当前位置:文档之家› 金属材料的强韧化机制与应用

金属材料的强韧化机制与应用

金属材料的强韧化机制与应用
金属材料的强韧化机制与应用

金属材料的强韧化机制与应用

对结构材料来说,最重要的性能指标是强度和韧性。强度是指材料抵抗变形和断裂的能力,强度可分为抗拉强度、抗压强度、抗弯强度、抗剪强度等,各种强度间常有一定的联系,使用中一般较多以抗拉强度作为最基本的强度指标;韧性指材料变形和断裂过程中吸收能量的能力。以下介绍金属材料的主要强韧化机制。

一、金属材料的强化

金属材料强化的类型主要有固溶强化、细晶强化(晶界强化)、第二相粒子强化和相变强化。

(一)固溶强化

固溶强化是利用金属材料内部点缺陷(间隙原子和置换原子)对位错运动的阻力使得金属基体(溶剂金属)获得强化的一种方法。它分为两类:间隙式固溶强化和置换式固溶强化。

1. 间隙式固溶强化:原子直径很小的元素如C、N、O、B 等,作为溶质元素溶入溶剂金属时,形成间隙式固溶体。C、N等间隙原子在基体中与“位错”产生弹性交互作用,当进入刃型位错附近并沿位错线呈统计分布,形成“柯氏气团”。当在螺型位错应力场作用下,C、N原子在位错线附近有规则排列就形成“S nock”气团。这些在位错附近形成的“气团”对位错的移动起阻碍和钉扎作用,对金属基体产生强化效应。

2. 置换式固溶强化:置换式溶质原子在基体晶格中造成的畸变大都是球面对称的,固溶效能比间隙式原子小(约小两个数量级),这种强化效应称为软硬化。形成置换式固溶体时,溶质原子在溶剂晶格中的溶解度同溶质与溶剂的原子尺寸、电化学性质等因素密切相关,当原子尺寸愈接近,周期表中位置愈相近,其电化学性质也愈接近,则溶解度也愈大。由于溶质原子置换了溶剂晶格结点上的原子,当原子直径存在差别就会破坏溶剂晶格结点上原子引力平衡,而使其偏离原平衡位置,从而造成晶格畸变,随原子直径差别增加,造成的畸变程度愈大,由此造成的强化效果更大。

(二)细晶强化

晶界分为大角度晶界(位向差大于10o)和小角度晶界(亚晶界,位向差1~2o)。

晶界两边相邻晶粒的位向和亚晶块的原子排列位向存在位向差,处于原子排列不规则的畸变状态。晶界处位错密度较大,对金属滑移(塑性变形)、位错运动起阻碍作用,即晶界处对塑性变形的抗力较晶内大,使晶粒变形时的滑移带不能穿越晶界,裂纹穿越也困难。因此,当晶粒越细,晶界越多,表现阻碍作用也越大,此时金属的屈服强度也越高。

(三)形变强化(位错强化)

金属晶体中的位错是由相变和塑性变形引入的,位错密度愈高,位错运动愈困难,金属抵抗塑性变形的能力就愈大,表现在力学性能上,金属强度提高,即当造成金属晶体内部位错大量增殖时,金属表现出强化效果。理论研究同时也说明:制成无缺陷,几乎不存在“位错”的完整晶体,使金属晶体强度接近理论强度,则会使金属强化效果表现得更为突出。因此,金属有两种强化途径:一是对有晶体缺陷的实际金属,即存在位错金属,可以通过位错增殖而强化,二是制成无晶体缺陷的理想金属,使晶体中几乎不存在位错,则金属强化效果会更大。

(四)第二相粒子强化

按获得粒子的工艺,第二相粒子强化可分为析出强化(沉淀强化、时效强化)和弥散强化。第二相粒子本质上有两种强化途径:一是第二相质点沉淀时,沉淀相在基体中造成应力场,应力场和运动“位错”间交互作用使基体强化;二是第二相质点和基体处于共格和半共格状态时,质点周围有一个高能区,具有很大的弹性畸变,致使强度、硬度急剧增加而强化,其强化效应可总结为:

1. 沉淀相的体积比越大,强化效果越显著,要使第二相有足够的数量,必须提高基体的过饱和度;

2. 第二相弥散度越大,强化效果越好,共格第二相比非共格第二相的强化效能大;

3. 第二相质点对位错运动的阻力越大,强化效果也越大。

二、金属材料的韧化

(一)韧化原理

1. 细化晶粒;

2. 脆性相:减少或细化脆性相,使之呈球形存在;

3. 韧性相的加入:如少量的残余奥氏体可提高不锈钢的韧性;

4. 基体:调整基体的组织结构。

(二)韧化工艺

1. 熔炼铸造:成分控制、夹杂物和气体含量控制等;

2. 压力加工:晶粒控制、组织控制;

3. 热处理:组织控制(淬火、回火和时效、形变热处理等)。

三、应用实例

现举一例说明金属材料钢的强韧化机理在实际生产中的应用。低活化的铁素体/马氏体钢是作为未来核聚变反应容器首层容器壁的一种很有前景的材料。但随着温度升高,其力学性能会降低而使其性能不如奥氏体钢优越。为改善铁素体/马氏体钢的高温力学性能,研究者让细小氧化物颗粒弥散分布在钢基体从而进行强化,以此方式强化的钢种称为ODS(Oxide Dispersion Strengthening)钢,氧化物为Y2O3。R. Schaeublin[1]等人对两种ODS钢进行力学性能测试和微观组织观察,并于未经强化的参照钢做了比较。实验用ODS钢是在EUROFER 97(欧洲钢号)铁素体/马氏体钢的基础上改良而得,其名义化学成分为约8.9% Cr、1.1% W、0.47% Mn、0.2% V、0.14% Ta和0.11% C。强化粒子主要为氧化钇(Y2O3)颗粒。实验材料由奥地利攀时(PLANSEE)公司采用高温等静压(Hot Isostatic Pressing,HIP)工艺制备。两种ODS钢的Y2O3含量分别为0.3%和0.5%。对参照钢EUROFER 97和实验钢在不同温度下进行力学性能测试,所得实验结果如下:

表1 含0.3% 氧化钇和0.5%氧化钇EUROFER 97与未经强化EUROFER 97

临界抗拉强度、极限抗拉强度、均匀伸长率和最大伸长率数据

a来自文献[2]

从以上数据可以看出,相对于EUROFER 97钢来说,在500 o C时含0.3%氧化钇的ODS钢在0.2%塑性变形所测得的临界应力值有了大于100 MPa的提高,极限抗拉强度(UTS)更是提高了200 MPa。而在所有温度范围内,ODS 0.3%钢种的均匀伸长率都高于参照钢。而含0.5%氧化钇的实验钢性能提升不明显,在此不做讨论。

图1 TEM下晶界处点缀碳化物的交错铁素体晶粒形貌(a)0.3 wt%氧化钇,(b)0.5 wt%氧化钇;氧化钇颗粒分布形貌(c)0.3 wt%氧化钇,(d)0.5 wt%氧化钇

两种ODS钢的微观组织如图1所示。在扫描电镜下,0.3%氧化钇钢样品的表面较为平滑而0.5%氧化钇钢中则可以看到尺寸约10m的气孔。在TEM下,两者均观察到交错的铁素体晶粒,在晶界处还点缀着Cr23C6型的Cr的碳化物,如图1(a)和(b)所示。在0.3% ODS中碳化物颗粒尺寸不超过0.2m,在0.5% ODS中尺寸稍大,约在1m左右。并且两种ODS钢的晶粒尺寸均小于未经强化的EUROFER 97参照钢,晶粒的细化有效地提高了实验钢在室温下的强韧性。在图1(c)和(d)中可观察到晶内弥散分布的氧化钇细小颗粒,这些弥散分布的第二相粒子对ODS钢抗拉性能的提高起着关键的作用。因此,ODS钢强度和韧性指标的提升兼有细晶强化和弥散强化的作用,其中弥散强化起主要作用,对其高温下的力学性能提高至关重要。

参考文献:

[1] R. Schaeublin, T. Leguey, P. Spaatig, et al. Microstructure and mechanical properties of two ODS ferritic/martensitic steels. Journal of Nuclear Materials. 2002, 307–311: 778–782.

[2] H. E. Hofmans. Tensile and impact properties of EUROFER 97 plate and bar. NRG report 20023/00.38153/P, Petten. The Netherlands, 2000.

金属材料的强化机理讲解

材料结构与性能读书报告--金属材料的强化机理

摘要 综合论述金属材料强化原理,基本途径,文章从宏观性能—微观组织结构—材料强化三者的相互依存关系,叙述了材料强化的本质、原理与基本途径作了论述。金属的强化可以改善零件的使用性能,提高产品的质量,充分发挥材料的性能潜力,延长工件的使用寿命,在实际应用中,有着非常重要的意义。对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、形变强化、沉淀强化和弥散强化、晶界强化、位错强化、复相强化、纤维强化和相变强化等。 关键词:强化;细晶;形变;固溶;弥散;相变

Abstract In this paper a summary is made on the principle of material strengthening,basis way and new technology of heat treatment.The essence,principle and basis ways of strengthening various materials were expounded in terms of their microscope properties,microstructure and material strengthening technology.:Metal strengthening can improve the performance of parts, improve the quality of products, give full play to the properties of materials, extend the use of workpiece potential life, in practical applications, has a very important significance. A systematic discussion was made about the explantation of the potential of materials.For engineering materials, it is usually by the strengthening effect comprehensive to achieve good comprehensive performance. Specific methods have solid-solution strengthening,distortion and deposition strengthening ,he complex phase strengthening,fiber reinforced and phase change aggrandizement, etc. Keywords:strengthen; fine grain; deformation; solution; dispersion; phase transition

材料科学基础-材料的强韧化

1.强化金属材料的各种手段,考虑的出发点在于制造无缺陷的晶体或者制造位错运动的障碍

4.常见公式和相关计算题 公式一:霍尔-佩奇 d 21-0 s k +=σ σ 公式二:培莱-赫许公式ρ τ τ210 aGb += 题一:若平均晶粒直径为1mm 和0.04mm 的纯铁的屈服强度分别为100mpa 和250mpa,则平均晶粒直径为0,01mm 的纯铁的屈服强度为多少? 答:根据材料的屈服强度与晶粒尺寸的霍尔佩琪公式: d 21- s k +=σ σ

有: )(122 11 2 12 21121 1 s σσσσs s s d d d d ---+=- --- 所以:MPA 5.337)100250(1 110004 .001 .02 121s =---+=- - σ 题二:晶体滑移面上有一位错环,外力场在其柏士矢量方向的切应力为G 10 4 -= τ,柏士矢量 m 55.2b 1010 -?=此位错环在晶体中能扩张的半径为多大? 答:单位长度位错受力为: GN/m 55.255.2G b F 10101014 -10-4-?=??==τ 曲率半径为R 的位错因线张力而施加于单位长度位错线的力R 2G F b 2 ≈,当此力和外加应力 场对位错的力相等所对应的R 就是此位错环在晶体中能扩张的半径,所以: m GN /55.22R G 10b 14 2 -?=,即m 275.1R 106 -?= 5.合金强化包括固溶强化和沉淀相颗粒强化 6.陶瓷材料韧化机制为相变增韧和微裂纹增韧 7.位错在金属晶体中收到这些阻力: 8.复合材料的增韧机制有: 9.高温时细晶材料比粗晶材料软,与常温时的细晶强化作用相反.高温时可利用定向凝固来增大颗粒,而通过机械震动,添加不溶杂质,增加过冷度来细化晶粒 10.细晶强化能增大材料的韧性的原因是:晶粒越细,单位体积内晶粒越多,形变时同样的形变量分散到更多的晶粒中,产生均匀形变而不会产生应力集中,引起裂纹的过早产生和发展 11.弹性模量大一般强度和脆性大,弹性模量小不意味着不易变形,例如橡皮筋弹性模量较小但是变形大,因为机制不同 12.加工硬化应力-应变曲线一般有三个阶段:易滑移阶段,线性硬化阶段,抛物线硬化阶段 13.加工硬化原理类似与位错强化机制,是金属形变后的位错密度增加,起到了强化作用 14.形变后的屈服应力称为流变应力 15.替换式固溶强化作用小于填隙式固溶强化,但在高温时变得较为重要 16.可变形微粒的强化作用为切割机制,适用于第二相粒子较软并与基体共格的情形;不可变形微粒的强化作用为奥罗万机制(位错绕过机制),适用于第二相粒子较硬并与基体界面为非共格的情形。 17.高聚物的强化方法: (1)引入极性基 链上极性部分越多,极性越强,键间作用力越大; (2)链段交联 随着交联程度的增加,交联键的平均距离缩短,使材料的强度增加; (3)结晶度和取向 高聚物在高压下结晶或高度拉伸结晶性高聚物,可使材料的强度增加;

金属材料学教学大纲

金属材料学 (Science of Metal Materials) 课程编号:07171390 学分:3 学时: 48 (其中:讲课学时:38 课堂讨论学时:10 ) 先修课程:金属学、热处理原理、热处理工艺、工程材料力学性能 适用专业:金属材料工程、材料成型加工、冶金专业。 教材:戴起勋主编.金属材料学.北京:化学工业出版社,2005.9 开课学院:材料科学与工程学院 一、课程的性质与任务: 《金属材料学》是一门综合性应用性较强的专业必修课。在金属学、金属组织控制原理及工艺和力学性能等课程的基础上,系统介绍金属材料合金化的一般规律及金属材料的成分、工艺、组织、性能及应用的关系。通过课堂讲授、实验等教学环节,使学生系统掌握有关金属材料学方面的知识,培养学生研究开发和合理应用金属材料的初步能力。 二、课程的基本内容及要求 绪论(金属材料的过去、现在和将来): 1.教学内容 (1)金属材料发展简史 (2)现代金属材料 (3)金属材料的可持续发展与趋势 2.基本要求 了解金属材料在国民经济中的地位与作用、金属材料的发展概况和本课程的性质、地位和任务。 第一章钢的合金化概论 1.教学内容 (1)钢中的合金元素:合金元素和铁基二元相图;合金元素对Fe-C相图的影响;合金钢中的相组成;合金元素在钢中的分布; (2)合金钢中的相变:合金钢加热奥氏体化,合金过冷奥氏体分解;合金钢回火转变; (3)金元素对强度、韧度的影响及其强韧化; (4)合金元素对钢工艺性能的影响; (5)微量元素在钢中的作用 (6)金属材料的环境协调性设计基本概念; (7)钢的分类、编号方法。 2.基本要求 (1)掌握钢中合金元素与铁和碳的作用;铁基固溶体、碳(氮)化合物的形成规律;合金元素在钢中的分布;合金元素对铁-碳状态图的影响(2)了解钢的分类、编号方法 (3)掌握合金元素对合金钢工艺过程的影响 (4)掌握合金元素对合金钢力学性能的影响规律 (5)理解微量元素在钢中的作用 (6)了解材料的环境协调性设计基本概念

金属材料的结构与性能

第一章材料的性能 第一节材料的机械性能 一、强度、塑性及其测定 1、强度是指在静载荷作用下,材料抵抗变形和断裂的能力。材料的强度越大,材料所能承受的外力就越大。常见的强度指标有屈服强度和抗拉强度,它们是重要的力学性能指标,是设计,选材和评定材料的重要性能指标之一。 2、塑性是指材料在外力作用下产生塑性变形而不断裂的能力。塑性指标用伸长率δ和断面收缩率ф表示。 二、硬度及其测定 硬度是衡量材料软硬程度的指标。 目前,生产中测量硬度常用的方法是压入法,并根据压入的程度来测定硬度值。此时硬度可定义为材料抵抗表面局部塑性变形的能力。因此硬度是一个综合的物理量,它与强度指标和塑性指标均有一定的关系。硬度试验简单易行,有可直接在零件上试验而不破坏零件。此外,材料的硬度值又与其他的力学性能及工艺能有密切联系。 三、疲劳 机械零件在交变载荷作用下发生的断裂的现象称为疲劳。疲劳强度是指被测材料抵抗交变载荷的能力。 四、冲击韧性及其测定 材料在冲击载荷作用下抵抗破坏的能力被称为冲击韧性。。为评定材料的性能,需在规定条件下进行一次冲击试验。其中应用最普遍的是一次冲击弯曲试验,或称一次摆锤冲击试验。 五、断裂韧性 材料抵抗裂纹失稳扩展断裂的能力称为断裂韧性。它是材料本身的特性。 六、磨损 由于相对摩擦,摩擦表面逐渐有微小颗粒分离出来形成磨屑,使接触表面不断发生尺寸变化与重量损失,称为磨损。引起磨损的原因既有力学作用,也有物理、化学作用,因此磨损使一个复杂的过程。 按磨损的机理和条件的不同,通常将磨损分为粘着磨损、磨料磨损、接触疲劳磨损和腐蚀磨损四大基本类型。

第二节材料的物理化学性能 1、物理性能:材料的物理性能主要是密度、熔点、热膨胀性、导电性和导热性。不同用 途的机械零件对物理性能的要求也各不相同。 2、化学性能:材料的化学性能主要是指它们在室温或高温时抵抗各种介质的化学侵蚀能 力。 第三节材料的工艺性能 一、铸造性能:铸造性能主要是指液态金属的流动性和凝固过程中的收缩和偏析的倾向。 二、可锻性能:可锻性是指材料在受外力锻打变形而不破坏自身完整性的能力。 三、焊接性能:焊接性能是指材料是否适宜通常的焊接方法与工艺的性能。 四、切削加工性能:切削加工性能是指材料是否易于切削。 五、热处理性能:人处理是改变材料性能的主要手段。热处理性能是指材料热处理的难易 程度和产生热处理缺陷的倾向。 第二章材料的结构 第一节材料的结合键 各种工程材料是由不同的元素组成。由于物质是由原子、分子或离子结合而成,其结合键的性质和状态存在的区别。 一:化学键 1:共价键 2:离子键 3:金属键 4:范德。瓦尔键 二:工程材料的键性 化学键:组成物质整体的质点(原子、分子、离子)间的相互作用力,成为化学键。 1:共价键:有些同类原子,例如周期表Ⅳa、Ⅴa、Ⅵa族中大多元素或电负性相差不大的原子相互接近时,原子之间不产生电子的转移,此时借共用电子对所产生的力结合,形成共价键,如金刚石、单质硅、SiC等属于共价键。 2:离子键:大部分盐类、碱类和金属氧化物在固态下是不导电的,熔融时可以导电。这类化合物为离子化合物。当两种电负性相差大的原子(如碱金属元素与卤素元素的原子)相互靠

常见八种金属材料及其加工工艺

常见八种金属材料及其加工工艺 1、铸铁——流动性 下水道盖子作为我们日常生活环境中不起眼的一部分,很少会有人留意它们。铸铁之所以会有如此大量而广泛的用途,主要是因为其出色的流动性,以及它易于浇注成各种复杂形态的特点。铸铁实际上是由多种元素组合的混合物的名称,它们包括碳、硅和铁。其中碳的含量越高,在浇注过程中其流动特性就越好。碳在这里以石墨和碳化铁两种形式出现。 铸铁中石墨的存在使得下水道盖子具有了优良的耐磨性能。铁锈一般只出现在最表层,所以通常都会被磨光。虽然如此,在浇注过程中也还是有专门防止生锈的措施,即在铸件表面加覆一层沥青涂层,沥青渗入铸铁表面的细孔中,从而起到防锈作用。金属加工微信,内容不错,值得关注。生产砂模浇注材料的传统工艺如今被很多设计师运用到了其他更新更有趣的领域。 材料特性:优秀的流动性、低成本、良好的耐磨性、低凝固收缩率、很脆、高压缩强度、良好的机械加工性。 典型用途:铸铁已经具有几百年的应用历史,涉及建筑、桥梁、工程部件、家居、以及厨房用具等领域。 2、不锈钢——不生锈的革命 不锈钢是在钢里融入铬、镍以及其他一些金属元素而制成的合金。其不生锈的特性就是来源于合金中铬的成分,铬在合金的表面形成了一层坚牢的、具有自我修复能力的氧化铬薄膜,这层薄膜是我们肉眼所看不见的。我们通常所提及的不锈钢和镍的比例一般是18:10。 20世纪初,不锈钢开始作为元才来噢被引入到产品设计领域中,设计师们围绕着它的坚韧和抗腐蚀特性开发出许多新产品,涉及到了很多以前从未涉足过的领域。这一系列设计尝试都是非常具有革命性的:比如,消毒后可再次使用的设备首次出现在医学产业中。 不锈钢分为四大主要类型:奥氏体、铁素体、铁素体-奥氏体(复合式)、马氏体。家居用品中使用的不锈钢基本上都是奥氏体。 材料特性:卫生保健、防腐蚀、可进行精细表面处理、刚性高、可通过各种加工工艺成型、较难进行冷加工。 典型用途:奥氏体不锈钢主要应用于家居用品、工业管道以及建筑结构中;马氏体不锈钢主要用于制作刀具和涡轮刀片;铁素体不锈钢具有防腐蚀性,主要应用在耐久使用的洗衣机以及锅炉零部件中;复合式不锈钢具有更强的防腐蚀性能,所以经常应用于侵蚀性环境。

常见金属材料特性

45—优质碳素结构钢{最常用中碳调质钢} 主要特性最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。(焊接件注意焊前预热,焊后消除应力退火)。 Q235A(A3钢){最常用中碳素结构钢} 主要特性具有高的塑性、韧性和焊接性能、冷却性能,以及一定的强度,好的冷弯性能。 应用举例广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构。 40Cr{合金结构钢} 主要特性经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊接前应预热100~150℃,一般在调质状态下室使用,还可以进行碳氮共参和高频表面淬火处理。

应用举例调质处理后用于制造中速,中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等。调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等。经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等。经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮 等。 HT150{灰铸铁} 应用举例 齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。 35{各种标准件、紧固件的常用材料} 主要特性强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调 质后使用。 应用举例适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固 件。

【材料强韧化与断裂】复习思考题

【材料的强韧化与断裂】复习思考题 1、什么是弹性对称面和弹性主轴?假设一弹性体只有一个下xoy弹性对称面,请推导出其刚度矩阵表达式。 2、对均匀各向同性体,有哪些经典宏观强度理论?其适用范围如何?为什么? 3、在材料强度分析中有哪几种常用的统计分布函数 4、如何应用Peach-Koehler公式计算平行位错之间的弹性交互作用力? 5、位错有哪些典型组态?层错的宽度主要取决于什么?它对塑性变形有什么影响? 6、溶质原子与位错有哪几种基本交互作用?哪种交互作用最强烈? 7、简要说明应力场强度因子、裂纹扩展能量释放率、J积分和裂纹尖端张开位移的概念与意义,以及它们在线弹 性状态下的相互关系? 8、复杂裂纹状态下的断裂判据是什么? 9、裂纹尖端塑性区对断裂有何影响?金属材料的强度与断裂韧度有什么关系? 10、在起始塑性变形阶段,位错之间的相互作用有哪几种基本类型?位错平衡间距(自由程)与位错密度有什么关 系? 11、什么是可逆流变应力和不可逆流变应力?不同温度下的可逆流变应力有什么关系?? 12、加工硬化的本质是什么?有哪些基本理论? 13、简述细晶强化的效果及原因。 14、什么是固溶强化?固溶强化有哪些主要机制? 15、氮(N)原子在α-Ti和α-Fe中形成的Cottrell气团有何差异? 16、什么是时效硬化?什么是弥散硬化?两者有何区别? 17、位错在何种情况下绕过颗粒,又在何种情况下切过颗粒?切过颗粒时的障碍力为多少?它可来自哪及个方面的 贡献? 18、对于钢、硬铝和(α+β)钛合金,生产上最常采用什么强化工艺,其实质是什么? 19、断裂类型有哪几种常见的分类方法?各有何特点? 20、试用位错理论分析解理裂纹的萌生过程。 21、工程金属材料中裂纹萌生及裂纹扩展有什么规律? 22、材料的本质韧、脆性与什么有关? 23、在服役条件下,有哪些因素会影响材料的韧性?是如何影响的? 24、金属材料有哪些基本的增韧方法?其原理是什么? 25、在循环应力作用下,金属材料的微观结构有什么变化和特征? 26、金属的组织特征对疲劳抗力有什么影响? 27、什么是疲劳裂纹闭合效应?有那些裂纹闭合机制? 28、什么是应变速率效应? 29、在高速载荷下材料的变形有何特点? 30、在高速载荷下材料的损伤和破坏有何特点? 31、什么是迟屈服? 32、金属的蠕变蠕变律和本构方程有什么特征? 33、影响金属蠕变速率的因素有那些? 34、金属蠕变机制有哪些?分别在什么条件下起主要作用? 35、金属蠕变断裂与常温静载断裂有什么差别?

(完整版)金属材料学复习文九巴

1.钢中的杂质元素:O H S P 2.合金元素小于或等于5%为低合金钢,在5%-10%之间为中合金钢,大于10%为高合金 钢 3.奥氏体形成元素:Mn Ni Co(开启γ相区)C N Cu(扩展γ相区) 4.铁素体形成元素:Cr V Ti Mo W 5.间隙原子:C N B O H R溶质/R溶剂<0.59 6.碳化物类型:简单间隙碳化物MC M2C 复杂间隙碳化物M6C M23C M2C3 7.合金钢中常见的金属间化合物有σ相、AB2相和B2A相 8.二次硬化:淬火钢在回火时在一定温度下,由于特殊碳化物的析出的初期阶段,形成 [M-C]偏聚团,硬度不降低,反而升高的现象。 9.二次淬火:淬火钢在回火时,冷却过程残余奥氏体转变为马氏体的现象。 10.合金元素对铁碳相图的影响 1.改变奥氏体相区位置 2.改变共析转变温度 3.改变S和E等零界点的含碳量 11.合金元素对退火钢加热转变的影响 1.对奥氏体形成速度的影响中强碳化物形成元素与碳形成难溶于奥氏体的合金碳化 物,减慢奥氏体的形成速度 2.对奥氏体晶粒大小的影响大多数合金元素都有阻止奥氏体晶粒长大的作用,影响 程度不同。V Ti强碳化物和适量的AL强烈阻碍晶粒长大,他们的碳化物或氮化物熔点高,高温下稳定,不易聚集长大,能强烈阻碍奥氏体晶粒长大。Wu Mo Cr中强碳化物也有阻碍作用,但是影响程度中等。Si Ni非碳化物形成元素影响不大。

Mn P等元素含量在一定限度下促进奥氏体晶粒长大 12.合金元素对淬火钢回火转变的影响 1.提高耐回火性合金元素在回火过程中推迟马氏体分解和残留奥氏体的转变;提高铁 素体在结晶温度,使碳化物难以聚集长大,从而提高钢的耐回火性。 2.淬火钢在回火时产生二次硬化和二次淬火,提高钢的性能。 3.对回火脆性的影响产生第一类回火脆性和第二类回火脆性,降低晶界强度,从而使 钢的脆性增加 13.钢的强化机制:固溶强化、细晶强化、形变强化和第二相强化 14.合金元素对钢在淬火回火状态下力学性能的影响 1.合金元素一般均能减缓钢的回火转变过程,特别是阻碍碳化物的聚集长大,相对的 提高钢中组成相的弥散度 2.合金元素溶解于铁素体,是铁素体强化,并提高了铁素体的再结晶温度。 3.强碳化物形成元素提高了钢的耐回火性,并产生沉淀强化的作用 4.钼、钨等有利于防止或消除第二类回火脆性 15.合金元素对钢高温力学性能的影响 1.可以净化晶界,使易熔杂质元素从晶界转移到晶界内,强化晶界 2.可以提高合金原子间的结合力,增大原子自扩散激活能 3.强碳化物形成元素的加入,可以对位错运动有阻碍作用,可提高合金的高温性能16.合金元素对钢热处理性能的影响 淬透性、淬硬性、变形开裂性、过热敏感性、氧化脱碳倾向和回火脆化倾向 17.合金元素对钢的焊接性能影响 1.钢的焊接性能主要由焊后开裂敏感性和焊接区的硬度来评价

各种金属材料的特点

各种金属材料的特点

————————————————————————————————作者:————————————————————————————————日期: ?

各种金属材料的特点 铝材类 铝材属于金属类别中有色金属之一,由于应用较广,单独介绍如下:常用有铝型材和压铸铝合金两种。其中主要由纯度高达92%以上的铝锭为主要原材料,同时添加增加强度、硬度、耐磨性等性能金属元素,如碳、镁、硅、硫等,组成多种成分“合金”。 1.1铝型材 铝型材常见如屏风、铝窗等。它是采用挤出成型工艺,即铝锭等原材料在熔炉中熔融后,经过挤出机挤压到模具流出成型,它还可以挤出各种不同截面的型材。主要性能即强度、硬度、耐磨性均按国家标准GB6063。优点有:重量轻仅2.8,不生锈、设计变化快、模具投入低、纵向伸长高达10米以上。铝型材外观有光亮、哑光之分,其处理工艺采用阳极氧化处理,表面处理氧化膜达到0.12m/m厚度。铝型材壁厚依产品设计最优化来选择,不是市场上越厚越好,应看截面结构要求进行设计,它可以在0.5~5mm不均。外行人认为越厚越强硬,其实是错误的看法。 铝型材表面质量也有较难克服的缺陷:翘曲、变形、黑线、凸凹及白线。设计者水平高者及模具设计及生产工艺合理,可避免上述缺陷不太明显。检查缺陷应按国家规定检验方法进行,即视距40~50CM来判别缺陷。 铝型材在家具中用途十分广泛:屏风骨架、各种悬挂梁、桌台脚、装饰条、拉手、走线槽及盖、椅管等等,可进行千变万化设计和运用! 铝型材虽然优点多,但也存在不理想的地方: 未经氧化处理的铝材容易“生锈”从而导致性能下降,纵向强度方面比不上铁制品.表面氧化层耐磨性比不上电镀层容易刮花.成本较高,相对铁制品成本高出3~4倍左右。 1.2压铸铝合金 压铸合金和型材加工方法相比,使用设备均不同,它的原材料以铝锭(纯度92%左右)和合金材料,经熔炉融化,进入压铸机中模具成型。压铸铝产品形状可设计成像玩具那样,造型各异,方便各种方向连接,另外,它硬度强度较高,同时可以与锌混合成锌铝合金。 压铸铝成型工艺分: 1、压铸成型 2、粗抛光去合模余料 3、细抛光 另一方面,压铸铝生产过程,应有模具才能制造,其模具造价十分昂贵,比注塑模等其它模具均高。同时,模具维修十分困难,设计出错误时难以减料修复。 压铸铝缺点: 每次生产加工数量应多,成本才低。抛光较复杂生产周期慢产品成本较注塑件高3~4倍左右。螺丝孔要求应大一点(直径4.5mm)连接力才稳定 适应范围:台脚、班台连接件、装饰头、铝型材封口件、台面及茶几顶托等,范围十分广泛。 (2)五金类 “五金”概念属通俗说法,标准分类应划分为黑色金属和有色金属两大类,它在家具中运用有管状、棒状、板状、线、角状几种。 2.1黑色金属件

金属材料学课程的性质和要求

金属材料学课程的性质和要求

一、课程的性质和要求 1、课程性质 金属材料学是一门综合性比较强的专业主干课。在学生学过材料科学基础(或金属学原理)、材料组织控制原理、材料组织控制工艺(或材料强韧化)及材料力学性能等课程的基础上,系统地介绍金属材料合金化的一般规律及各类主要金属材料的成分、工艺、组织和性能之间的关系。通过课堂讲授、综合性实验、综合性作业等环节,培养学生分析问题和解决问题的能力。 2、课程要求 1)掌握主要金属材料的合金化基本原理,了解材料成分设计和工艺设计的依据,为发掘材料潜力和开发新材料打下一个理论基础; 2)了解各种典型材料的成分、工艺、组织结构和性能之间的有机关系; 3)能初步从零件的服役条件出发,对材料提出合理的技术要求,正确地选择材料并合理制订工艺。 3、课程改革 《金属材料工程》专业是江苏省品牌专业。在新的专业内涵下,进行了课程体系的重构。专业主干课程内容和教学方法的改革也是品牌专业建设的重要内容。《金属材料学》是该专业主干课程中涉及综合性知识的一门课程,从知识结构来说,它是一门该专业最后的综合性主干课,也是学生在今后工作岗位上最有实践指导意义的一门课程。根据专业建设的情况和课程特点,对该课程的教学进行了改革。主要是精简和补充内容、编制多媒体电子课件、改革教学方法、开展

课堂讨论、增加综合性作业,选编习题和布置课堂思考题、设计综合性实验等。目的是使学生对专业有一个系统的认识,理解专业知识的主线、核心和思想,培养学生分析问题和解决问题的能力。编写《习题与思考题》是其中部分的内容。 结合20多年的教学经验和对课程内涵、重点和难点的深入理解,编写了具有特色的相应教材。 二、习题与思考题 绪论 01、1958年世界工业博览会在比利时召开,博览会大楼,是由9个巨大金属球组成,球直径为18米,8球位于立方体角,1球在中心。这象征什么? 说明什么意义? 02、为纪念世界第一位宇航员加加林,莫斯科列宁大街上建造了40英尺高的雕象,雕象材料是钛合金。为什么用钛合金做? 代表什么意义? 03、金子从古到今都作为世界上的流通货币,为什么? 铜是人类最早认识和使用的金属,为什么? 04、1983年在上海召开的第4届国际材料及热处理大会的会标是小炉匠锤打的图案,代表什么意义?为什么古代著名的刀剑都要经过反复锻打? 05、为什么要提出构筑循环型材料产业的发展方向? 钢合金化原理 1、为什么说钢中的S、P杂质元素在一般情况下总是有害的? 2、钢中常用的合金元素有哪些? 哪些是奥氏体形成元素? 哪些是铁素体形成元素? 3、哪些是碳化物形成元素? 哪些是非碳化物形成元素? 4、钢中的碳化物按点阵结构分为哪两大类? 各有什么特点? 什么叫合金渗碳体和特殊碳化物?

金属材料学复习思考题2016.5

金属材料学复习思考题 (2016.05) 第一章钢的合金化原理 1-1名词解释 (1)合金元素;(2)微合金化元素;(3)奥氏体稳定化元素;(4)铁素体稳定化元素;(5)杂质元素;(6)原位析出;(7)异位析出;(8)晶界偏聚(内吸附);(9)二次硬化;(10)二次淬火;(11)回火脆性;(12)回火稳定性 1-2 合金元素中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在α-Fe中形成无限固溶体?哪些能在γ-Fe 中形成无限固溶体? C相图的S、E点有什么影响?这种影响意味着什么? 1-3简述合金元素对Fe-Fe 3 1-4 为何需要提高钢的淬透性?哪些元素能显著提高钢的淬透性?(作业) 1-5 能明显提高钢回火稳定性的合金元素有哪些?提高钢的回火稳定性有什么作用?(作业) 1-6合金钢中V,Cr,Mo,Mn等所形成的碳化物基本类型及其相对稳定性。 1-7试解释含Mn和碳稍高的钢容易过热,而含Si的钢淬火温度应稍高,且冷作硬化率较高,不利于冷加工变形加工?(作业) 1-8 V/Nb/Ti、Mo/W、Cr、Ni、Mn、Si、B等对过冷奥氏体P转变影响的作用机制。 1-9合金元素对马氏体转变有何影响? 1-10如何利用合金元素来消除或预防第一次、第二次回火脆性? 1-11如何理解二次硬化与二次淬火两个概念的异同之处? 1-12钢有哪些强化机制?如何提高钢的韧性?(作业) 1-13 为什么合金化基本原则是“复合加入”?试举两例说明复合加入的作用机理?(作业) 1-14 合金元素V在某些情况下能起到降低淬透性的作用,为什么?而对于40Mn2和42Mn2V,后者的淬透性稍大,为什么?(作业) 1-15 40Cr、40CrNi、40CrNiMo钢,其油淬临界淬透性直径分别为25~30 mm、40~60mm和60~100mm,试解释淬透性成倍增大的现象。(作业) 1-16在相同成分的粗晶粒和细晶粒钢中,偏聚元素的偏聚程度有什么不同?(作业)

2020版《金属材料概论》

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述:金属材料概论是高分子科学与工程专业专业知识教学层面的选修课,也是高分子专业学生认识金属材料的主要途径,更是理解材料在实际生活中应用的重要渠道。课程从工程应用角度出发,阐明金属材料的基本理论,使学生掌握金属材料的成分、加工工艺、组织结构与性能之间关系的基本规律;具备根据机械构建使用条件和性能要求,对结构件进行合理选材的初步能力,并了解金属材料的发展现状和趋势,对材料学科有更广泛深入的认识,为学生后续从事材料相关工作典型基础。此外,我国古今科学家先贤对金属材料发展的贡献,提高学生爱国情感和民族自豪感,激励他们努力学习报国。 Introduction to Metallic Materials, which is one of the optional courses for the Polymer Materials Science and Engineering, acts as the main methods for the students of the Polymer Materials Science and Engineering to understand the metallic materials and their application. The course demonstrates the basic theories about metallic materials from the view of engineering. The aim of the course is to make students understand the relationship between compositions, manufacturing, microstructure and properties of metallic materials, and the current situation and trend of metallic materials. In the meantime, the course could also - 1 -

钢的合金化原理

1 合金化原理 (1) 主要内容: (1) 1.1 碳钢概论 (1) 一、碳钢中的常存杂质 (1) 二、碳钢的分类 (2) 三、碳钢的用途 (2) 1.2 钢的合金化原理 (3) 一、合金元素的存在形式※ (3) 二、合金元素与铁和碳的相互作用及其对γ层错能的影响 (4) 三、合金元素对Fe-Fe3C相图的影响 (5) 四、合金元素对钢的热处理的影响 (6) 五、合金元素对钢性能的影响 (7) 1.3 合金钢的分类 (7) 1 合金化原理 主要内容: 概念: ⑴合金元素:特别添加到钢中为了保证获得所要求的组织结构、物理、化学和机械性能的化学元素。 ⑵杂质:冶炼时由原材料以及冶炼方法、工艺操作而带入的化学元素。 ⑶碳钢:含碳量在0.0218-2.11%范围内的铁碳合金。 ⑷合金钢:在碳钢基础上加入一定量合金元素的钢。 ①低合金钢:一般指合金元素总含量小于或等于5%的钢。 ②中合金钢:一般指合金元素总含量在5~10%范围内的钢。 ③高合金钢:一般指合金元素总含量超过10%的钢。 ④微合金钢:合金元素(如V,Nb,Ti,Zr,B)含量小于或等于0.1%,而能显著影响组织和性能的钢。 1.1 碳钢概论 一、碳钢中的常存杂质 1.锰(Mn )和硅(Si ) ⑴Mn:W %<0.8%①固溶强化②形成高熔点MnS夹杂物(塑性夹杂物),减Mn 少钢的热脆(高温晶界熔化,脆性↑) %<0.5%①固溶强化②形成SiO2脆性夹杂物, ⑵Si:W Si ⑶Mn和Si是有益杂质,但夹杂物MnS、SiO2将使钢的疲劳强度和塑、韧性下降。2.硫(S)和磷(P) ⑴S:在固态铁中的溶解度极小, S和Fe能形成FeS,并易于形成低熔点共晶。

结构游戏组织与指导

三、结构游戏的组织与指导 结构游戏又称“建筑游戏”,使用各种结构材料(如积木、积塑,沙石、泥,雪、金属材料等),通过想象和手的造型活动构造建筑工程物体的形象,实现对周围现实生活的反映。幼儿在堆砌、排列和组合的活动中,认识各种材料的性能,区别形体,学习空间关系知识和整体,部分的概念,发展感知觉,目测力、操作能力及创造性,可以自然地获得分解与合成各种形体的经验,并在使用材料中获得数量、高度、长度、上下、左右、宽窄、厚薄、对称等概念,取得组合、堆积、排列各种形体的经验,从而磨练幼儿的意志,培养做事认真,克服坚持到底的品质。因此结构游戏被称为是“塑造工程师的游戏”。此外,一些利用自然材料进行的活动,如玩沙、玩水、玩雪等也属于此类游戏。 (一)结构游戏环境的创设 1、平等、宽松、自主的心理环境 老师应以一颗童心来接纳每一个孩子,以与孩子平等的心态和孩子沟通,尊重幼儿的年龄特点和个性特点。孩子们能做的、能想的,让他们自己去做,去想;孩子们能探索,发现;孩子们能计划、安排的,让他们自己去计划安排;孩子们能选择判断的让他们自己去选择判断;孩子们能获取的,让他们自己去获取,成为游戏的主人。在宽松的环境中,幼儿顾忌少,可以充分地想象、交流,表现,有利于幼儿创新能力,自主性的培养。 某幼儿园提出的五个自主原则; 自主选择结构材料 自主选择操作方式 自主选择场地 自主选择玩伴 自主选择游戏主题 2、开放、丰富的物质环境 (1)拓展幼儿的活动空间。室内、(活动室、寝室)室外,走廊都可以成为幼儿游戏的空间。 (2)保证充足的游戏时间 (3)提供符合幼儿年龄特点的丰富的结构材料

小班:色彩鲜艳、大小适中、并便于操作的材料, 中班:种类各异的有一定难度需一定力度操作的材料 大班:精细的有难度的,创作余地更大的结合结构的材料 (4)广泛搜集废旧物品作为辅助材料 自然物和无毒无害的废旧物品是一种未定型的建构材料,能够一物多用,它与定型的材料相比,不仅经济实惠,价廉物美,而且还更有利于幼儿新思维和能力的培养。 纸箱,纸盒,挂历纸,冰糕盒,贝壳,鹅卵石、可乐瓶,吸管等等。 (5)及时更换,补充结构材料 随着幼儿的发展和幼儿多次摆弄同样的材料,幼儿也会玩腻,如果很少有幼儿去玩或很少幼儿专注地去玩这些结构材料,老师就要及时地更换这些材料,但是更换的频率也不能太快,以免幼儿的注意力过多地被材料的色彩和外形所吸引。 (二)结构游戏的指导 1. 游戏前 (1)知识准备: ①丰富并且加深幼儿对物体和建筑物的印象,这是开展建构游戏首先要做的。你让幼儿建构一些事物,如果幼儿不接触生活,不观察生活,对它们没有一点印象,你让孩子们如何去建构?所以只有让幼儿对生活中经常接触到的物体进行细致地观察,深入地了解,并形成丰富深刻的印象,这样孩子们才会有建构物体的愿望,有放手建构的能力。 引导幼儿观察日常生活中经常接触的、熟悉的物品,如幼儿的坐椅、吃饭的桌子、睡觉的小床、活动场地上的跷跷板、滑滑梯、独木桥等,教会幼儿观察的方法,养成幼儿细心观察的品质;接着创造条件制造机会让幼儿观察生活中常见或少见的物品(体),如电视机、电风扇、各类家具、小动物、汽车、飞机、轮船等,逐渐让幼儿养成对生活中碰到的事物都仔细观察的习惯,为下一步的建构活动打下了坚实的基础。 ②帮助幼儿认识结构材料,掌握结构活动的基本知识和技能。是开展好结构游戏的必要条件。识别材料(大小、形状、凹凸、颜色等特征),结构操作技

金属强韧化原理

1金属材料强韧化的目的和意义? 目的:A.节约材料,降低成本,节约贵重的合金元素的使用,增加材料在使用过程中的可靠性和延长服役寿命。 B.希望所使用的材料既有足够的强度,又有较好的韧性,但通常的材料二者不可兼得。 意义:在于理解材料强韧化机理、组织形态、微观结构与金属的强度、韧性之间的确切关系,以便找出适宜的冶金技术途径来提高金属的强韧性,使之达到新的水平或研究出新的高强韧性的金属。这是一个具有重大的理论意义和经济价值的研究开发领域。理解材料强韧化机理,掌握材料强韧化现象的物理本质,是合理运用和发展材料强韧化方法从而挖掘材料性能潜力的基础。 2.金属材料强韧化的主要机制有哪些? 1)物理强韧化:所谓物理强韧化是指在金属内部晶体缺陷的作用和通过缺陷之间的相互作用,对晶体的力学性能产生一定的,进而改变金属性能。 2)化学强韧化:化学强韧化是指是元素的本质决定的因素以及元素的种类不同和元素的含量不同造成的材料性能的改变。 3)机械强韧化:就是除了结构、尺寸、形状方面的机械原因外,主要指界面作用造成的强韧化。 4)复合组织强韧化:即两种或两种以上的金属组织复合在一起,其中有的组织强度比较高,有的组织韧性比较高,复合后起到了既提高强度有提高韧性的作用。 3.如何理解强化和韧化的关系 强度是是在给定条件(温度/压力/应力状态/应变速率/周围介质)下材料达到给定变形量所需要的应力,或材料发生破坏的应力,研究变形及断裂是研究强度的重要手段和过程。 韧性是断裂过程的能量参量,是材料强度与塑性的综合表现,它是材料在外加负荷作用下从变形到断裂全过程吸收能量的能力,所吸收的能量愈大,则断裂韧性愈高。 一般情况下,材料的强度和韧性是不可兼得的,在提高金属材料强度的同时塑性必然会下降,反之,在改善金属的塑性的同时,强度也会下降。目前,晶粒细化是提高金属强韧化的有效方法,金属的晶粒变细后,强度提高,韧性又不显著降低。 4.试举出3种最新强韧化技术方法的例子。 1)细晶强化:它是常温下一种有效的材料强化手段。细化晶粒可以提高金属的强

金属材料学课程的性质和要求

一、课程的性质和要求 1、课程性质 金属材料学是一门综合性比较强的专业主干课。在学生学过材料科学基础(或金属学原理)、材料组织控制原理、材料组织控制工艺(或材料强韧化)及材料力学性能等课程的基础上,系统地介绍金属材料合金化的一般规律及各类主要金属材料的成分、工艺、组织和性能之间的关系。通过课堂讲授、综合性实验、综合性作业等环节,培养学生分析问题和解决问题的能力。 2、课程要求 1)掌握主要金属材料的合金化基本原理,了解材料成分设计和工艺设计的依据,为发掘材料潜力和开发新材料打下一个理论基础; 2)了解各种典型材料的成分、工艺、组织结构和性能之间的有机关系; 3)能初步从零件的服役条件出发,对材料提出合理的技术要求,正确地选择材料并合理制订工艺。 3、课程改革 《金属材料工程》专业是江苏省品牌专业。在新的专业内涵下,进行了课程体系的重构。专业主干课程内容和教学方法的改革也是品牌专业建设的重要内容。《金属材料学》是该专业主干课程中涉及综合性知识的一门课程,从知识结构来说,它是一门该专业最后的综合性主干课,也是学生在今后工作岗位上最有实践指导意义的一门课程。根据专业建设的情况和课程特点,对该课程的教学进行了改革。主要是精简和补充内容、编制多媒体电子课件、改革教学方法、开展课堂讨论、增加综合性作业,选编习题和布置课堂思考题、设计综合性实验等。目的是使学生对专业有一个系统的认识,理解专业知识的主线、核心和思想,培

养学生分析问题和解决问题的能力。编写《习题和思考题》是其中部分的内容。 结合20多年的教学经验和对课程内涵、重点和难点的深入理解,编写了具有特色的相应教材。 二、习题和思考题 绪论 01、1958年世界工业博览会在比利时召开,博览会大楼,是由9个巨大金属球组成,球直径为18米,8球位于立方体角,1球在中心。这象征什么? 说明什么意义? 02、为纪念世界第一位宇航员加加林,莫斯科列宁大街上建造了40英尺高的雕象,雕象材料是钛合金。为什么用钛合金做? 代表什么意义? 03、金子从古到今都作为世界上的流通货币,为什么? 铜是人类最早认识和使用的金属,为什么? 04、1983年在上海召开的第4届国际材料及热处理大会的会标是小炉匠锤打的图案,代表什么意义?为什么古代著名的刀剑都要经过反复锻打? 05、为什么要提出构筑循环型材料产业的发展方向? 钢合金化原理 1、为什么说钢中的S、P杂质元素在一般情况下总是有害的? 2、钢中常用的合金元素有哪些? 哪些是奥氏体形成元素? 哪些是铁素体形成元素? 3、哪些是碳化物形成元素? 哪些是非碳化物形成元素? 4、钢中的碳化物按点阵结构分为哪两大类? 各有什么特点? 什么叫合金渗碳体和特殊碳化物? 5、简述合金钢中碳化物形成规律。 6、合金元素对Fe-Fe3C相图上的S、E点有什么影响? 这种影响意味着什么? 7、试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况? 8、有哪些合金元素强烈阻止奥氏体晶粒的长大? 阻止奥氏体晶粒的长大有

金属材料性能及国家标准

金属材料性能 为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。 ???? 材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。 ???? 材料的工艺性能指材料适应冷、热加工方法的能力。 ???? (一)、机械性能 ???? 机械性能是指金属材料在外力作用下所表现出来的特性。 ??? 1 、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。材料单位面积受载荷称应力。 ??? 2 、屈服点(бs ):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生 0.2%L 。时应力值,单位用牛顿 / 毫米 2 ( N/mm2 )表示。 ??? 3 、抗拉强度(бb )也叫强度极限指材料在拉断前承受最大应力值。单位用牛顿 / 毫米 2 ( N/mm2 )表示。 ??? 4 、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。 ?? 5、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。??? 6 、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度( HBS 、 HBW )和洛氏硬度( HKA 、 HKB 、 HRC ) ??? 7 、冲击韧性( Ak ):材料抵抗冲击载荷的能力,单位为焦耳 / 厘米 2 ( J/cm 2 ) . (二)、工艺性能 ???? 指材料承受各种加工、处理的能力的那些性能。 8 、铸造性能:指金属或合金是否适合铸造的一些工艺性能,主要包括流性能、充满铸模能力;收缩性、铸件凝固时体积收缩的能力;偏析指化学成分不均性。 9 、焊接性能:指金属材料通过加热或加热和加压焊接方法,把两个或两个以上金属材料焊接到一起,接口处能满足使用目的的特性。 10 、顶气段性能:指金属材料能承授予顶锻而不破裂的性能。 11 、冷弯性能:指金属材料在常温下能承受弯曲而不破裂性能。弯曲程度一般用弯曲角度α(外角)或弯心直径 d 对材料厚度 a 的比值表示, a 愈大或 d/a 愈小,则材料的冷弯性愈好。 12 、冲压性能:金属材料承受冲压变形加工而不破裂的能力。在常温进行冲压叫冷冲压。检验方法用杯突试验进行检验。 13 、锻造性能:金属材料在锻压加工中能承受塑性变形而不破裂的能力。 (三)、化学性能 ???? 指金属材料与周围介质扫触时抵抗发生化学或电化学反应的性能。 14 、耐腐蚀性:指金属材料抵抗各种介质侵蚀的能力。 15 、抗氧化性:指金属材料在高温下,抵抗产生氧化皮能力。 >> 返回 金属材料的检验

相关主题
文本预览
相关文档 最新文档