正常情况下不带电的金属部分与接地装置连接起来,以防止该部分在故障情况下突然带电而对人体造成伤害的接地方式。在电力系统中,由于电气装置绝缘老化、磨损或被过电压击穿等原因,都会使原来不带电的部分带电,或者使带低压电的部分带上高压电,这些意外的不正常带电将会引起电气设备损坏和人身触电伤亡事故。为了避免事故,通常采用保护接地的防护措施。保护接地适用于电源中性点不接地或经阻抗接地的系统。对于电源中性点直接接地的农村低电压电网和由城市公用配电变压器供电的低压用户,由于不便于统一管理,为了避免接地与保护接零混用而引起事故,所以也应采用保护接地方式。 三、接地系统的理论基础 利用边界积分方程法作为接地研究的理论基础,进而开展一系列的计算,包括接地电阻、跨步电势及接触电势值的计算,特别适合计算基于分块均匀土壤介质中复杂的接地系统,并根据计算结果提出相应满足设计要求的方案,其原理的实际应用案例己有研究及论证。边界积分方程用于计算变电站接地系统主要基于以下步骤: 恒定电流场的电位Ψ满足拉普拉斯方程:▽2Ψ=0 及边界条件:Ψ=Ψ0在接地导体表面 设接地体表面上任一点尸的电流密度为δP,把整个大地看成是一个均匀媒介,并设均匀媒介的电阻率为ρ0,把媒介分界面条件用一个等效源来等效,并设分界面上任意一点Q的等效电流密度为δQ,则可得任意一点M的电位为: 其中S包括接地体表面和媒介分界面,δ包括接地体表面的电流密度和媒介分界面上的等效电流密度,r(M,N)为M点到N点之间的距离。 四、变电站接地系统的选型及作用 变电站接地系统一般采用网格状型式布置,对于一些土壤电阻高,接地电阻不易降到规程要求的许可值,或者由于地理环境限制,无法大面积敷设接地网的变电站,近些年来出现了一种新型的接地型式,如深井压力灌注式、电解地极等型式、复合接地网等型式。网格状

变电站接地电阻值浅谈

0 引言 变电站接地系统的合理与否是直接关系到人身和设备安全的重要问题。随着电力系统规模的不断扩大,接地系统的设计越来越复杂。变电站接地包含工作接地、保护接地、雷电保护接地。工作接地即为电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地即为为雷电保护装置向大地泄放雷电流而设的接地。变电站接地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。 1 变电站接地设计的必要性 接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。因此,没有合理而良好的接地装置,就不能有效地防雷。从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为接地装置。接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。 变电站的接地网上连接着全站的高低压电气设备的接地线、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。如果接地电阻较大,在发生电力系统接地故障或其他大电流入地时,可能造成地电位异常升高;如果接地网的网格设计不合理,则可能造成接地系统电位分布不均,局部电位超过规定的安全值,这会给出运行人员的安全带来威胁,还可能因

反击对低压或二次设备以及电缆绝缘造成损坏,使高压窜入控制保护系统、变电站监控和保护设备会发生误动、拒动,酿成事故,甚至是扩大事故,由此带来巨大的经济损失和社会影响。 2 变电站接地设计原则 由于变电站各级电压母线接地故障电流越来越大,在接地设计中要满足R≤2000/I是非常困难的。现行标准与原接地规程有一个很明显的区别是对接地电阻值不再规定要达到0.5Ω,而是允许放宽到5Ω,但这不是说一般情况下,接地电阻都可以采用5Ω,接地电阻放宽是有附加条件的,即:防止转移电位引起的危害,应采取各种隔离措施;考虑短路电流非周期分量的影响,当接地网电位升高时,3~10kV避雷器不应动作或动作后不应损坏,应采取均压措施,并验算接触电位差和跨步电位差是否满足要求,施工后还应进行测量和绘制电位分布曲线。变电站接地网设计时应遵循以下原则: 2.1 尽量采用建筑物地基的钢筋和自然金属接地物统一连接地来作为接地网; 2.2 尽量以自然接地物为基础,辅以人工接地体补充,外形尽可能采用闭合环形; 2.3 应采用统一接地网,用一点接地的方式接地。 3 变电站接地电阻的构成及降阻措施 3.1 接地引线电阻,是指由接地体至设备接地母线间引线本身的电阻,其阻值与引线的几何尺寸和材质有关。 3.2 接地体本身的电阻,其电阻也与接地体的几何尺寸和材质有关。

变电站接地网降阻方法及应用浅析

变电站接地网降阻方法及应用浅析 摘要:变电站接地网是维护变电站运行可靠安全,保障人员和设备安全的重要 措施,随着电力系统的发展,接地短路电流越来越大,随着集约型GIS变电站的 日益普及,占地面积小了,接地网的可用面积也小了,对接地装置可靠性提出了 更高的要求。本文浅析某220千伏变电站土壤电阻率高,通过多方案论证比较, 因地制宜,采取了外引接地网+降阻剂的措施,达到降阻目的,确保该站接地电 网满足安全运行要求。 关键词:变电站;外引;接地网;效用 在电力系统中,接地网作为变电所交直流设备接地及防雷保护接地,对系统 的安全运行起着重要的作用。根据变电站防雷设计的整体性、结构性、层次性、 目的性,及整个变电站的周围环境、地理位置、土质条件以及设备性能和用途, 采取相应雷电防护措施,保证变电站设备的安全稳定运行。 1变电站接地网电阻偏高原因分析 1.1土壤电阻率偏高 干旱地区、沙石土层等相当干燥,而大地导电基本是靠离子导电,干燥的土 壤电阻率偏高,对系统接地电阻影响较大。 1.2 设计误差 有的在设计接地时,根据地质资料查找设计手册所对应的土壤电阻率,而未 通过实地测量或者测量值不准确。特别是测量值不准确,一般是由于设计人员在 现场采用四极法测量原土层的土壤电阻率而产生的。这种方法虽然符合设计规范 要求,比较科学而且准确的,但是四极法是属于在场地中抽样测量,在接地网埋 设处地质经常出现断层,地电阻率是不均匀的,例如山坡地形往往还需要在不同 的方位、不同的方向进行测量,找出沿横向、纵向和不同深层的土壤电阻率。 1.3 施工不细致 对于不同地区变电站的接地来说,不仅精心设计重要,严格施工更重要。因 为对于地形复杂,特别是位于岩石区的变电站,接地网水平接地沟槽的开挖和垂 直接地极的打入都十分困难。而接地工程又属于隐蔽工程,施工过程中出现下列 问题都会导致地网阻偏高。 (1) 没有在原土层上施工,而是回填了一部分回填土后再施工。 (2) 下层地网引出至上层地网的连接点没有全部引出,或者是引出后没有作好 标记,导致下层地网没有与上层地网有效连接,失去下层地网应有的作用。 (3) 回填使用了部分建筑垃圾、大块的沙石等材料。没有用细土回填,分层进 行夯实。 (4) 接地网在土建施工过程中遭遇比较严重的破坏,导致全站接地网各处的接 地电阻值测量值有巨大的差异。 1.4 运行过程中产生变化 有些接地装置在建成初期是合格的,但经一定的运行周期后,因下列问题, 导致接地电阻变大。 (1)由于接地体的腐蚀,使接地体与周围土壤的接触电阻变大,特别是在山区酸性土壤中,接地体的腐蚀速度相当快,会造成一部分接地体脱离接地装置。 (2)在接地引下线与接地装置的连接部分,因锈蚀而使电阻变大或形成开路。 (3)接地引下线、接地极受外力破坏而损坏等。 2降低接地网电阻的主要措施

变电站接地网优化设计

编号:AQ-JS-05799 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 变电站接地网优化设计 Optimization design of substation grounding grid

变电站接地网优化设计 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 摘要:接地网等间距布置存在地电位分布不均匀的问题。在建220kV新塘变电站采用了不等间距布置,即从地网边缘到中心,均压导体间距按负指数规律增加。运用GPC接地参数计算程序对两种方法进行分析和计算,结果表明接地网优化设计能显著地改善导体的泄漏电流密度分布,使土壤表面的电位分布均匀,提高安全水平,节省钢材和施工费用。 关键词:变电站接地网设计 随着电力系统容量的不断增加,流经地网的入地短路电流也愈来愈大,因此要确保人身和设备的安全,维护系统的可靠运行,不仅要强调降低接地电阻,还要考虑地网上表面的电位分布。在以往接地设计中,接地网的均压导体都按3m ,5m ,7m

,10m 等间距布置,由于端部和邻近效应,地网的边角处泄漏电流远大于中心处,使地电位分布很不均匀,边角网孔电势大大高于中心网孔电势,而且这种差值随地网面积和网孔数的增加而加大。本文结合在建工程220kV新塘变电站的接地网设计,阐释了接地网不等间距布置的方法及其合理性。 1接地网优化设计的合理性 1.1改善导体的泄漏电流密度分布 面积为190m ×170m 的新塘变电站接地网,在导体根数相同的情况下,分别按10m 等间距布置和平均10m 不等间距布置。沿平行导体①、②、③、④、⑤的泄漏电流密度分布曲线。从此可见,不等间距布置的接地网,边上导体①的泄漏电流密度较等间距布置的接地网平均低15%左右;对于导体②的泄漏电流密度,这两种布置的接地网几乎相等(仅相差0.3%);对于

变电站主接地网施工工艺流程及操作要点

变电站主接地网施工工艺流程及操作要点 变电站防雷接地是为防止电气设备意外带电造成电网、设备、人身事故的基本措施。本文从施工实际角度简述主接地网施工工艺流程及操作要点,力求能促进工程施工技术水平的提高,保证防雷接地工程的施工质量。从而确保接地装置安全运行,将对保障变电站运行安全有着十分重要的意义。 1、施工工艺流程

2、施工工艺流程及操作要点 2.1前期准备工作 2.1.1施工技术资料的准备 开工前首先应组织有关人员熟悉施工图及有关设计文件,了解设计意图,并按照设计要求做好接地施工方案、作业指导书编制等技术准备工作,并进行技术交底工作。其次根据经会审后的设计施工图编制材料清册,并校对材料规格和数量。 2.1.2施工材料的准备及材料质量保证措施 施工材料到达现场后,应对材料的规格、数量及外观质量进行检查。同时将材料厂家的产品合格证、质保书及厂家资质证明等相关文件报监理项目部审核,业主确认后方可进场使用。严禁不合格材料进入施工程序。 2.1.3施工前应配置最基本的施工人员和配备足够完好的施工机具 表1 主要施工机具的配置表 表2 主接地网施工施工人员配置表

2.1.4施工现场准备 根据业主指定的区域,首先设置接地材料加工棚、生活临时设施等。其次根据施工图纸和现场实际情况在预施工区域设置安全围栏,并悬挂安全标示牌等安全防护措施。 2.2接地沟开挖 2.2.1根据主接地网设计图纸要求,对对接地体(网)的敷设位置、网格大小进行放线。 2.2.2按照设计或规范要求的接地敷设深度进行接地沟开挖,深度按照设计或规范要求的最高标准为 准,超挖50-100mm左右。宽度为一般为500-1000mm,沟壁需放坡处理,底部如有石块应清除。 开挖完成的接地沟 2.2.3接地沟宜按场地或分区域进行开挖,充分利用土建开挖,减少重复工作,同时应及时恢复各类 安全防护措施,确保安全文明施工。 进行接地沟深度深测量 2.3垂直接地体安装 2.3.1按照设计或规范长度进行进行采购垂直接地体。 2.3.2垂直接地极采用人力锤击方式的安装,为避免垂直接地体施工时顶部敲击部位的损伤,在垂直 接地体顶部进行保护(如加自制钢管金属保护帽)。碰到强风化石时采用机械成孔安装。 2.3.3按设计图纸的位置安装垂直接地体。 2.3.4垂直接地体的埋入深度、间距必须满足设计要求。 2.3.5接地体安装结束后,顶部敲击部位应进行防腐处理。

变电站接地网测试的方法分析及研究

变电站接地网测试的方法分析及研究 【摘要】在城市化进程不断加快的今天,城乡电网改革的大力推行,我国的电力系统尤其是变电站的有关技术方面又一次面临了技术跨时代的改革和挑战。本文通过对变电站接地网的相关问题进行探讨,包括接地电阻对变电站重要性以及接地电阻测试案例分析,总结了在接地电阻测试过程中容易引起测量结果偏差的几种不同因素,并作分析,提出了相应的解决方法。 【关键词】变电站;接地网;接地电阻;测量 1引言 变电站接地网是变电站的重要组成部分,在电力系统中,它的正常运行离不开接地网的安全设置和有效保护,是保证电力系统可靠顺利运行不可缺少的安全装置。倘若达不到要求的变电站接地网,就会发生变电站继保系统设备损害以及人员安全等事故。所以在管理变电站的过程中,接地网的交直流设置和防雷设置应引起相关单位的大力重视。由于接地网在设计和施工都不易达到精确的控制,特别是隐蔽性及运行维护困难的特点,使得接地网建设成为变电站工程建设中的难点之一,下文就对相关问题进行浅析,谈谈如何改进我国变电站中现存的接地问题。 2关于变电站接地的问题

所谓接地是将电力设备和用电装置的外壳、支架及中性点用导体与接地装置做良好的电气连接。近年来,由于接地网年久腐蚀,焊点开焊、脱焊等问题逐渐表现出来,对电力系统造成很大的危害,所以因地制宜地选择合适的接地方案很重要,接地装置是确保电气设备在正常及故障情况下均能安全运行的重要保护措施之一。 在变电站的接地网的连接过程中,有一个影响接地质量的因素,那就是接地网同设备引线之间的连接问题。也就是在接地网的连接时,及时各项指标已经达到了相关的变电运行要求,但是由于设备导线接触问题处理不当,也容易引发接地故障。这类问题通常表现为地网焊接不良、接头不合格等。这种情况下,接地网在运行的过程中的有效截面就会减小,形成短路。针对以上这些问题我们可以使用集中方法进行解决,均压法就是其中一种,在高压配电装置地面下设置水平接地网,使其外缘闭合,内部敷设均压带,并利用建筑物的钢筋与地网可靠连接,形成通路。这是一种十分有效的均压措施。由于均压带的存在,配电装置区域内的电位分布比单独接地体和简单的环路接地体要均匀的多,所以接触电压和跨步电压的数值大为降低,实现了均衡电位接地。 3变电站接地电阻的测试方法 常用的现场测量接地网电阻的方法主要有电流电压法、比率计法与电桥法等。这几种方法除了所采用的电源形

浅析变电站接地设计因素

浅析变电站接地设计因素 发表时间:2016-10-10T15:20:54.297Z 来源:《电力设备》2016年第14期作者:刘锡华 [导读] 变电站接地系统作为变电站交、直流设备接地及防雷保护接地,对系统的安全运行起着重要作用。 惠州电力勘察设计院有限公司) 摘要:目前大多数变电站设计工程师在进行变电站接地网设计时,都会有一个误区:普遍认为110kV及以上变电站,全站接地电阻值小于0.5欧姆时即认为合格,电阻值大于0.5欧则认为不合格,就不管短路电流的大小,也不需论证跨步电压和接触电势是否满足设计要求值。接地体的选择更是根据经验选取,没有进行上导体的动、热稳定的较验。正确的设计方法是要结合实际,通过科学计算、详细分析、合理评价经济性,得出合理的设计方案。 关键词:变电站;接地网;接地电阻;入地短路电流;跨步电压;接触电势 引言:变电站接地系统作为变电站交、直流设备接地及防雷保护接地,对系统的安全运行起着重要作用;由于变电站接地网较为隐蔽性,容易被人忽视,往往只注意最后接地电阻的测量结果;接地网的敷设存在与构筑物或建筑物基础交叉情况,增加了变电站运行中对其进行改造或更换的困难性,所以变电站接地网一经敷设,将很难对其加以改造,因此在变电站接地设计中如何降低接地电阻,优化电站接地系统的设计,从而保证变电站安全稳定运行,值得深入细致分析及解决。 1、接地设计方案考虑因素 第一步:站址现状分析。 充分结合所考虑站址气象环境条件、站址条件,气象环境条件直接影响季节系数Ψ值的选取。土壤电阻率ρ是决定接地网的关键参数,选择变电所所址时,要考虑所在地的土质情况,勘测专业在进行场地勘测中应列出接地网处的土壤分层情况和每层的土壤电阻率ρ,不能仅取表层土壤的电阻率ρ。需对站址土壤电阻率进行多层分析,决定接地网的布置形式及设计方案。 第二步:入地短路电流的计算。 入地故障电流的计算是变电站接地系统设计的基础,直接与变电站安全性能有关,这是由于入地电流将产生最严重的地电位升、跨步电压和接触电势。 系统中发生接地短路分为站内接地故障和站外接地故障。故障短路电流可分为两部分:一部分是经架空线路的避雷线(地线)回流至电源;另一部分是经变电站接地网和大地回流至电源。前者为架空地线的分流电流,后者既是入地短路电流。故障时线路将对入地电流起到分流的作用,设计接地时应当考虑变电站短路电流的分流系数,即真正通过变电站接地网入地的电流与短路电流的比,变电站的短路电流分流系数与变电站的接地电阻关系很大,变电站的接地电阻越小,其短路电流分流系数却越大,即其入地电流越多。 其中入地短路电流计算公式为: Ig = (Imax - In)Sfl (1) Ig = InSf2 (2) 需补充的是:接地计算中,对接地故障电流中的对称分量电流引入校正系数,以考虑短路电流的过冲效应。衰减系数 Df 为接地故障不对称电流有效值 IF 与接地故障对称电流有效值 If 的比值。计算公式为: Ig = (Imax - In)Sfl Df (3) Ig = InSf2 Df(4) Df———衰减系数 接地短路(故障)电流的持续时间根据《交流电气装置的接地设计规范》GB50065-2011中的相关规定,发电厂和变电站的继电保护装置配置有2 套速动主保护、近接地后备保护、断路器失灵保护和自动重合闸时,te 应按下式取值: te≥tm + tf + to (5) tm———为主保护动作时间; tf———为断路器失灵保护动作时间; to———为断路器开断时间。 配有1 套速动主保护、近或远(或远近结合的)后备保护和自动重合闸,有或无断路器失灵保护时,te 应按下式取值: te≥to + tr (6) tr———为第一级后备保护的动作时间。 一般110kV变电站配置2套主保护,切除故障电流的时间te按3-6式计算。主保护为速动保护,断路器失灵保护动作时间约为 15~20ms,断路器开断时间目前110kV及以上to为0.3s,110kV以下为0.3~0.5s。 第三步:接地系统中接地电阻值的计算及要求。 不等间距布置接地网时接地电阻值按《交流电气装置的接地设计规范》GB50065-2011中的计算公式计算: (7) 110kV变电站接地电阻值满足的要求接地电阻应满足R≤2000/Ig,当不能满足时,应满足R≤0.5Ω的要求。 根据上述规范中对于大电流接地系统接地网接地电阻要求值时,应考虑降阻措施的要求。具体降阻措施有:采用低电阻的优质回填土、外延接地网、分层敷设水平网、并入垂直接地深极、或并入垂直接地深井、斜井等,本工程建议选用接地网中并入多根垂直接地深极作为降阻措施。除此之外,对土壤电阻率非常还有可选用离子极、接地模块等物理降阻剂。 第四步:接地网接地电阻的校验。 二次设备的接地要求及地电位升校验,一般的二次电缆2s 工频耐受电压较高(≥5kV),二次设备,如综合自动化设备,其工频绝缘耐受电压为2kV、1min。从安全出发,二次系统的绝缘耐受电压可取2kV。

变电站接地网的优化设计 邱璐

变电站接地网的优化设计邱璐 发表时间:2018-01-06T20:14:14.757Z 来源:《电力设备》2017年第26期作者:邱璐 [导读] 摘要:对于变电站接地网的设计,要根据区域的地质条件,采取不同的降阻措施,以最高性价比来设计其接地网,同时应采用新技术和新材料。 (南平闽延电力勘察设计有限公司福建南平 353000) 摘要:对于变电站接地网的设计,要根据区域的地质条件,采取不同的降阻措施,以最高性价比来设计其接地网,同时应采用新技术和新材料。因此,本文对变电站接地网的优化设计进行了分析。 关键词:变电站接地系统;优化措施;地电位升;局部电位升 一、变电站接地系统设计过程中主要存在的问题 1.1接地参数目标值存在的问题 根据规定,比较大的电气系统发生接地短路故障时,包括在110kV及以上变电站的接地系统,其用于接地的电阻值R必须低于2000/I。否则就会危害到人身和设备的安全。其中I为经接变电站地网向地中散流的入地故障的电流。 但是随着现在电网容量变得很大,经变电站的接地网或者接地装置向大地中散流的短路电流I也变得越来越大,当发生短路故障时,散入地的故障电流已经到了几千安大,依据规定,用于接地的电阻的值必须要满足零点几欧姆或者以下的数值,变电站的接地电阻值R可大致计算为0.5*/S,其中 为变电站附近的土壤电阻率,S为变电站接地网的面积。即使在土壤电阻率良好的地方也难以实现,并且现在我国城乡一体化的加快,变电站的建设密度也随之加快,可以用来建设变电站接地网的土地规划的正变得越来越小,变电站的用于接地的电阻的值很难满足规定的用于接地的电阻的数值。 1.2工频接地短路时造成的地电位升高的问题 当电力系统发生工频接地短路时产生的地电位升高,是大部分变电站目前面临的比较严重的情况,它不仅会造成变电站不能正常安全的工作,还会威胁在变电站附近的人员的安全。 1.3雷电流入地时造成的局部电位升高的问题分析 当变电站遭受雷击时,变电站中用于接地的系统可能会流入很大的雷电的冲击电流,让变电站的接地网战现出复杂的暂态的特性,会引起有危险的电压会迅速升高,严重的危害着变电站的安全可靠的工作。随着电力电子技术在现代的迅猛发展,电力电子产品开始大规模地应用集成电路技术,产品的内部接线距离变得越来越小,并且产品集成度变得越来越高,这样的设计使电子元器件越来越不耐压。因此,在遭遇雷击时,引起变电站局部电位升高,局部电位升高产生的电位差很容易就能击穿或击毁室内二次系统;另外,电磁感应过电压会随着局部电位升高而产生,并且雷电冲击波或浪涌电压会在电磁感应过电压的影响下产生,这种冲击波或电压会进入到二次系统沿着与二次系统连接的电缆,影响系统运行或者损坏系统,并且产生的电磁辐射会导致电子开关或继电器不能正常工作;降低了测量仪器的效率。 二、接地工程设计实践 某220kV变电站接地网设计过程中,变电站大部分为丘陵,地质条件较差,土壤电阻率非常高,平均电阻率600Ω.m,敷设常规接地网根本无法满足系统对接地电阻的要求。针对这一实际的区域地质实况,在其接地网的设计中,从接地电阻构成的因素,采取以下几项措施,降其地网的接地电阻值,以保证使系统的接地电阻达到规范要求值。 2.1采用新型接地材料 敷设常规的人工接地极,主要采用圆钢、扁钢;垂直敷设一般采用角钢或钢管。本工程水平接地极采用铜绞线,垂直接地极采用铜覆圆钢。 2.2敷设引外接地极 因受到征地范围的限制,无法向变电站周围引外接地极,外引接地网费用高,政策处理难度大,且由于所址场地地貌属于山地,地形起伏较大,水平方向土壤电阻率存在不均压性,且变电站周围亦无较低电阻率的土壤,因此外引方案不作考虑。地下较深处的土壤电阻率较低,故采用了深钻式接地极,将接地铜棒一直打入地下水层,与站内接地网联为一体。 三、变电站接地网优化设计 3.1扩大地网面积 这种方法可以有效减少地网接地电阻,但是,面积的增大也使得电流密度的不均匀性问题越来越严重,当降阻的效果逐渐趋于饱和,而地网面积增大到一定程度时,效果就会达到顶峰,过了这个点效果会越来越差,所以,在高土壤电阻率地区建变电站的方法并不可取。再者,增大地网面积会增加资金投入,且可占地面积有限,尤其是城区用地的紧张,只能确保最起码的安全距离,所以,这一方法往往无法得到正常使用。所以,此法只适合郊区变电站。 3.2增设接地体 这主要是增设水平接地体,并将垂直接地体深深埋于地下,以便有效降阻,现阶段在很多高土壤电阻率地区推广了接地设计。但是,虽说水平接地体能在一定程度上降低接地极附近的电流密度,他们互相之间的屏蔽作用而会让效果大打折扣,加装并深埋垂直接地体,从减小冲击接地电阻来看,通常有一定的效果,但在降低地网工频电阻方面效果甚微。 3.3降低接地电阻 设计接地网之前,要先测试、研判变电站地域的地质情况,从而确定出地层电阻率较低的位置,接下来再针对不同降低接地电阻的方法进行计算,从而确定出最佳方案。 (1)接地斜井 往往原土层的土壤电阻率会比较高,为了避开深层土壤差的区域,将上层较好的土壤充分利用起来,可以利用斜井降低接地电阻。而且由于是斜井,所以深井之间的互相屏蔽作用就有所减少,这对于降低接地电阻也非常有利。接地斜井的施工方法如下:第一,利用斜钻技术在变电站地网四个角上用钻机钻出斜井,井深50米,倾斜角约在30度;斜井的方向由地网中心向外辐射。每口井内的顶部与底部分别设置一套离子接地极,从而利用其对深层土壤的电阻率加以改善,将斜井的降阻作用充分发挥出来。在井内两个离子接地极利用联结电极

大型变电站接地网优化设计

目录 摘要 (Ⅰ) 第1章:变电站接地网面临的现状··················( 1 ) 1.1 接地网的概述·······················( 1 ) 1.2 接电网的现状分析·····················( 1 )第2章:接地网优化设计的合理性··················( 4 ) 2.1 关于接地短路电流的计算及接地要求·············( 4 ) 2.2 对接地网优化设计的分析··················( 6 )第3章:城市变电站接地网设计···················( 8 ) 3.1 三维立体接地网基本原理··················( 8 ) 3.2 垂直超深钢镀铜接地棒垂直超深钢镀铜接地棒·········( 9 ) 3.3 城市变电站接地网设计特点·················( 11 )第4章:接地网优化设计的方法····················( 13 ) 4.1 接地网接地电阻计算及量大电阻的确定············( 13 ) 4.2 减小接地电阻的方法···················( 14 ) 4.3 工程设计中的几点建议···················( 16 )第5章:变电站接地网优化措施····················( 18 ) 5.1 改进接地网的技术措施·················( 18 ) 5.2 接地工程设计实践····················( 21 )第6章:与接地网相关问题······················( 23 )

220KV变电站接地网的设计

220KV 变电站接地网的设计 庞国栋 (内蒙古送变电有限责任公司,内蒙古呼和浩特 010020) 摘 要:针对目前变电站和发电厂接地网的分布不均匀,以及接地电阻存在一定问题等缺陷,本文则是结合变电站接地网的设计原则,以220KV 变电站为参考地点,对接地网进行设计和计算。其中包括对短路电流和工频电阻以及均压带的计算。 关键词:变电站;接地网;短路电流;工频接地电阻;均压带 中图分类号:T M862+.3 文献标识码:A 文章编号:1006—7981(2012)12—0095—05 电力行业在我国的现代化建设中扮演着一个重要的角色,而变电站接地网对于电力系统的可靠运行和变电站工作人员的人身安全起着重要作用。随着现代社会快速化的发展,电力系统规模不断扩大,接地系统的设计也越来越复杂。所以变电站接地技术成为电力行业研究的重点之一。 接地网作为变电站交直流设备接地对系统的安全运行起着重要的作用。由于接地网作为隐性工程容易被人忽视,往往只注意最后的接地电阻的测量结果。随着电力系统电压等级的升高及容量的增加,接地不良引起的事故时有发生,因此,接地问题越来越受到重视。 而本设计结合变电站接地网的一般设计原则,具体内容包括:计算接地网的保护接地电阻和工频接地电阻,设计接地网的形状和均压带的布置方式,设计变电站接地网图。对变电站人员以及设备安全可靠,解决了一些个弊病。1 变电站接地网的设计1.1 220KV 变电站资料 图1 变电站一次系统接线图 V 变电站占地总面积3平方米,变电站的接地网要求采用水平接地作为主边缘闭合的复合接地网,土壤电阻率为6欧米。站中有主变压 器型号--180000/220三绕组变压器两台,各绕组间短路电压标幺值:U k1-1=14%,U k2-3=9%,U k1-3=24%。远期220KV 母线最大系统阻抗X 1=0.0080X 0=0.0133,接线组别为Y N ,Y n0,d 11,电压比220+8* 1.25%/121/38.5/10.5KV 。 本设计按两台变压器运行以某一台变压器中性点接地考虑计算短路电流,变压器容量基准值取100MVA 。 1.2 最大短路电流的计算 1.2.1 变压器正序阻抗的计算 设基准功率取S B =100MVA,额定功率取S e =180MVA,U B =230KV 三绕组变压器各绕组间短路电压百分比分别为:U k1-2=14%,U k2-3=9%,U k 1-3=24%则各绕组的电抗为: X 1=12(U k1-2+U 1-3-U k2-3)=12 (0.14+0. 24-0.09)=0.145 X 2=12(U 1-3+U k2-3-U 1-3)=1 2(0.14+0.09-0.24)≈0 X 3=12(U k2-3+U 1-3-U k1-2)=1 2(0.09+0.24-0.14)=0.095 转化为标幺值为: X *1=X 1S B S e =-0.145×100 180=0.0806 X * 2=X 2S B S e 0 X *3=X 3S B S e =0。095×100 180=0.05281.2.2 流经接地装置的短路电流计算 发生短路时,变压器按一台中性点接地考虑,设正序阻抗为X 、负序阻抗为X 、零序阻抗为,且X =X 。 95  2012年第12期 内蒙古石油化工 收稿日期35 2202842180.1212:2012-0-2

相关主题
文本预览
相关文档 最新文档