当前位置:文档之家› 城市轨道交通减振降噪技术综述

城市轨道交通减振降噪技术综述

城市轨道交通减振降噪技术综述
城市轨道交通减振降噪技术综述

城市轨道交通减振降噪技术综述

(株洲时代新材料科技股份有限公司)

摘要:简要分析了城市轨道交通车辆运行时产生振动及噪声的原因,介绍了振动及噪声的主要控制技术,并结合工程运用实际情况,从车辆悬挂、钢轨形式。轨道结构、高架桥等方面的减振降噪措施给予了说明.

城市轨道交通车辆运行时产生的振动及噪声对周围环境产生不利的影响,’f:扰了沿线居民的工作和生活,在”’定程度卜制约了轨道交通的发展。

1振动源和噪声源分析

1。1振动源及其影响因素

线路不平顺是导致车辆运行时产生振动的主要激扰源,激扰源经车轮传递到上部转向架及车体;而车辆各部件之问由于相对运动又会导致自身的振动,经过车轮的传递反作用于钢轨,车辆与轨道之问形成相互耦合相互激励的振动。如果这类振动不加以控制,车辆动态运行性能会明显下降,转向架及悬挂部件运行可靠性大幅下降,行车安全性降低;钢轨由于受到车轮动态冲击载荷而不能保证正常的连接,严重时导致车辆脱轨。

车轮偏心程度、运行速度、悬挂部件之间的匹配、轮轨接触几何关系、线路各方向的不平顺度、钢轨接头、曲线半径、轨道支承、轨道结构、道床及隧道结构、高架桥梁跨度、刚度、挠度等,都会影响车辆及轨道的振动。1.’2噪声源及其影响因素

噪声源主要有轮轨噪声和车辆

噪声。车辆行驶在轨道.I=时,激发

结构振动而产生“二次噪声”,即

结构噪声。轮轨噪声是主要的噪声

源,包括轮轨滚动噪声、摩擦噪声

(啸叫卢)和撞击噪声等。

①滚动噪声:轮轨滚动噪声是

由于轨道结构钢轨表面的短波不平

顺激发轮轨振动通过空气传播而产

生的噪声,见图l。它是城市轨道交

通的主要噪声源。

图1轮轨表面不平顺激发轮轨噪声

②摩擦噪声(啸叫声):摩擦噪

声(啸叫声)是车轮在小半径曲线

线路上行进时发出的一种高音调噪

声,主要是由于轮缘接触钢轨摩擦

而产生的。

③掩击噪声:撞击噪声是由车

轮冲击钢轨而产生的。

影响轮轨噪声的因素主要有:

列车的速度,列车、钢轨和车轮类

型以及它们的状况,轨道曲线半

径、转向架轴距、钢轨的轨隙、不

平坦的钢轨接头和车轮踏面局部磨

损,以及存制动时闸瓦抱死车轮所

造成踏面局部磨损。

车辆噪声来源主要包括气动噪

声、动力与辅助设备噪声等宅气传

播噪声、以及轮轨、转向架振动和

动力装置与辅助设备振动引起的结

构辐射噪声。

地面轨道和高架轨道对于沿线

环境的f:扰以噪声为主,而地下轨道

所产生的振动是影响地面建筑的主

要环境问题。轮轨之间的相互作用引

起的振动响应沿轨道结构通过岩层

和士壤层向邻近的建筑物传播,其产

生的声学效果是引起低频轰响声。

2振动噪声控制主要技术

振动噪声控制分为主动控制和

被动控制。主动控制是指通过优化

结构、提高结构精度,减小干扰,

通过控制振动源和噪声源以达到降

低振动噪声的目的。从设计上优化

47

万方数据

车轮结构,或采用弹性车轮、采用

低噪声无缝钢轨、定期打磨钢轨等

技术方法,可从源头上控制振动噪

声。振动源和噪声源主动控制是

减振降噪最有效的方法,但对于城

市轨道交通来说,通常是难以实施

的。这一方面是由于它涉及车辆制

造厂、城市轨道交通运营公司、政

府管理部门等;另一方面除了城市

轨道交通现有制造技术水平的限制

以外,还有许多比振动及噪声的控

制更重要的工作需考虑,如提速、

安全、运输和增加经济效益等。

因此,被动控制是工程应用中通

常采用的技术。被动控制是指采用

振动、噪声隔离或吸收技术,切断

振动波和噪声波,通过控制振动

噪声的传播以达到降低振动噪声的

目的。被动控制技术方法参见表l。

振动隔离基本原理是在结构构件之间或建筑物与基础之间设置

减隔振装置,通过减隔振装置的耗

能特性,减小或隔离振动能量向周

围环境的传递,以减小振动对周围

环境的影响。振动吸收的基本原理

是,利用阻尼材料在随基体振动产生

拉压变形耗散和转化能量的特性,

提高薄板结构的阻尼,抑制共振,

改善结构的抗振降噪性能。隔声是

指用隔声材料或结构来隔绝噪声在

空气中传播,从而获得较安静的环出

境。吸声是指通过吸声材料的粘滞

48

性和内摩擦作用以及热传导效应,将

声能转化为热能,从而降低噪声。

表1减振降噪基本技术方法

适性,衰减车体振动和结构辐射噪

声;在车体和地板上安装阻尼制振

材料和隔音材料,增加车体阻尼,

抑制车体振动,隔离轮轨噪声传入

车厢内;在进排气口设置消音器,

控制空调系统产生的噪声。

3.2钢轨减振降噪措施

采用吸振型钢轨。吸振犁钢轨

是在钢轨轨腰两侧粘贴(或包覆)带

有减振吸音材料(如橡胶、树脂等)

的吸振器以增加钢轨阻尼,降低轮

轨共振频率附近的钢轨振动,提高

钢轨对振动的衰减率,加快振动波

在钢轨中传播的衰减,降低钢轨振

动的平均能量水平,减少钢轨的振

动噪声辐射,达到减振降噪目的。

吸振瑷钢轨结构示意图见图2。钢轨

吸振器既可以用于新线路的建造,

也可以用于既有线路的改造。它可

以安装于已有钢轨上,无须对钢轨

已有结构进行改动,施工方便,安全

3振动噪声控制措施

3.1车辆振动噪声控制措施

车辆振动噪声控制措施有:在

转向架上安装减/隔振件,衰减轮轨

作用力,降低车体的振动和结构辐射

噪声;采用空气弹簧提高车辆的舒图2吸振型钢轨结构示意图可靠,能有效地减少钢轨噪声。3.3轨道结构减振降噪措施

3.3.1隔离板式轨道结构

隔离板式轨道结构采用特殊形状的天然橡胶板或发泡垫板作为隔离层。隔离板式轨道结构示意图见图3。实际应用中可根据轨道和车辆设计条件调整轨道系统模量,达到优异的减震效果,使用时不会引起结构振动和噪声。隔离板式轨道具有减震效果好、可靠性好、寿命长、维护费用低等特点,且可避免浮置板由于大板本身的悬空结构产生结构振动和噪声。该结构固有频率低、减震范围广,并且在共振区域放大效果非常低。目前,这种轨道结构在欧洲城市轨道交通,甚至是高规格的高速铁路,已得到非常广泛的应用。

3.3.2轨道减振器结构

为了减少车辆通过道岔时轮轨

之间的动作用力,降低车轮

和道岔的磨耗,减少轨道和

车轮的维护成本,城轨线路

上一般采用减振器。其安装

及断面如图4所示。轨道减

振器扣件的垂直刚度较低,

而且保证了钢轨的横向稳定

性。上海、新加坡、德国科万方数据

图3隔离板式轨道结构示意图

隆等地铁采用了轨道减振扣件,

减振效果显著,能有效地减少地铁

振动对周周环境的干扰,且成本较

低、施工难度小、维护更换简便。

从图4中可以看出,轨道减振器

属于橡胶与金属复合结构,产品安

装高度范围在34~60lUm之间,通过

橡胶把上部的顶板(承轨板)和下

部的底板硫化成一整体。其底部金

属板为长方形。

道岔减振器通过橡胶的剪切变

形承担垂向载荷并提供减振作用。

由于橡胶的剪切弹性明显好于压缩

弹性,故其具有较低的垂向刚度,

一般在8~16kN/mm之间,减振效果

良好。根据试验室测试结果,采用

道岔减振器后,道床和地面的振动

加速度均值比采用刚性整体道床分

别减少了60%和57%。

轨道减振器还具有如下优点:

降低了隧道开挖成本、减小桥梁负

荷、减少上部结构动态压力,降低

铁轨磨损、减少线路维护,降低线图5桥梁隔振支座安装示意图

路调节成本;免维护;使用寿命长

达30年;更换产品方便,不影响正

常运营。

常用的轨道减振器可分为:压缩型轨道减振器、剪切型轨道减振

器和双刚度型轨道减振器。压缩

型轨道减振器,包括地铁区间减振

器、高速铁路区间及道岔减振器;

剪切型轨道减振器,包括地铁区间

及道岔减振器;双刚度型轨道减振

器,包括地铁区间减振器。

3.4高架桥减振降噪措施

在高架轨道结构中,桥墩使用隔振支座,以隔离轮轨振动传递给

高架桥墩,降低振动对周围结构的

影响。隔振支座安装示意图见图5。

桥梁隔振支座(主要有普通橡胶支

座、叠层橡胶支座、铅芯橡胶支座

等)是高架桥中减少振动的有效措

施。通过调整减振支座的刚度,从

而控制结构的振动频率和周期,避

开列车运行引起的竖向振动频率,

达到减振和降噪的效果。

图4轨道减振器安装及断面

3.5其它减振降噪措施

3.5.1挖减振沟和设隔振墙

轨道交通四周建筑物受列车振

动的影响,随建筑物距钢轨距离的

增加而衰减。在距钢轨25m处,振动

几乎衰减到零;在此距离之外,列

车振动对建筑物已无明显影响。轨

道四周的建筑采用减振措施主要针

对距轨道25m以内的建筑物。对于

已有的建筑,可以在建筑物和轨道

之间通过挖减振沟和设隔振墙等设

置隔振屏障。只要沟的深度和墙的

板质、厚度、深度合适,就可以获

得理想的减振效果。

3.5。2设置隔声屏障

城市轨道交通隔声屏障是设置

于列车和受保护建筑物之间的声学

障板,其作用是阻挡列车噪声直达

周围受保护建筑,降低列车噪声对

周围环境的影响。隔声屏障降噪效

果明显、结构简单、投资少、施工

周期短,且占地面积小、容易装饰

美化、容易做到与周围景观协调,

有助于交通安全。

参考文献:

【1】雷晓燕,圣小珍.铁路交通噪声与

振动【M】.北京:科学出版社,2004.

【2】马大猷.噪声与振动控制工程手册

fM】.北京:机械工业出版社,2002.

49万方数据

阻尼减振降噪技术

第十章.阻尼减振降噪技术 A、教学目的 1.隔振及其原理(C:理解) 2.阻尼降噪及其原理(C:理解) 3.阻尼降噪的量度(B:识记) 4.阻尼材料和结构的特性及选用(B:识记) B、教学重点隔振原理、阻尼降噪原理及其量度、阻尼材料和结构的特性及选用。 C、教学难点 阻尼降噪原理及其量度、阻尼材料和结构的特性及选用。 D、教学用具 多媒体——幻灯片 E、教学方法 讲授法 F、课时安排 2课时 G、教学过程 声波起源于物体的振动,物体的振动除了向周围空间辐射在空气中传播的声(称”空气声”)外,还通过其相连的固体结构传播声波,简称“固体声”,固体声在传播的过程中又会向周围空气辐射噪声,特别是当引起物体共振时,会辐射很强的噪声。 振动除了产生噪声干扰人的生活、学习和健康外,特别是1~100Hz的低频振动,直接对人有影响。长期暴露于强振动环境中,人的机体将受到损害,机械设备或建筑结构也会受到破坏。 对于振动的控制应从以下两方面采取措施:一是对振动源进行改进以减弱振动强度;二是在振动传播路径上采取隔振措施,或用阻尼材料消耗振动的能量并减弱振动向空间的辐射。从而,直接或间接地使噪声降低。 一. 振动对人体的危害 从物理学和生理学角度看,人体是一个复杂系统。如果把人看作一个机械系统。 振动的干扰对人、建筑物及设备都会带来直接的危害。振动对人体的影响可分为全身振动和局部振动:全身振动是指人直接位于振动体上时所受的振动;局部振动是指手持振动物体时引起的人体局部振动。可听声的频率范围为20~20000 Hz,而人能感觉到的振动频率范围为1~100 Hz。振动按频率范围分为低频振动(30Hz以下)、中频振动(30-100Hz)和高频振动(100 Hz以上)。 实验表明人对频率为2—12 Hz的振动感觉最敏感。对于人体最有害的振动频率是与人体某些器官固有频率相吻合(即共振)的频率。这些固有频率是:人体在6 Hz附近;内脏器官在8Hz附近;头部在25 Hz;神经中枢则在250Hz左右。低于2Hz的次声振动甚至有可能引起人的死亡。人对振动反应的敏感度按频率和振幅大小,大致分为6个等级,见图10-1。(P203) 振动的影响是多方面的,它损害或影响振动作业工人的身心健康和工作效率,干扰居民的正常生活,还影响或损害建筑物、精密仪群和设备等。根据人体对某种振动刺激的主观感觉和生理反应的各项物理量,国际标准化组织(ISO)和一些国家推荐提出了不少标准,主要包括局部振动标准(ISO5349-1981, P203)、整体振动标准(ISO2631-1978, P204)和环境振动标准(GB10070-88, P205)。 局部振动标准(ISO5349-1981):如人的手所感受的振动。

城市轨道交通减震降噪技术发展现状

城市轨道交通减震降噪技术发展现状 与未来 摘要:对城市轨道交通振动与噪声控制设计的相关规范进行了梳理,介绍并分析了目前主要的轨道减振措施的特点与优缺点,对目前减振效果最好的浮置板道床进行了经济性对比分析。 关键词:轨道交通;轨道结构;减振; 截至2012年12月,北京、天津、上海、广州、深圳、长春、大连、沈阳、重庆、成都、南京、武汉、杭州、苏州、西安和昆明16个城市的70条轨道交通线路投入运营,运营里程2081.13km,车站1378座;北京、上海、广州、深圳和南京等城市逐步进入网络化运营。 随着一些大城市轨道交通网络的逐渐形成,越来越多的城市轨道交通线路不可避免地近距离下穿城市功能建筑物,城市轨道交通运营产生的振动污染引起公众和有关部门的关注。国外从20世纪60年代开始重视城市轨道交通减振降噪问题。1966年,英国的阿尔贝民事法院6层建筑物即采用叠层橡胶减振技术,解决城市轨道交通对建筑物的影响;80—90年代德国、英国进行了无砟轨道减振降噪的大量试验研究。我国轨道减振研究起步较晚,早期修建北京和天津地铁时未考虑环境振动问题,投入运营后减振改造工程干扰运营,浪费人力和物力。为避免环境振动超标,上海地铁1号线于1994年首次采用轨道减振设施——轨道减振器扣件。随着我国各地城市轨道交通建设陆续开展,各种类型的轨道减振产品在城市轨道交通建设工程中相继得到应用。随着城市轨道交通的迅速发展,在人口密集、科研院所、医院、学校等城市公共区域,车辆噪音越来越多的引起人们的关注。城市轨道车辆噪音根据生源的不同大致分为以下几种:轮轨噪声:由轮轨相互作用引起的噪音; 设备噪声:由空调、电机等车辆设备工作产生的噪音; 空气动力噪声:车体与空气摩擦而产生的噪声; 集电系统噪声:由受电弓和电线相互摩擦引起的噪音; 构造物二次噪声:列车振动引起桥梁、隧道或周围建筑物的二次振动而产生的噪声。 1我国城市区域环境振动标准 城市轨道交通环境振动防治作为环境保护产业的一部分,在城市轨道交通环境建设,以及经济与环境协调可持续发展方面具有重要而独特的意义。为贯彻《中华人民共和国环境保护法》,控制环境振动污染,我国制定了相应的环境振动标准。现行《地铁设计规范》[2]规定,地铁振动污染防治设计应符合国家现行《城市区域环境振动标准》,环境评价预测超标地段应采取减振措施,以满足国家环境保护及相关规范要求。近年来,我国许多城市进行了大规模的城市轨道交通和基础设施建设,出现了一些新的城市轨道交通振动源和振动问题,而人们对城市环境要求更为严格,尤其是在夜间,对于地铁运行产生的振动响应更为敏感。研究发现,即使振动水平处于65dB“特殊住宅区”振动限值之下,人们仍能感到振动并产生厌恶感;当振动水平处于62dB以下时,大部分居民感觉不到振动。现行《城市区域环境振动标准》中的一些计权方式和测量方法严重滞后于相关学科研究发展。为此,国家环境保护部科技标准司组织修订《环境振动标准》(征求意见稿)。修订后其紧密结合国际现行标准,体现了以人为本的社会发展要求。 2我国城市轨道交通轨道减振现状特征 目前,我国城市轨道交通轨道减振领域现状特征是需求总量大、产品种类多、占全线比例高、减振要求复杂。 2.1产品种类多 轨道减振技术的通常做法是在组成轨道的各个刚性部件之间插入弹性层,按插入位置的不同可分为扣件减振、轨枕减振和道床减振。弹性层所处的位置越靠下,悬浮的质量就越大,越能获得较好的减振效果。根据减振效果的不同,《地铁设计规范》(征求意见稿)[5]将减振措施分为一般减振措施、中等减振措施、高等减振措施和特殊减振措施4个等级。

减振降噪方案

中央空调设备层减振降噪工程方案 一、单位名称:******* 二、工程描述: 1、设备层VRV及全新风空调的摆放状况: 该项目充分利用了原老楼和新楼三层的空中连廊,在其顶部进行设计和处理后使其成为了空中设备层。连廊的长度为21M,宽度为6.9M,在此范围内靠近老楼一侧的约三分之一部分拟摆放VRV空调4台及新风机1台。 空调机组的机械减震基础一般分为两种形式,一是减振基础为g=20mm厚的丁腈耐油橡胶隔振垫,通用尺寸为170X170mm。该该隔震垫的主要特点是价格低廉使用方便,但它更加适用于冲床、锻床等直接冲击型机械的高频隔振,对于空调机组的低频特点它的隔振效果不太理想。 另一种减震的形式为近年来比较普遍使用的阻尼弹簧减振器的减振形式:该减振器充分利用了钢质弹簧的柔性支撑原理,经过精确的计算可将低频振动的物体正好悬浮在预压与极限之间,让该物体产生所讲的阻尼效应。它对降低固体传声的空调机组的振动噪声更为有效,因为它真正的让空调机组合理的避开了与基础之间的直接接触,消除了振动物体本身固有的共振振幅激振现象。 3、该空调设备层降噪形式的选择:

目前对于空调机组的降噪方式主要也是有两种形式,一是隔音屏,这种形式的特点是施工方便造价低廉,对于1000Hz的中频区域降噪效果比较有效,而且对空调设备的风量吸收和交换不会产生什么影响。不足之处是对于低频区域的降噪效果不太有效。 另一种形式是全封闭的降噪室,它的主要特点是降噪效果非常明显而且效果显著,可以有效控制从63Hz---8000Hz之间所有频带的噪声。但它也有很多方面的问题,首先是施工复杂造价昂贵,其次是因为封闭自然会影响到设备的风量交换,为了在这种情况下依然能够充分保证空调设备的安全和高效运行,需要增加一些辅助的通风设备,这对日后的日常维护也会带来很多麻烦。 该空调设备层上拟选用的新风机和VRV的空调外机,产品样本上的噪声数据都是在60dB左右,但这都是它们在500---1000Hz中频区间的单台数值,它们实际的8倍噪声频谱为:8000Hz时40dB,而在63Hz的低频频带时一般都在75dB 至78dB之间(而且只是单台机组运行),28台叠加之后的噪声应该高于80分贝以上。 综合考虑之后,认为还是隔音屏的降噪形式比较可行一些,暂且按照这一形式草拟此方案。 4、该项目噪声源污染状况及主要噪声源基本特性: ①总计16台VRV室外机和11台新风室外机及1台屋顶机安装在两幢大楼的架空连廊上及屋顶上,其运行时所产生的主要噪声源为电机电磁噪声、机械噪声、排风噪声,噪声特性是以中频和低频为主,传播距离较远。 ②机组运行时的振动通过作为支承结构传递给空中连廊、原老楼和新楼的直接迎面墙体以及新老楼的建筑结构;机组运行时的振动通过楼板结构所产生的共振振幅激振力,足以引起楼板的二次微振动,形成很强的固体传声,沿建筑结构传递、扩散和蔓延,致使两幢大楼的环境受到很大的影响。 三、该项目具体的减振降噪控制措施: 根据设计目标和基本情况,本着有效、经济、合理和可靠的原则,提出如下具体的减震降噪控制措施: 1、为了有效的控制机组运行时的振动通过作为支承结构传递给楼板、墙体等建筑结构;采用两级隔振措施,把机组运行振动的传递率控制在2%以内,同时尽可能减小单位激励力,避免和减少支承结构二次微振动的发生。每台机组配

工程机械发动机减振方法标准版本

文件编号:RHD-QB-K7748 (操作规程范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 工程机械发动机减振方 法标准版本

工程机械发动机减振方法标准版本操作指导:该操作规程文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 振动和燥声是工程机械工作时的两大公害。发动机是工程机械主要振动源。发动机振动的传播直接影响到工程机械的整机可靠性和使用寿命,同时也使司机的乘坐舒适性变差,降低工作效率,必须采取一些有效方法来减少振动。 一、振源控制 振源控制贯穿于设计、制造乃至使用的全过程,体现在诸如改善发动机平衡性能、动力学性能、零部件的加工与装配精度等。发动机在工作中产生振动的形式是多样的,主要原因有:发动机重心周期性移动,往复运动件沿气缸上下作用的惯性力,所有旋转

运动件的离心惯性力,气体压力交替作用引起曲轴回转周期变化等。这些不平衡力和力矩通常可以通过改变发动机结果设计参数来调整系统的固有频率避免结构共振,改进系统共振特性,如通过对机体的模态分析和有限元计算来研究机体的固有频率的振型等。削弱机振源和避免共振首先应从设计阶段考虑,要在整体设计中贯穿系统工程思想,充分应用现代设计方法,如有限源设计、可靠性设计、稳健设计、优化设计、计算机辅助设计以及智能系统和专家系统设计。 二、振动的隔离 1、橡胶隔振 传统的发动机采用弹性支承降低振动,隔振装置结构简单,成本低,性能可靠。橡胶支承一般安装在车架上,根据受力情况分为压缩型、剪切型和压缩剪切复合型等。压缩型结构简单,制造容易,应用广泛

汽车主动噪声控制技术和发展趋势

车内噪声控制技术及发展趋势 摘要:分析了汽车车内噪声产生的机理,评述了车内噪声被动控制技术的三个途径,并对主动控制技术在汽车减振降噪领域的应用作了探讨和展望。 关键词:减振;噪声控制;汽车 前言 噪声、振动和舒适性是衡量现代汽车制造质量的一个综合性技术指标,也是世界汽车业各大整车制造企业和零部件企业关注的问题之一。车内噪声影响驾驶员和乘客的身心健康、行车安全以及乘车舒适性。为了提高车辆的舒适性。世界各大汽车公司都对车内噪声水平制定了严格的控制标准,将车内噪声控制作为重要的研究方向。现代汽车既是交通工具,又是人们生活空间的一部分,随着汽车制造水平的提高和消费者对舒适性要求的提高,对汽车噪声控制的研究也越来越深入。因此掌握车内噪声产生机理,采取相应的减振降噪技术加以控制是十分必要的。智能材料结构的出现以及主动控制技术的发展为振动与噪声的控制开辟了新的途径。 1 车内噪声产生机理 汽车车内噪声的来源可以从两个传播途径加以分类,即固体传播和空气传播。具体来讲,根据车内噪声产生的不同振动源和噪声源又可分为以下几种: (1)动力传动系统噪声。发动机燃烧和惯性力引起的振动,传至车身引起弯曲振动和扭转振动,向车内辐射中、低频噪声,发动机运行产生的排气噪声、进气噪声、风扇噪声等。由空气通过车身的孔、缝隙传至车内或通过车身板壁透声至车内,传动系由于质量不平衡及齿轮啮合产生的振动,传至车身引起振动进而辐射中、低频噪声至车内。 (2)路面不平度激励引起的噪声。路面激励通过悬架等引起车身振动造成车内低频噪声。 (3)车轮噪声。由于车轮不平衡引起的振动传至车身引起振动,产生车内低频噪声,轮胎与地面的摩擦声(路噪)通过车底板传到车内。 (4)空气扰动噪声。高速行驶时,汽车冲破空气幕产生的碰撞及摩擦对车身的激励造成车身高频振动.在车内产生高频噪声。 (5)其他噪声。驾驶舱内饰板等部件发生振动产生的内部噪声;空调系统产生的噪声;制动系统产生 的噪声等。 以上可知,固体传播振动通过结构件传播至车身,引起车身的振动,再由车身板壁振动辐射噪声至车内,形成车内噪声;空气传播则将各种噪声源所辐射的噪声通过空气,由车身的缝隙或孔洞传播至车内,形成车内噪声。而对于车身而言,本身结构的固有频率、振型、阻尼等模态参数,对车内噪声的形成有着重要的作用。当外界激励与车身固有频率一致时,车身发生共振,可使噪声放大;同时,车身上外界振动输入点的动刚度对振动能量的输入也有很大影响,在一定程度上影响着车内噪声水平。实践表明,中低频(3O-400Hz)车内噪声主要由固体传播这一途径造成,而高频车内噪声则以空气传播为主。如果能够削弱或消除固体传播,则可使车内噪声大大降低。 2 被动控制技术 被动控制降噪技术多从以下三方面着手:一是消除或减弱声源噪声;二是控制噪声传播途径,阻断固体传播;三是保护噪声接受者。 2.1 消除、减弱噪声源 首先,在开发过程中,必须对汽车进行减振降噪结构设计。目前国外已有用于研究汽车噪声

工程机械噪声及减振降噪

工程机械噪声及减振降噪 随着工作环境水平的不断提高,人们对噪声的关注越来越大,目前国内外对工作环境的噪声值都有要求,以压路机为例,就有比较明确的噪声值的限制。 测试状态测点位置检测结果dB(A) 国标限值YZ12 YZ13 YZ13D CC522 BW202 不行驶司机耳边81.9 81.1 88.5 86.6 81.2 ≤94dB(A) 左侧7.5m 93.3 90.5 91.8 84.4 79.6 ≤88dB(A) 右侧7.5m 92.1 90.7 90.7 82.4 79.6 低速行驶司机耳边84.2 85.1 86.5 87.4 81.6 ≤94dB(A) 左侧7.5m 93.1 91.5 89.3 85.3 81.5 ≤88dB(A) 右侧7.5m 92.5 92.8 87.4 84.2 81.5 高速行驶司机耳边81.2 84.3 89.9 88.1 85.0 ≤94dB(A) 左侧7.5m 93.4 93.4 91.9 86.4 82.7 ≤88B(A) 右侧7.5m 92.7 92.8 93.1 85.2 83.7 上表中,前3种机型为国内产品,后2种机型为国外产品。由表可知,在不同的测试状态,司机耳边的噪声都能满足国标要求,而国内产品左右两侧7.5m处的噪声普遍超标,而国外产品比国标低1.6~8.4dB(A)。因此,具有改进的空间。 本文探究的就是工程机械(压路机、铲车等)噪声领域噪声产生的机理、测试方法以及减振降噪措施。 工程机械噪声的声源以及影响因素 工程机械噪声产生的主要因素是空气动力、机械传动、液压三部分。从结构上可分为发动机噪声,传动系噪声,液压噪声,车体噪声,底盘各部件连接配合引起的噪声,制动系统噪声,工作装置动作操作冲击噪声等,其中中发动机及其相关件产生的噪声占1/2以上,因此发动机的减振’降噪成为工程机械噪声控制的关键之一。下面从结构上对主要部分产生噪声的机理进行分析。 1.发动机噪声 发动机噪声主要是由于内燃机的空气动力噪音,燃烧噪音,机械噪音。 空气动力噪音占有重要分量,是采取降噪的主要对象。主要有:进气噪声、排气噪声、风扇噪声等。 1.1进气噪声 产生机理:进气门周期性开闭引起进气管道内压力起伏变化,从而 形成空气动力性噪声,称为进气噪声,一般进气噪声比发动机本体噪声高出5dB 左右,是仅次于排气噪声的主要噪声源。 1.2排气噪声 产生机理:排气门打开时,排,废气通过气压阀时产生的涡流噪声。 气管道内压力起伏变化排气噪声是发动机最主要的噪声源,往往比发动机本体 噪声高出10‐15dB左右。与发动机功率、排量、转速、平均有效压力以及排气 口形状、尺寸等因素有直接关系。 1.3风扇噪声 产生机理:风扇转动时使周围气流产生涡流使空气发生扰动,以及 风扇本身结果与护风圈的共振,产生噪声。 1.4燃烧噪音 产生机理:气缸内气体压力的变化。影响因素:点火提前角、压缩 比、燃烧室的形状等。 1.5机械噪声:

车内噪声控制技术及发展趋势

车内噪声控制技术及发展趋势 随着人们环保意识的日益增强,降低汽车噪声已成为群众最关心的问题之一。我国在汽车工业发展规划中,已把改善汽车乘坐舒适性、降低车内噪声作为亟待解决的主要问题之一。本文重点论述了车内噪声的主要来源以及传统车内噪声控制技术,并对车内噪声控制技术的发展趋势进行阐述。 标签:车内噪声;控制技术;发展趋势 一、车内噪声的主要来源 1.发动机噪声 发动机噪声包括:发动机工作时产生的进气噪声、排气噪声、冷却风扇噪声、结构噪声等通过空气由车身的缝隙或孔、洞传播至车内而形成的车内噪声;由于发动机燃烧和惯性力矩引起的振动,通过发动机悬架和副车架传动车身,而引起车身弯曲振动、扭转振动等,同时也会引起板件及结构产生局部振动,进一步向车内辐射的中低频噪声。 2.底盘噪声 底盘噪声主要包括:由于轮胎快速滚动对其周围空气形成扰动而产生的轮胎噪声;齿轮系啮合和振动而产生的变速器、驱动桥噪声;旋转和振动传递而产生的传动轴噪声;汽车高速行驶时,空气紊流对车身的激励造成高频振动,并在车内产生的高频噪声;汽车制动时产生的鸣叫声。 3.车身噪声及车内附属设备噪声 车身噪声及车内附属设备噪声包括:由于车身的振动和空气与车身的冲击与摩擦而产生的噪声;空调机或暖风装置工作而产生的噪声。这些噪声源所辐射的噪声,在车身周围空间形成一个不均匀的声场,并向车内传播。 二、传统车内噪声控制技术 1.减弱或消除噪声源的噪声辐射 降低汽车任何声源能量都有利于控制车内噪声,具体途径有:对发声部件采用消声器,对振动部件采用减振器;改善结构设计,降低产生噪声的激振力;采用改进密封元件,通过增加密封压力的方法来消除泄漏气流的间隙;改善车身形状设计,避免空气紊流造成车身高频振动,并在车内产生高频噪声。 2.隔绝声源、振源与车身间的传播途径

减振降噪的应用

减振与降噪的应用 随着我国轨道交通的不断发展,列车行驶速度得到很到提高,当前在高速铁路线上,列车运营速达到300Km/h。由此带来了严重的铁路环境噪声污染,列车运行时产生的振动和噪声,不仅影响铁路自身的设备、旅客和工作人员,而且影响周围的环境和居民。因此,采取相应的措施降低列车产生的振动和噪声,不仅有利于环境保护,而且有利于铁路交通的持续和健康发展。 高速铁路车轮的振动辐射噪声在轮轨滚动辐射噪声中占有很大的比重,而且在1500Hz 以上的频段占主导,对列车车轮进行优化设计,通过改变车轮的形状,可以达到较好的减振降噪效果。本文对高速铁路车轮优化方法进行详细的分析评论,并提出相应的问题和改进的方向。 1 车轮辐射噪声分析 铁路噪声是由各种类型的列车通过轨道这样一个复杂的的噪声源系统而产生的,主要分为牵引噪声、轮轨噪声、空气动力学噪声和其他方面的噪声[1]。我国目前大量采用无缝线路,致使轮轨滚动噪声成为铁路的主要噪声。图1 为典型的轮轨噪声频谱分析图[2],从图中可以看出,轮轨滚动噪声中,由轨枕产生的集中在500Hz 以下,由钢轨产生的集中在500~1500Hz 之间,由车轮产生的集中在1500Hz 以上。文献[3]研究也表明:在轮轨滚动噪声中,车轮的主要辐射噪声频段在1500Hz 以上。现在普遍认为,轮轨滚动噪声由车轮结构振动

和轨道结构振动产生[4,5],车轮和轨道结构辐射噪声的分量对比,欧洲的学者倾向于认为以车轮辐射为主,美日学者倾向于认为以钢轨为主[3]。因此研究车轮的声辐射特性及减振降噪是非常有意义的。 降低车轮噪声措施 根据轮轨噪声理论,降低车轮噪声的措施主要有[1]:(1)利用附加的阻尼元件、弹性元件和辅助质量块通过联结在主振系统上所产生的动力作用来减小主振系统振动。(2)在车轮轮毂与轮辐之间添加橡胶材料隔离层形成弹性车轮。(3)在不影响其他(如强度)方面要求的情况下对车轮形状进行优化,以此降低车轮结构的振动速度,从而降低车轮噪声。(4)降低车轮的声辐射效率。阻尼车轮和弹性车轮不仅构造复杂,而且增加制造成本,在车轮上穿孔影响车轮的整体

降噪沥青路面

降噪沥青路面检测及分析 检测拖车在实际运营的高速公路上进行“轮胎—路面”噪声测试。 降噪沥青路面是降低公路交通噪声的主要措施之一。近年来,我国在部分高速公路上铺设了这种路面。 降噪沥青路面的声学耐久性如何?声学性能、路面性能随路龄增长有何变化?为了解开这些谜题,近日,交通运输部公路科学研究院(简称部公路院)以淮徐高速公路、宁杭高速公路、盐靖高速公路、沿海高速公路为依托,在国内首次采用路面噪声检测拖车在实际运营的高速公路上进行了“轮胎—路面”噪声测试。 记者采访了部公路院公路交通环境工程研究中心副主任魏显威、副研究员袁旻忞,部公路院公路工程研究中心副主任曹东伟、副研究员李明亮,了解测试结果和保持降噪沥青路面声学性能的方法。 失效原因孔隙堵塞沥青膜磨损 “降噪沥青路面上布满孔隙,利用多孔吸声原理实现降噪,所以孔隙率是影响降噪沥青路面声学性能的首要因素。”魏显威说。此外,使用过程中,公路表面沥青膜的磨损、细集料脱落等因素会增大公路表面粗糙度,从而增加轮胎振动引起的噪声。 李明亮组织了降噪沥青路面降噪理论及室内外试验研究,在不同材料、结构形式的降噪沥青路面上开展了“轮胎—路面”噪声检测对比,还与密级配沥青路面等路面形式比较,测试了不同使用年份(1年、2年、5年、10年)、不同车道(重车道、行车道、超车道)以及不同车速(60公里/小时、80公里/小时、100公里/小时)下降噪沥青路面的降噪效果。 从检测结果来看,随着路面使用年份的增长,由于孔隙堵塞、沥青膜磨损等原因,降噪效果会下降。对于同一年修筑的路面,孔隙率较大的路段降噪效果好

于孔隙率偏小的路段。采用了胶轮碾压的路面,由于表面宏观构造深度相对较小,与仅采用钢轮碾压的路面相比,降噪效果有所提高。 延寿良方巧用雨水冲刷和轮胎泵吸 从延长降噪沥青路面的声学寿命出发,在使用范围上,我国南方等降水量大的地区,高速公路及交通量大的公路更适合铺设降噪沥青路面。“雨水冲刷可以起到清洁路面的作用,有助于保持孔隙率。”袁旻忞说。据曹东伟介绍,高速公路车流量大,车辆行驶时轮胎的泵吸作用会将路面上的灰尘、细小颗粒物吸起,从而使孔隙保持清洁。如江苏沿海高速公路车流量大,降噪沥青路面使用了近11年,虽然没有进行过任何清洗,但路面孔隙基本没有堵塞,仍保持着良好的降噪效果。此外,超车道车辆行驶速度快、泵吸作用强,所以路面降噪性能保持得比行车道好。 “路面的结构和材料,设计、施工、养护情况都会影响降噪沥青路面的声学和结构寿命。”魏显威说。 曹东伟告诉记者,多孔结构导致降噪沥青路面更易发生结构性损坏。为了确保路面结构耐久性和降噪性能,必须做到精心设计、认真施工、严格管理。集料的强度以及针片状、专用沥青的动力黏度和黏韧性等技术指标非常关键,根据道路等级和交通荷载水平优化设计混合料配比也是重要环节。如果考虑降噪情况,碾压工艺可采用钢轮与胶轮结合的方式,保证降噪沥青路面的孔隙率达到设计文件要求,防止由于过压造成孔隙率偏低等情况的出现。同时,施工过程中要保证检测频次,采用专用设备对路面降噪功能进行检测,根据检测结果动态调整施工过程。 养护阶段,应及时进行孔隙清洗,保持孔隙畅通。曹东伟告诉记者,从保持良好降噪性能出发,使用5年至8年后,可根据公路表面技术状况进行预防性养护,洒布专用养护剂。目前,我国已开发出相关的清孔技术和设备,但由于数量较少、便捷性有待提升,还未全面应用于降噪沥青路面的日常养护。 推而广之技术已成熟标准需完善

地铁减振降噪总结精简版本

地铁噪声形成 动力系统噪声:牵引设备噪声、辅助设备噪声和其他设备噪声。 轮轨噪声包括:有节奏的滚动噪声、钢轨接缝处的撞击噪声和弯道处的啸叫噪声 滚动噪声又称为“吼声”,由钢轨和车轮表面的粗糙不平引起的, 撞击噪声由车轮和钢轨的结合处撞击所产生, 啸叫噪声是列车车轮在轨道上滑动摩擦所产生的一种窄带噪声,强度大,频率高。啸叫噪声出现在小半径弯道或列车制动时,由于车轮相对于轨道横向运动而产生, 车内振动的主要来源 高架桥梁上运行的振动来源 当地铁客车在高架桥梁上运行时,地铁列车高速行进是地铁振动的主要发生源,具体来源于列车的轮轨系统和动力系统,其表现为: (1)列车行驶时,对轨道的重力加载产生的冲击,造成车轮与轨道结构的振动; (2)地铁车辆运行时,众多车轮与钢轨同时发生作用所产生的作用力,造成车辆与钢轨结构(包括钢轨、构件、道床等)上的振动; (3)车轮滚过钢轨接缝处时,轮轨相互作用产生的车轮与钢轨结构的振动; (4)轨道的不平顺和车轮的粗糙损伤等随机性激励产生的振动; (5)车轮的偏心等周期性激励导致的振动。 地下线路运行的振动来源 地铁列车在地下线路运行时影响振动源的因素涉及到车辆、轨道、道床、隧道、地质条件等方面 减振降噪常用措施 1、轨道结构方面的减震降噪措施。 (l)采用较大半径曲线线路。(2)采用重型、无缝化的钢轨。(3)采用合理的轨道结构。(4)采用减振型扣件,如轨道减振器扣件、柔性扣件等。(5)加强轨道的养护维修,6)利用附加阻尼结构,7)约束阻尼结构减振整体道床 2、车辆上的减振降噪措施。 (l)改善车身结构(2)在机车车辆上使用新型减振器,如采用金属一橡胶复合减振器,(3)采用弹性车轮、充气橡胶车轮、阻尼车轮及弹性踏面车轮等(4)采用隔音、吸音材料。 3、传递、接收方面的减振降噪措施。 采用铺设轻质吸声桥面和路面、在高架桥上安装吸声天棚,设置声屏障也是降低高架轨道交通噪声的有效措施,在接收处,可在住宅、建筑处涂抹吸音材料,进行防振吸音处理。 2.3高架线路和桥梁的减振降噪措施 目前,国内外城市轨道交通的高架桥结构大多采用箱形梁形式。由于箱形梁的内部空腔在轨道交通噪声主要频段内存在声学模态,腔内的声场共振可能使桥梁的上下两个面的辐射声增加,而且,箱形梁桥的底面是大面积的平面,声辐射效率比较高,因此,有必要研究箱形梁的减振降噪措施。目前箱形梁的降噪处理有以下几类技术:

空调通风系统的减振降噪

船用空调通风系统减振降噪措施 20110109

一.空调通风系统的降噪措施 空调通风系统在对船舶内热湿环境、空气品质进行控制的同时,也对船舶的声环境产生不同程度的影响。当系统运行产生的噪声超过一定的允许值后,将影响船员的正常工作、学习、休息或影响一些房间的功能(如广播电视室、录音室等),甚至影响人体健康。因此,在进行船舶空调通风系统设计的同时,应该进行噪声控制设计。 噪声控制应从三方面入手,一从噪声源出进行控制,二从传播过程中进行控制,三从空调通风系统末端进行控制。 通风空调系统中的噪声源主要有压缩机、风机、水泵等机械设备产生的噪声,气流在风管中产生的噪声,入射到风管内而传入室内的噪声,气流通过房间末端装置产生的噪声。 1.压缩机、水泵等机械设备都安装在设备房内,这些设备都有最大允许噪声的规定。要使压缩机不产生异常噪声就需要对压缩机进行很好的日常维护保养、润滑油的管理、制冷剂的管理和年度维护保养;水泵除了日常维护保养润滑外,还需要防止吸入空气发生气蚀,产生异常噪声;风机也有最大允许噪声,它一般安装在空调器箱体内,我们可对空调箱体进行隔噪处理,空调箱体外层采用普通钢板或不锈钢板,中间贴40mm厚岩棉(岩棉传热系数小、耐高温、吸音效果好),内层采用消音孔板做覆板,从而从风机这一主要声源处大大降低了噪声。 2.风管系统的气流噪声,空气在流过直管段和局部构件(如弯头、三通、变径管、风门、风口等)时都会产生噪音。噪声与气流速度有着密切的关系,当气流速度增加一倍,噪声就会增加15dB。风管系统一根主干管通常服务多个房间,而其中某一个房间的噪声会通过风管传到其他房间中去。房间内的噪声源有人声、音乐声等。人群大声说话的声功率级90dB,一般会话为70dB,音乐声级为90~115dB,这些噪声通过风口入射到风管内再传到其他房间。入射到风管内的噪声与风口的开口面积、噪声源与风口距离、风口个数、声源室的总表面积和材料的吸声系数等有关。当几种噪声叠加时,根据声功率级差值在其中较高的声功率上加附加值。 降低风管系统的气流噪声的方法:减小风管系统阻力;降低送风风速;送回风管中加装消音器;风管包隔音材料。

制冷压缩机减振降噪技术专题调研

制冷压缩机减震降噪技术研究 ——专题调研 摘要:制冷压缩机是冰箱、空调,等众多家用设备的主要噪声源,它的振动与噪声也影响到它作为家用设备的舒适性。其减振除噪的重要性不言而喻。本文介绍了制冷压缩机振动与噪声的产生原因与机理。介绍了一些传统的减震降噪的措施与手段,同时着重介绍了一些最新的减震降噪技术。 关键词:制冷压缩机;减振;降噪; 随着社会经济的不断发展,人们生活水平的不断提高,环境保护意识大大增强,制冷压缩机是冰箱、空调,等众多家用设备的主要噪声源,其性能直接影响到人们的生活和工作,在噪声控制方面取得了较大的进步。本文主要根据国内外发表的文献,对这一问题进行了详细总结,分为制冷压缩机振动噪声的主要原因、振动噪声产生和传播机理研究进展和减振降噪措施。总结了制冷压缩机常用的噪声控制方法,并介绍了噪声控制方面的新技术,包括有源声控技术,包括源噪声控制技术压电智能材料的应用,形状记忆合金的应用等最新技术及其他尚未在制冷压缩机领域应用但很有前景可以拿来借鉴的技术。 1、制冷压缩机噪声原因与机理 制冷压缩机系统产生的噪声主要由机械性噪声、电磁噪声和压缩机产生的流体动力特性噪声构成,以及其他各种噪声的耦合噪声。 (1)机械性噪声: 机械性噪声主要由摩擦、磨损以及机构间的力传递不均匀产生的。转子及其装配件的不平衡:

转子啮合、转子转速波动引起的冲击噪声;开启式螺杆制冷压缩机的电机与连轴器不对中引起的振动与噪声;轴承振动与噪声。机体外部包括机壳、支承结构、底座的振动与噪声。油分离器,蒸发器、冷却系统的振动与噪声。电机轴和轴承之间的相互作用形成电机的机械噪声。 (2)流体动力特性噪声: 流体动力特性噪声包括气流噪声和油流噪声。气流噪声主要是吸、排气噪声,包括气体进、出排气腔及转子槽基元容积时形成的涡流噪声,排气过程中回流和膨胀产生的喷流噪声;气流管道脉动及弯头振动、噪声;吸、排气止回阀噪声。油流噪声包括:喷油噪声;油流管道噪声;油泵气穴、困油噪声等。 (3)电磁噪声: 电磁噪声时电动机中特有的噪声,其属于机械性噪声,在电动机中,电磁噪声是由交变磁场对定、转子作用,产生周期性的交变力引起的振动和噪声。当电源电压不稳定时,最容易产生电磁振动和噪声。 2 压缩机噪声振动传递路径 根据全封闭压缩机的结构,我们可以把传递路径分为三类:1.固体路径(弹簧、管、机 体总成);2.液体通道(冷冻油);3.气体通道即制冷气。 2.1 固体通道 我们知道,声波的传递大小与媒质的特性阻抗(密度与声速的乘积)有关。Binder 认为固体通道是压缩机最重要的传输通道。Thomton也认为压缩机噪声主要的传递路径是固体通道。他首先企图找出压缩机某阶振动模态与其噪声级的联系。因为这一模态假若存在的话,就可以通过调整电机与主机的相互运动关系使振动匹配破坏,从而噪声降低。但他们的企图没有实现。接着他用改变传输性来降低噪声。具体采用措施如下:隔振选用固有频率尽量低的弹簧;阻抗失配即弹簧与机体连接处尽量选用特性阻抗低的材料。Jenkins 利用计算机仿真技术来研究通过弹簧传递的振动。他发现若将活塞和连杆的质量减少30%,即可减少40%的传递力。他同时发现,通过仅仅优化平衡块的质量和位置对弹簧的变形影响很小,而通过优化弹簧与机体的连接点的位置,可大幅度降低水平位移。除弹簧外,吸排气管也同样是重要的传递通道,Soedel将吸排气管建立了一个数学模型来求得各管参数对振动的影响。他得出如下结论:压缩增加时,管路的刚度增加,从而固有频率有所增加,当质量流量增加时,管路自振频率将下降。随后Toio用有限元法对排气管进行修改,也可使管路刚度下降,从而避开压缩机旋转频率及其谐波。另外,Sinpson简单采用了一个汽车空调软管代替现行的铜管, 也取得了很好的效果。 2.2 液体通道 关于该类通道对噪声的影响,文献资料较少。Simpson 用铜管弯曲成螺旋状并在其表面钻上小孔(直径0.010″)称作起泡器。然后将这一起动器浸在压机油中并与排气腔相连,这一措施连同其它方法使噪声降低了5dB,这种起动器对1000Hz 以上的噪声似乎很有效,但文 献没有提及对性能有何影响。 2.3 气体通道 Thomton做过实验,证实对于刚性连接的旋转压缩机固体通道是主要的传输通道。但 改为弹簧连接后,气体通道即成为主要的传输通道。全封闭压缩机腔内充满了制冷气体,当机体振动时,制冷剂被激励,一方面将振动传输出去,另一方面有可能产生共振,将振动放大,从而使外壳产生更大噪声。在这一领域值得一提的是Johnson 和Hamilton,他们是第一次进行并发现气体在腔内共振实验的人。他们首先发现压缩机噪声谱中460Hz 处有一个高峰,这个高峰随着温度的改变来回移动,通过测量声功率,发现460Hz 有很强的方向性, 与偶极子源特性类似。通过计算可知是压缩机腔内的轴向气体共振。这些推论又用如下实验

2020年混合动力电动汽车减振降噪技术研究:2018油电混合动力汽车

摘要在介绍混合动力电动汽车结构和工作特性的基础上,分析了混合动力电动汽车由于动力源增加、驱动桥改变和工作模式不同,导致其振动和噪声相对于传统内燃机汽车发生了较大改变,并针对这些改变归纳和提出了减振降噪的技术。 关键词混合动力;电动汽车;振动;噪声;控制技术 中图分类号U467+93 文献标志码A 文章编号1005-2550(2012) 04-0067-05 Noise and Vibration Reduction Technology in Hybrid Electric Vehicle LIAO Lian-ying1,LI Xin-wen2 (Changzhou Institute of Technology,Changzhou 213002,China; Military Representative Office of the PLA in the DFM,Shiyan 442000,China) AbstractIn recent years,the hybrid electric vehicle is becoming the main trend development of automobile technology. The hybrid electric vehicle structure and work characteristics are introduced. The vibration and noise source are analyzed. Because of the changes of power sources,

drive axle and operating mode,the vibration and noise sources are different between the hybrid electric vehicle and the traditional internal combustion engine vehicle. According to the changes,the measures of reducing the vibration and noise are summarized and presented. Key wordshybrid power;electric vehicle; vibration;noise;control technology 混合动力电动汽车除了在环保和节能上有出色表现外,在噪声与振动整体控制上也体现出了一定的优势。然而,混合动力电动汽车相对于传统内燃机汽车,增加了电池组和电机等零部件,在结构上较为复杂,工作状态也发生了变化,由此引起的噪声与振动源和其特性上发生了较大改变。如噪声和振动源的增加且呈分散特点,导致噪声和振动特性分析难度加大;整车室内外声学环境噪声的减小,改变了噪声源的贡献比,从而导致了车室内外声品质和噪声等级的改变;发动机和电机等设备的频繁起停引起瞬态冲击振动和高频噪声现象突出;大质量电池的增加和布置导致整车结构模态的改变等。因此混合动力电动汽车的噪声和振动控制的侧重点和控制方法均和内燃机汽车有所不同。本文就混合动力电动汽车结构和工作特点发生变化,引起的噪声和振动特性发生改变进行了分析,并针对这些特点提出减振降噪措施。 1 混合动力电动汽车结构及工作特点

发动机减震降噪技术

降噪减振技术: 发动机的振动、噪音是汽车振动和噪音的最大来源。在往复式发动机中,燃烧压力作用在活塞上,并转换为曲轴的转动。但是,由于曲轴转动每隔一周工作压力才产生一次,这样就产生了转矩波动。在四缸发动机中,曲轴每转一周,就产生两次转矩波动,在六缸发动机中,产生三次转矩波动。这些波动经离合器传至变速器,然后又传给驱动轴,使车辆产生噪音和振动。 活塞上的燃烧压力周期性地施加在曲轴上,从而产生转矩,但通过减振皮带轮可抑制这个转矩波动。减振皮带轮是由一夹在皮带轮和轴套间的橡胶隔振板构成的。当曲轴稳定转动时,转矩减振器与之同步转动,当发动机转速变化并产生转矩波动时,这个减振器会使橡胶隔振板扭转,以保持现有转速,吸收了扭转振动。发动机的飞轮通过惯性保持而减少转矩波动,使发动机转动平顺,较重的飞轮减振作用好,但是发动机灵敏性减弱,所以飞轮的质量要适当,有些飞轮带有扭力减振器。它由两部分组成,这两部分之间有弹簧减振机构、以减少扭转振动。在往复式发动机中,活塞和连杆在上下行程中交替沿相反方向运动,如活塞、连杆有质量差,就会发生惯性不平衡,而飞轮可减少这种惯性不平衡所导致的转矩波动,在制造中活塞和连杆也制造得很精确,以使这一不平衡减至最小。在发动机中,曲轴、飞轮、皮带轮等转动部件中的任何一个都会形成振动力,由于这个振动力与部件的不平衡量成正比,与其每分钟转速的平方成正比,因此,当转速增加时,振动也被急剧放大,所以转动部件之间的平衡量最好小一些。 其它机械噪音来自发动机活塞、气门机构等,构成了发动机噪音的一部分,如活塞敲缸,挺杆噪音,气门开闭所产生的噪音,气门和气门弹簧振动所产生的噪音,以及正时链与链轮啮合时产生的噪音。 活塞敲缸是活塞侧面敲击缸壁所产生的噪音,当作用到活塞上的压缩压力转变为燃烧压力时,就产生了敲缸。活塞敲缸因活塞间隙的不同而不同,活塞间隙大时,最有可能产生敲缸声。活塞敲缸的特点是发动机冷态时很响,因此时活塞间隙大,随着发动机的温升,声音也变小。

商用车驾驶室减振降噪技术研究

商用车驾驶室减振降噪技术研究 摘要:汽车是现代人类生活中必不可少的交通工具,随着汽车的普及和人们生 活水平的提高,汽车的NVH(Noise、Vibration、Harshness)性能即噪声、振动和舒适性已经成为汽车业不断追求的性能指标。其中的噪声问题不仅会影响车内人 员的乘车体验,还会对道路周边环境造成噪声污染问题。所以尽可能降低汽车行 驶中的噪声是新车型投产前必须进行的工作。本文基于商用车驾驶室减振降噪技 术研究展开论述。 关键词:商用车;驾驶室;减振降噪技术研究 引言 随着人们生活水平和生活质量的快速提高,人们对商用车的舒适度提出了更加高的要求,而商用车的舒适度主要与车辆在行驶过程中的振动,噪音等有关,因此,在商用车的制造中 必须引进先进、有效的减振降噪技术,切实提高商用车的舒适度,为人们提供创造舒适的乘 车环境。 1商用车驾驶室的噪声来源和传播途径 驾驶室除了提供各系统必要的安装点,主要作用就是隔绝外部带来的影响。然而在设计 和制造商用车的过程中,受制于车辆的成本和结构限制等因素,未能形成完整的隔音屏障, 以隔离车辆外的噪音。其次,在商用车行驶过程中,驾驶室车体振动产生固体声及空气与车 身之间的冲击和摩擦声。具体分析如下: 1.1外部噪声在驾驶室内传播 舱外噪音基本上与舱内隔绝,但由于商用车的某些结构特点,仍有孔隙,例如门窗、地 板等位置,这就使得噪音源可通过这些缝缝在舱内传播。 1.2车体振动产生的固体声音 在商用车行驶过程中,发动机和传动装置振动,由于道路不平整而引起车轮振动,振动 通过车架和悬架传递到驾驶室。在商用车行驶过程中,驾驶室周围空气流进而导致气压波动,进一步引起驾驶室的壁板振动,噪音不断地在舱内传播。 2汽车噪声标准法规现状 欧洲早在60年代就开始重视汽车噪声的研究,并于1969年颁布了汽车噪声的规定ECEK9号法规。随着汽车工业的发展,根据车轮个数对噪声进行单独立法。针对四轮以上车型,1982年7月15日,UN/WP.29(联合国世界车辆法规协调论坛)发布ECER51号法规, 现在执行的法规为2016年2月5日发布的ECER5103系列。对比国外发达国家,我国的汽车 噪声法规起步晚,自1979年起,先后发布了GB1495-1979《机动车辆允许噪声》、GB1496-1979《机动车辆噪声测量方法》。2002年国家对汽车噪声标准进行了升级,现行有效的噪声 标准GB1495-2002《汽车加速行驶车外噪声限值及测量方法》,目前新版的GB1495征求意 见稿正在修订中。通过ECER5103和GB1495-2002对比,两者在档位选择、接近速度确定、 加速行驶操作、测量结果处理及噪音限值方面均有不同。ECER5103法规制定时考虑了城市驾 驶工况下的车辆发动机、轮胎、路面各噪声源。随着我国汽车工业的发展,在整车及零部件 技术水平已经接近欧洲水平,为了提升产品竞争力,与欧洲主流车型在世界上同台竞争,建

地铁减振降噪措施

地铁减振降噪措施 降噪减振技术: 从改进轨道结构设计入手,从根源上降低轮轨冲击振动以减少噪音的产生,是改善沿线环境敏感点环境的主要措施。设置声屏障是降低一次对周围环境影响的有效措施。通过标本兼治,将大大改善沿线的声环境质量,使环境敏感点的声环境达到国家环境振动与标准的要求,实现最大的环境效益。 1 轨道结构设计 轨道交通产生振动和噪音的根源在于轮轨关系,因此必须改善轮轨关系,减少振动和噪声。 1.1 钢轨选择 钢轨的选择应保证轨道具有良好的动力响应特性和稳定性,在长期运营中保持良好的平顺性,养护维修量少,使用寿命长。材质强韧性差的钢轨经列车长期运营碾压后,其轨顶面将产生塑性流变而剥离掉块或出现波形磨耗,导致轨顶面不平顺。一些工业发达国家把60 kg/m 钢轨作为主要轨型,材料采用优质钢种, 以提高其强韧性,减少运营 过程中出现的轨面不平顺。采用重型钢轨对降低噪声有利。八通线选择60 kg/m 钢轨作为正线的工作钢轨。 1.2 道床及扣件设计 八通线有一多半线路为高架线,应优先采用整体道床结构,以减

少养护维修工作量,增加轨道的稳定性,保持轨道整洁、美观。为增加轨道的弹性,钢轨扣件采用双弹性垫层设计,即在轨下和分开式扣件铁垫板下均设静刚度系数较小的橡胶垫板,钢轨支点的整体静刚度为25~30 kN/mm 。整体道床块按6 m 间隔设计成条状,并与桥梁通过连接钢筋形成整体,增加惯性质量,降低道床的固有振动频率。 对于地面线,广泛采用碎石道床、预应力混凝土枕和弹性扣件。选用一级道碴,防止发生道床板结,保持轨道弹性。在采取轨道加强措施的同时,对路基填料和压实度提出了较高的要求,确保路基坚实、稳定、牢固。 1.3 铺设无缝线路 普通线路由于存在钢轨接头轨缝而造成轨面的原始不连续,列车通过时发生较大轮轨冲击而导致钢轨振动,产生冲击噪音。 由于北京地区的昼夜温差较大,在拆除侧模后,及时加盖草帘,避免产生温度裂缝。将标准长度的钢轨焊接成长钢轨,减少钢轨接头数量,可大大减少钢轨接头冲击引起的振动和噪音。大量测试结果表明,钢轨接头处的轮轨噪音比非接头部位增加5~7 dB (A) 。八通线在具备无缝线路铺设条件的地段,全部铺设无缝线路。 1.4 高架车站轨道措施 根据《八通线项目环境影响报告书》的预测,该线对沿线环境振动影响不大,因而没有提出轨道结构需采取措施的要求。但考虑到本线高架车站均为站桥合一的框架结构,车辆通过时将会激发车站框架的振动,对车站工作人员及设备不利,因此全部高架车站及四惠和四

相关主题
文本预览
相关文档 最新文档