当前位置:文档之家› 起重机的电气控制系统

起重机的电气控制系统

起重机的电气控制系统
起重机的电气控制系统

起重机的电气控制系统

起重机钢结构负责载荷支承;起重机机构负责动作运转;起重机机构动作的起动、运转、换向和停止等均由电气或液压控制系统来完成,为了起重机运转动作能平稳、准确、安全可靠是离不开电气有效的传动、控制与保护。

1. 起重机电气传动起重机对电气传动的要求有:调速、平稳或快速起制动、纠偏、保持同步、机构间的动作协调、吊重止摆等。其中调速常作为重要要求。

一般起重机的调速性能是较差的,当需要准确停车时,司机只能采取“点车”的操纵方法,如果“点车”次数很多,不但增加了司机的劳动强度,而且由于电器接电次数和电动机起动次数增加,而使电器、电动机工作年限大为缩短,事故增多,维修量增大。

有的起重机对准确停车要求较高,必须实行调速才能满足停准要求。有的起重机要采用程序控制、数控、遥控等,这些技术的应用,往往必须在实现了调速要求后,才有可能。由于起重机调速绝大多数需在运行过程中进行,而且变化次数较多,故机械变速一般不太合适,大多数需采用电气调速。电气调速分为二大类:直流调速和交流调速。

直流调速有以下三种方案:固定电压供电的直流串激电动机,改变外串电阻和接法的直流调速;可控电压供电的直流发电机———电动机的直流调速;可控电压供电的晶闸管供电———直流电动机系统的直流调速。直流调速具有过载能力大、调速比大、起制动性能好、适合频繁的起制动、事故率低等优点。缺点是系统结构复杂、价格昂贵、需要直流电源等。

交流调速分为三大类:变频、变极、变转差率。调频调速技术目前已大量地应用到起重机的无级调速作业当中,电子变压变频调速系统的主体———变频器已有系列产品供货。

变极调速目前主要应用在葫芦式起重机的鼠笼型双绕组变极电动机上,采用改变电机极对数来实现调速。

变转差率调速方式较多,如改变绕线异步电动机外串电阻法、转子晶闸管脉冲调速法等。除了上述调速以外还有双电机调速、液力推动器调速、动力制动调速、转子脉冲调速、蜗流制动器调速、定子调压调速等等。

2. 起重机的自动控制

可编程序控制器———程序控制装置一般由电子数字控制系统组成,其程序自动控制功能主要由可编程序控制器来实现。

自动定位装置———起重机的自动定位一般是根据被控对象的使用环境、精度要求来确定装置的结构形式。自动定位装置通常使用各种检测元件与继电接触器或可编程序控制器,相互配合达到自动定位的目的。

大车运行机构的纠偏和电气同步———纠偏分为人为纠偏和自动纠偏。人为纠偏是当偏斜超过一定值后,偏斜信号发生器发出信号,司机断开超前支腿侧的电机,接通滞后支腿侧的电机进行调整。自动纠偏是当偏斜超过一定值时,纠偏指令发生器发出指令,系统进行自动纠偏。电气同步是在交流传动中,常采用带有均衡电机的电轴系统,实现电气同步。地面操纵、有线与无线遥控———地面操纵多为葫芦式起重机采用,其关键部件是手动按钮开关,即通常所称的手电门。有线遥控是通过专用的电缆或动力线作为载波体,对信号用调制解调传输方式,达到只用少通道即可实现控制的方法。无线遥控是利用当代电子技术,将信息以电波或光波为通道形式传输达到控制的目的。

起重电磁铁及其控制———起重电磁铁的电路,主要是提供电磁铁的直流电源及完成控制(吸料、放料)要求。其工作方式分为:定电压控制方式和可调电压控制方式。

3. 起重机的电源引入装置起重机的电源引入装置分为三类:硬滑线供电、软电缆供电和滑环集电器。硬滑线电源引入装置有裸角钢平面集电器、圆钢(或铜)滑轮集电器和内藏式滑触线集电器进行电源引入。

软电缆供电的电源引入装置是采用带有绝缘护套的多芯软电线制成的,软电缆有圆电缆和扁电缆二种形式,它们通过吊挂的供电跑车进行引入电源。

4. 起重机的电气设备与电气回路

不同类型的起重机的电气设备是多种多样的,其电气回也不一样,但电气回路基本上还是由主回路、控制回路、保护回路等组成。在这里不必一一介绍,只简要地介绍一下电动起重机的典型产品通用桥式起重机的主要电气设备和基本电气回路。

1). 通用桥式起重机的电气设备通用桥式起重机的电气设备主要有各机构用的电动机、制动电磁铁、控制电器和保护电器。

电动机桥式起重机各机构应采用起重专用电动机,它要求具有较高的机械强度和较大的过载能力。应用最广泛的是绕线式异步电动机,这种电动机采用转子外接电阻逐级起动运转,既能限制起动电流确保起动平稳,又可提供足够的起动力矩,并能适应频繁起动、反转、制动、停止等工作的需要。要求较高容量大的场合可采用直流电动机,小起重量起重机,

运行机构中有时采用鼠笼式电动机。

绕线式电动机型号为JZRJZR2和JZRH和YZR系列电动机。

鼠笼式电动机型号为JZ; JZ2和YZ系列电动机。

制动电磁铁制动电磁铁是各机构常闭式制动器的打开装置。起重机常用的打开装置有如下四种:单相电磁铁(MZD1系列)、三相电磁铁(MZS1系列)、液压推动器(TY係列)和液压电磁

铁(MY1 系列)。

操作电器又称为控制电器,它包括控制器、接触器、控制屏和电阻器等。主令控制器主要用于大容量电动机或工作繁重、频繁起动的场合(如抓斗操作)。它通

常与控制屏中相应的接触器动作,实现主电动机的正、反转、制动停止与调速工作。其常用型号为

LK4 系列和LKI4 系列。

凸轮控制器主要用于小起重量起重机的各机构的控制中,直接控制电动机的正、反转和停止。要求控制器具有足够的容量和开闭能力、熄弧性能好、触头接触良好、操作应灵活、轻便、档位清楚、零位手感明确、工作可靠、便于安装、检修和维护。常用型号为KT10和KT12 系列。

电阻器在起重机各机构中用于限制起动电流,实现平稳和调速之用。要求应有足够的导电能力,各部分连接必须可靠。

保护电器桥式起重机的保护电器有保护柜、控制屏、过电流继电器、各机构的行程限位、紧急开关、各种安全联锁开关及熔断器等。对于保护电器要求保证动作灵敏、工作安全可靠、确保起重机安全运转。

2). 电气回路桥式起重机电气回路主要有主回路、控制回路及照明信号回路等。

(1)主回路直接驱使各机构电动机运转的那部分回路称为主回路,如图2-18所示。它

是由起重机主滑触线开始,经保护柜刀开关1QS保护柜接触器主触头,再经过各机构控制器

定子触头至各相应电动机,即由电动机外接定子回路和外接转子回路组成。

(2)控制回路桥式起重机的控制回路又称为联锁保护回路,它控制起重机总电源

的接通

与分断,从而实现对起重机的各种安全保护。由控制回路控制起重机总电源的通断,原理如图2-19 所示。左边部分为起重机的主回路,即直接为各机构电动机供电并使其运转的那部分

电路。右边部分则为起重机的控制回路。从图2-19中可知,在主回路刀开关1DK推合后,

控制回路于A;B处获得接电,而主回路因接触器KM主触头分断未能接电,故整个起重机各

机构电动机均未接通电源而无法工作。因此,起重机总电源的接通与分断,就取决于主接触器主触头KM的接通与否,而控制回路就是控制主接触器KM主触头的接通与分断,也就是

控制起重机总电源的接通与分断,故把这部分控制主回路通断的电路称之为控制回路。

控制回路的组成如图2-19所示,控制回路由三部分组成:①号电路零位起动部分电

路、②号电路限位保护部分电路和③号电路联锁保护部分电路。在①号电路内包括起升、小车、大车控制器的零位触头(它们分别用SCHO SCSO SCL(表示)和起动按钮SB;在②号

电路内包括起升、小车和大车限位器的常闭触头(它们分别用SQH、SQS1、SQS2、SQL1、SQL2 表示);在③电路中包括主接触器KM的线圈、紧急开关SE、端梁门开关SQ1、SQ2及各过电流继电器FAO、FA1、FA2、FA3 FA4勺常闭触头。①号电路与②号电路通过主接触器KM之

常开联锁触头KM1、KM并接后与③号电路中串联接入电源而组成一个完整的控制回路。

图2 - 18兮别驱动桥式起匝机主冋路原理图

控制回路的工作原理

a. 起重机零位起动 由图2-19所示,当保护柜刀开关1DK 推合后,在控制回路中,由

于KM 和KM2未闭合而只有①号电路和③号电路串联并通过熔电器 FU1和FU2接于电源之A B

两点。只要各机构控制器手柄置于零位,即非工作位置,此时 SCHO SCSO 和SCL (各控制

器零位触头闭合,各安全开关SE 、CQ1 CQ2和FA1 — FA4之触头都处于正常闭合状态, 此时按

下起动按钮SB ,则主接触器KM 之线圈构成闭合回路接电而将其主触头吸合, 遂将起重机总

电源接通。

b. 起重机电源接通的自锁原理 在按下起动按钮SB 接触器吸合接通总电源同时, 接触

器KM 的常开联锁触头KM1和KM2各随之闭合,遂将包括各机构限位器常闭触头在内的②号 电路与

①号电路并接于控制回路中,故当起动按钮 SB 脱开使①号电路分断后,因有②号电

路取代①号电路并与③号电路串联而使接触器 KM 线圈持续通电吸合,故其主、副触头保持

闭合状态,使起重机总电源保持接通状态,从而实现起重机供电联锁作用。这时,扳动起重 机各机构

控制器手柄置于工作位置, 则起重机即可产生相应动作。 由于各机构限位触头接在

②号电路中,故可起到相应的限位保护作用。

a2-19通川桥式Ks?i

拧制何路療理罔

电动

E 2 - 2()起車机起动丿仃二扛制冋路原理图

N 2-21控制回路原21!图

c. 零压保护起重机总电源为保护柜中主接触器的通断所控制,当电源供电电压较低时(低于额定电压的85%),因电磁拉力小,主接触器KM的静铁芯不能吸合动铁芯,其主、副触头就不能闭合,即不能合闸(或工作时掉闸),从而可实现欠电压保护。

d. 零位保护从图2-19所示,①号电路中各控制器零位触头SCHO SCSO SCLO任一个

不闭合(即其控制器手柄置于工作位置时),按下起动按钮SB,控制回路因此在此处分断

而不能形成闭合回路,无法使接触器通电吸合,故起重机不能起动。这就避免了在控制器手柄置于工作位置时接通电源而发生危险动作所造成的危害。故对起重机起到零位保护作用。

e. 各电动机的过载和短路保护在控制回路的③号电路中,串有总过电流继电器和保护各

电动机的过电流继电器常闭触头,当起重机因过载、某电动机过载、发生相间或对地短路时,强大的电流将使其相应的过电流继电器动作而顶开它的常闭触头,使接触器KM的线圈失电,导致起重机掉闸(接触器释放),从而实现起重机的过载和短路保护作用。

f. 各机构的限位保护起重机起动且按钮SB脱开后的控制回路原理图如图2-20所示。

此时②号电路取代①号电路而接入控制回路中,保护主接触器持续通电吸合。当某机构

控制器手柄置于工作位置时,如起升机构吊钩上升,此时之控制回路原理图如2-21所示。这时起升控制器上升方向联锁触头SCH1闭合(下降方向联锁触头SCH2断开),只串有上升限位器SQH常闭触头的这一分支电路与L2(V2)相接而使主接触器通电闭合,当吊钩升至上极

限位置而将上升限位器SQH常闭触头撞开时,则控制回路断开而使主接触器KM线圈失电

释放,导致主回路断电,电动机停止运转,吊钩停止上升,起到上升方向的限位保护作用。如欲使吊钩下降,重新工作,则必须将各机构控制器手柄复位回零,重新起动。起升控制器手柄扳向下降方向,吊钩下降,上升限位器释放而使其触头恢复常闭状态,以备吊钩再次升时限位保护之用。同理可实现下降、大车、小车相应各方向的行程端限位保护。

g. 紧急断电保护从图2-19中可知,紧急开关SE的常闭触头串于③号电路中,当遇有紧急情况而需要立即断电时,则司机可顺手将置于其操作下方的紧急开关扳动即可打开其常闭触头,使③号电路断开而导致主接触器失电释放,切断起重机总电源,实现紧急断电保护。

i.各种安全门开关联锁保护在控制回路的③号电路中,串有司机门联锁开关SQ1、舱口门开关SQ2、端梁门开关SQ3和SQ4勺常闭触头,这些门任何一个打开,均会使控制回路分断而无法合闸(或掉闸),从而可实现对桥上工作的司机、检修人员的保护,免受起重机意外的突然起动所造成的危害。

j?起重机的超载保护在控制回路中,串入超载限制器的常闭触头,当起吊载荷超过

额定负荷时,则控制回路中某一环节有接地或发生相间短路时,熔断器熔丝立即熔断而使起

重机断电,避免火灾事故发生,对控制回路起短路保护作用。

③照明信号回路桥式起重机的照明信号回路如图2-22所示。其回路特点如下:

照明信号回路为专用线路,其电源由起重机主断路器的进线端分接,当起重机保护柜主刀开关拉开后(切断1QS),照明信号回路仍然有电供应,以确保停机检修之需要。照明信号回路由刀开关2QS 控制,并有熔断器作短路保护之用。手提工作灯、司机室照明及电铃等均采用36V的低电源,以确保安全。

照明变压器的次级绕组必须作可靠接地保护。

ffl2-22照明佑号冋闵

起重机的电气控制系统设计

起重機的電氣控制 起重機是專門用來起吊和短距離搬移重物的一種生產機械,通常也稱為吊車、行車或天車。按其結構及運動形式的不同,可分為橋式起重機、門式起重機、塔式起重機、旋轉起重機及纜索起重機等。其中以橋式起重機的應用最為廣泛並具有一定的代表性。 一、橋式起重機的主要結構及運動形式 橋式起重機由橋架(雙稱大車),裝有提升機構的小車、大車運行機構及操縱室等幾部分組成。 1- 駕駛室 2-輔助滑線架 3-交流磁力9 8 6 5 4 3 2 1 7

控制盤 4-電阻箱 5-起重小車 6-大車拖動電動機 7-端梁 8-主滑線 9-主梁 橋架是橋式起重機的基本構件,它由主梁、端梁、走臺等幾部分組成。主梁跨架在車間上空,其兩端聯有端梁,主梁外側裝有走臺並設有安全欄杆。橋架的一頭裝有大車移行機構、電氣箱、起吊機構和小車運行軌道以及輔助滑線架。橋架一頭裝有駕駛室,另一頭裝有引入電源的主滑線。 大車移行機構是由驅動電動機、制動器、傳動軸、減速器和車輪等幾部分組成。其驅動方式有集中低速驅動、集中高速驅動和分別驅動方式三種: 集中低速驅動是由一臺電動機通過減速器同時帶動兩個主動輪,使傳動軸的轉速低於電動機軸的轉速,與車輪的轉速相同,一般是50~100r/min。 集中高速驅動是由電動機通過制動輪直接與聯軸節、傳動軸聯接,再通過減速器與車輪聯接。這樣,運行機構的傳動軸的轉速與電動機的轉速相同,一般是700~1500r/min。 分別驅動是由兩套獨立的無機械聯繫的運行機構組成。每套運行機構由電動機通過制動輪、聯軸節、減速器與大車車輪聯接,省去了中間傳動軸。但分別

驅動的運行機構是用兩臺同樣型號的電動機,用同一控制器控制。 分別驅動與集中驅動相比,自重較輕,安裝和維護方便,實踐證明使用效果良好。目前我國生產的橋式起重機大部分採用分別驅動方式。 小車運行機構由小車架、小車移行機構和提升機構組成。小車架由鋼板焊成,其上裝有小車移行機構、提升機構、欄杆及提升限位開關。小車可沿橋架主梁上的軌道左右移行。在小車運動方向的兩端裝有緩衝器和限位開關。小車移行機構由電動機、減速器、捲筒、制動器等組成。電動機經減速後帶動主動輪使小車運動。提升機構由電動機、減速器、捲筒、制動器等組成,提升電動機通過制動輪、聯軸節與減速器聯接,減速器輸出軸與起吊捲筒相聯。 操縱室是操縱起重機的吊艙,又稱駕駛室。在操縱室內,主要裝有大小車運動機構和起升機構的操縱系統和有關裝置,如控制器、保護箱及照明開關箱;有關安全開關,如緊急開關、電鈴開關等。 操縱室一般固定在主梁下方的一端,也有隨小車移動的。其上方有通向走臺的艙口。為了安全,艙口處裝有安全開關,避免司機及維護人員上車發生觸電事故。

桥式起重机的PLC控制 (1)

桥式起重机作为物料搬运系统中一种典型设备,在企业生产活动中应用广泛。传统的桥式起重控制系统主要采用继电器接触器进行控制,采用交流绕线串电阻的方法进行启动和调速,这种控制系统存在可靠性差,操作复杂,故障率高,电能浪费大,效率低等缺点。因此对桥式起重机控制系统进行研究具有现实意义,也是国内外相关行业专家学者的一个研究课题。 本文针对桥式起重机控制系统中存在的上述问题,把可编程序控制器和变频器应用于桥式起重机控制系统上,并进行了较深入的研究。 1.根据桥式起重机的运行特点,桥式起重机控制系统采用变频调速系统,该系统主要由主令控制器、PLC控制系统、变频调速系统等组成。 2.PLC系统采用德国西门子公司产品,能控制起重机大车、小车的运行方向和速度换档;吊钩的升、降方向及速度换档,同时能检测各个电机故障现象并显示,减小了传统继电器——接触器控制系统的中间环节。减少了硬件和控制线,极大提高了系统的稳定性,可靠性。 本设计控制系统采用桥式起重机变频调速技术具有节能、减少机械磨损,启动性能好等诸多优点。 关键词:主令控制器;可编程序控制器;桥式起重机

引言 (4) 1 桥式起重机的概述 (5) 1.1 桥式起重机的简介 (5) 1.2 桥式起重机的各机构及其作用 (6) 1.3 桥式起重机的发展现状 (6) 2 桥式起重机控制系统的设计方案 (8) 2.1 工艺要求 (8) 2.1.1 桥式起重机的主要技术参数 (8) 2.1.2 提升机构与移动机构对电气控制的要求 (8) 2.2 方案论证 (9) 2.2.1 起重机数字化控制系统的方案简述 (9) 2.2.2 主电路方案选择 (9) 2.2.3 变频调速工作原理及变频器控制方式 (11) 2.2.4 控制电路方案选择(PLC控制和继电器控制的比较) (17) 3 系统设备的选用 (19) 3.1 电机的选择 (19) 3.2 变频器的选择 (21) 3.2.1 通用变频器的标准规格 (21) 3.2.2 通用变频器类型的选择 (22) 3.2.3 变频器的选型 (25) 3.3 PLC的选择 (25) 3.3.1 PLC的组成 (25) 3.3.2 PLC的工作原理 (27) 3.3.3 PLC的硬件和软件 (27) 3.3.4 PLC型号的选用. (28) 3.4 变频器的外部设备及其选择 (30)

桥式起重机操作规程

桥式起重机操作规程 颁布部门生产技术部 页码 1/2 Xuzhou Guanhua Foundry Co.,Ltd 版本新编标准操作规程 日期 2007.01.08 Standard Operation Procedure 抄送部门总经理办、生产技术部、综合部 题目 目的:制定电动吊钩桥式起重机的操作规程,以规范其操作。 范围公司所有的在用电动吊钩桥式起重机。 附件类别附件号附件名称 记录 Sop/1000/01 交接班记录本 规程 开车前准备—了解电源供电情况,电源电压(大车导电器间电压)低于额定值的90%时行车工 不应开动起重机。 —在总刀开关断开的情况下进行起重机的检视工作,检查主要部分的连接和使用情况,对个别机构进行必要的调整。 —检查起重机上是否有遗留工具或其他物品,以免在工作时落下,发生人身

或损坏设备的事故。 —按规定对设备的各润滑点加油。 —在主开关接电之前,司机必须将所有控制器手柄转至零位,并将端梁门关好。起重机工作时,严禁桥架和大车轨道上站人。开车期间—起重机在每次开动前,必须发出开车警告信号(电铃)。行车工 —必须注意被吊起的重物,不得超过额定起重量。 —司机必须与挂钩工紧密配合,步调一致。移动和起升重物,只应听从挂钩工所发出的信号,但“停车”信号不论谁发出,均应立即停车。 —吊起重物时,必须在垂直的位置。不允许利用移动大车及小车来拖动重物。 —起重机及小车接近边缘位置时必须以最慢的行速。在不碰撞档架的条件下, 慢慢靠近。 —起重机的控制器应逐级开动,在机械完全停止运转前,禁止将控制器从顺转位置直接反到逆转位置来进行制动,但在防止事故发生的前提下可以偶尔用来作为紧急措施,但控制器只能打在反向一挡。而后必须检查确定机械部件,在没有损伤的情况下才能继续工作。 —司机要时刻注意防止与另一起重机相撞。在一台起重机发生故障的情况下, 才能允许用相邻的另一台起重机来推动,在这种情况下两台起重机须无负荷,而且用最低的速度缓慢地移动。 —在电压显著降低和电力输送中断的情况下,主刀开关必须断开,并将所有的控制器拉到零位上。 —起重机的电动机突然停电或线路电压下降剧烈时,应将所有控制器拉到零

桥式起重机的PLC控制-(1)

桥式起重机的PLC控制-(1)

桥式起重机作为物料搬运系统中一种典型设备,在企业生产活动中应用广泛。传统的桥式起重控制系统主要采用继电器接触器进行控制,采用交流绕线串电阻的方法进行启动和调速,这种控制系统存在可靠性差,操作复杂,故障率高,电能浪费大,效率低等缺点。因此对桥式起重机控制系统进行研究具有现实意义,也是国内外相关行业专家学者的一个研究课题。 本文针对桥式起重机控制系统中存在的上述问题,把可编程序控制器和变频器应用于桥式起重机控制系统上,并进行了较深入的研究。 1.根据桥式起重机的运行特点,桥式起重机控制系统采用变频调速系统,该系统主要由主令控制器、PLC控制系统、变频调速系统等组成。 2.PLC系统采用德国西门子公司产品,能控制起重机大车、小车的运行方向和速度换档;吊钩的升、降方向及速度换档,同时能检测各个电机故障现象并显示,减小了传统继电器——接触器控制系统的中间环节。减少了硬件和控制线,极大提高了系统的稳定性,可靠性。 本设计控制系统采用桥式起重机变频调速技术具有节能、减少机械磨损,启动性能好等诸多优点。 关键词:主令控制器;可编程序控制器;桥式起重机

引言 (5) 1 桥式起重机的概述 (6) 1.1 桥式起重机的简介 (6) 1.2 桥式起重机的各机构及其作用 (7) 1.3 桥式起重机的发展现状 (7) 2 桥式起重机控制系统的设计方案 (9) 2.1 工艺要求 (9) 2.1.1 桥式起重机的主要技术参数 (9) 2.1.2 提升机构与移动机构对电气控制的要求 (9) 2.2 方案论证 (10) 2.2.1 起重机数字化控制系统的方案简述 (10) 2.2.2 主电路方案选择 (10) 2.2.3 变频调速工作原理及变频器控制方式 (12) 2.2.4 控制电路方案选择(PLC控制和继电器控制的比较) 17 3 系统设备的选用 (20) 3.1 电机的选择 (20) 3.2 变频器的选择 (22) 3.2.1 通用变频器的标准规格 (22) 3.2.2 通用变频器类型的选择 (23) 3.2.3 变频器的选型 (26) 3.3 PLC的选择 (27) 3.3.1 PLC的组成 (27) 3.3.2 PLC的工作原理 (28) 3.3.3 PLC的硬件和软件 (28) 3.3.4 PLC型号的选用 (30) 3.4 变频器的外部设备及其选择 (32)

起重机的电气控制系统

起重机的电气控制系统 起重机钢结构负责载荷支承;起重机机构负责动作运转;起重机机构动作的起动、运转、换向和停止等均由电气或液压控制系统来完成,为了起重机运转动作能平稳、准确、安全可靠是离不开电气有效的传动、控制与保护。 1.起重机电气传动 起重机对电气传动的要求有:调速、平稳或快速起制动、纠偏、保持同步、机构间的动作协调、吊重止摆等。其中调速常作为重要要求。 一般起重机的调速性能是较差的,当需要准确停车时,司机只能采取“点车”的操纵方法,如果“点车”次数很多,不但增加了司机的劳动强度,而且由于电器接电次数和电动机起动次数增加,而使电器、电动机工作年限大为缩短,事故增多,维修量增大。 有的起重机对准确停车要求较高,必须实行调速才能满足停准要求。有的起重机要采用程序控制、数控、遥控等,这些技术的应用,往往必须在实现了调速要求后,才有可能。 由于起重机调速绝大多数需在运行过程中进行,而且变化次数较多,故机械变速一般不太 合适,大多数需采用电气调速。电气调速分为二大类:直流调速和交流调速。 直流调速有以下三种方案:固定电压供电的直流串激电动机,改变外串电阻和接法的直流调速;可控电压供电的直流发电机———电动机的直流调速;可控电压供电的晶闸管供电———直流电动机系统的直流调速。直流调速具有过载能力大、调速比大、起制动性能好、适合频繁的起制动、事故率低等优点。缺点是系统结构复杂、价格昂贵、需要直流电源等。 交流调速分为三大类:变频、变极、变转差率。 调频调速技术目前已大量地应用到起重机的无级调速作业当中,电子变压变频调速系统的主体———变频器已有系列产品供货。 变极调速目前主要应用在葫芦式起重机的鼠笼型双绕组变极电动机上,采用改变电机极对数来实现调速。 变转差率调速方式较多,如改变绕线异步电动机外串电阻法、转子晶闸管脉冲调速法等。除了上述调速以外还有双电机调速、液力推动器调速、动力制动调速、转子脉冲调速、蜗流制动器调速、定子调压调速等等。 2.起重机的自动控制 可编程序控制器———程序控制装置一般由电子数字控制系统组成,其程序自动控制功能主要由可编程序控制器来实现。 自动定位装置———起重机的自动定位一般是根据被控对象的使用环境、精度要求来确定装置的结构形式。自动定位装置通常使用各种检测元件与继电接触器或可编程序控制器,相互配合达到自动定位的目的。 大车运行机构的纠偏和电气同步———纠偏分为人为纠偏和自动纠偏。人为纠偏是当偏斜超过一定值后,偏斜信号发生器发出信号,司机断开超前支腿侧的电机,接通滞后支腿侧的电机进行调整。自动纠偏是当偏斜超过一定值时,纠偏指令发生器发出指令,系统进行自动纠偏。电气同步是在交流传动中,常采用带有均衡电机的电轴系统,实现电气同步。 地面操纵、有线与无线遥控———地面操纵多为葫芦式起重机采用,其关键部件是手动按钮开关,即通常所称的手电门。有线遥控是通过专用的电缆或动力线作为载波体,对信号用调制解调传输方式,达到只用少通道即可实现控制的方法。无线遥控是利用当代电子技术,将信息以电波或光波为通道形式传输达到控制的目的。 起重电磁铁及其控制———起重电磁铁的电路,主要是提供电磁铁的直流电源及完成控制(吸料、放料)要求。其工作方式分为:定电压控制方式和可调电压控制方式。 3.起重机的电源引入装置 起重机的电源引入装置分为三类:硬滑线供电、软电缆供电和滑环集电器。 硬滑线电源引入装置有裸角钢平面集电器、圆钢(或铜)滑轮集电器和内藏式滑触线集电 器进行电源引入。 软电缆供电的电源引入装置是采用带有绝缘护套的多芯软电线制成的,软电缆有圆电缆和扁电缆二种形式,它们通过吊挂的供电跑车进行引入电源。 4.起重机的电气设备与电气回路

桥式起重机控制线路

桥式起重机控制系统的自动化应用 20/5t桥式起重机控制线路 经常移动的。因此要采用移动的电源线供电,一般采用软电缆供电,软电缆可随大、小车的滑触线通过生产车间中常用的20/5t桥式起重机,它是一种用来吊起或放下重物并使重物在短距离内水平移动的起重设备,俗称吊车、行车或天车。起重设备按结构分,有桥式、塔式、门式、旋转式和缆索式等多种,不同结构的起重设备分别应用于不同的场合。生产车间内使用的是桥式起重机,常见的有5t、10t单钩和15/3t、20/5t双钩等。下面以20/5t双钩桥式起重机为例分析一下20/5t桥式起重机控制线路。20/5t桥式起重机主要由主钩(20t)、副钩(5t)、大车和小车等四部分组成。如图10-17所示是20/5t桥式起重机的外形结构图。 1-驾驶室 2-辅助滑线架 3-交流磁力控制器4-电阻箱 5-起重小车 6-大车拖动电动7-端梁 8-主滑线 9-主梁 图10-17 桥式起重机外形结构图 20/5t桥式起重机由五台电动机组成,其主要运动形式分析如下:大车的轨道设在沿车间两侧的柱子上,大车可在轨道上沿车间纵向移动;大车上有小轨道,供小车横向移动;主钩和副钩都安装在小车上。交流起重机的电源为380V。由于起重机工作时是电刷引入起重机驾驶室内的保护控制盘上,三根主滑触线是沿着平行于大车轨道方向敷设在车间厂房的一侧。提升机构、小车上的电动机和交流电磁制动器的电源是由架设在大车上的辅助滑触线(俗称拖令线)来供给的;转子电阻也是通过辅助滑触线与电动机连接的。滑触线通常用圆钢、角钢、V形钢或工字钢轨制成。 10.6.1 20/5t桥式起重机的工作原理 1.主电路分析 桥式起重机的工作原理如图10-18所示。大车由两台规格相同的电动机M1和M2拖动,用一台凸轮控制器Q1控制,电动机的定子绕组并联在同一电源上;YA1和YA2为交流电磁制动器,行程开关SQ R和SQ L作为大车前后两个方向的终端保护。小车移动机构由一台电动机M3拖动,用一台凸轮控制器Q2控制,YA3为交流电磁制动器,行程开关SQ BW和SQ FW作为小车前、后两个方向的终端保护。副钩提升由电动机M4拖动,由凸轮控制器Q3来控制,YA4为交流电磁制动器,SQ U1为副钩提升的限位开关。主钩提升由电动机M5拖动,由主令控制器SA和一台磁力控制屏控制,YA5、YA6为交流电磁制动器,提升限位开关为SQ U2,下降限位开关SQ U3。 总电源由电源隔离开关QS1控制,整个起重机电路和各控制电路均用熔断器作为短路保护,起重机的导轨应当可靠地接零。在起重机上,每台电动机均由各自的过电流断电器在作为分路过载保护。过电流继电器是双线圈式的,其中任一线圈的电流超过允许值时,都能使继电器动作,分断常闭触头,切断电动机

起重机的电气控制

第七节起重机的电气控制 起重机是专门用来起吊和短距离搬移重物的一种生产机械,通常也称为吊车、行车或天车。按其结构及运动形式的不同,可分为桥式起重机、门式起重机、塔式起重机、旋转起重机及缆索起重机等。其中以桥式起重机的应用最为广泛并具有一定的代表性。 一、桥式起重机的主要结构及运动形式 桥式起重机由桥架(双称大车),装有提升机构的小车、大车运行机构及操纵室等几部分组成。 1-驾驶室 2-辅助滑线架 3-交流磁力控制盘 4-电阻箱 5-起重小车 6-大车拖动电动机 7-端梁 8-主滑线 9-主梁桥架是桥式起重机的基本构件,它由主梁、端梁、走台等几部分组成。主梁跨架在车间上空,其两端联有端梁,主梁外侧装有走台并设有安全栏杆。桥架的一头装有大车移行机构、电气箱、起吊机构和小车运行轨道以及辅助滑线架。桥架一头装有驾驶室,另一头装有引入电源的主滑线。 大车移行机构是由驱动电动机、制动器、传动轴、减速器和车轮等几部分组成。其驱动方式有集中低速驱动、集中高速驱动和分别驱动方式三种: 集中低速驱动是由一台电动机通过减速器同时带动两个主动轮,使传动轴的转速低于电动机轴的转速,与车轮的转速相同,一般是50~100r/min。 集中高速驱动是由电动机通过制动轮直接与联轴节、传动轴联接,再通过减速器与车轮联接。这样,运行机构的传动轴的转速与电动机的转速相同,一般是700~1500r/min。 分别驱动是由两套独立的无机械联系的运行机构组成。每套运行机构由电动机通过制动轮、联轴节、减速器与大车车轮联接,省去了中间传动轴。但分别驱动的运行机构是用两台同样型号的电动机,用同一控制器控制。 分别驱动与集中驱动相比,自重较轻,安装和维护方便,实践证明使用效果良好。目前我国生产的桥式起重机大部分采用分别驱动方式。 小车运行机构由小车架、小车移行机构和提升机构组成。小车架由钢板焊成,其上装

桥式起重机控制系统

桥式起重机控制系统 台湾国家科技大学,汽车工程专业,郑芳华和杨枯昂设计 摘要:基于定位精度高,小摆角,运输时间短,高安全的要求,设计一桥式起重机控制系统。由于吊车系统符合负载晃动动力学,这是非常难以操纵的方式,因此,本文提出了一种非线性控制的自适应机制,即龙门起重机位置跟踪系统来控制摇摆角的稳定,以确保整体闭环系统的稳定性。通过所设计的控制器,将驱动位置误差减小为零,而摆角迅速衰减使挥杆稳定。整个系统的稳定性证明是根据Lyapunov的稳定性理论,并通过计算机模拟证明了所用控制器的可行性。 ⑥2006年埃尔塞维尔有限公司保留所有权利。 关键词:非线性自适应控制最小相位; Lyapunov稳定性;运动控制 1.简介 由于成本低,易组装和维修少等原因,许多工业应用的吊车系统已被广泛的用于材料运输。所以设计一个满足定位精度高,小摆角,运输时间短,高安全的桥式起重机控制系统成为了控制技术领域的一个有趣的问题。吊车运动是相对欠驱动的摇摆运动,是一种非常难以操作自动方式。一般来说,人的司机往往通过自动防摇系统的协助下,并参与了桥式起重机系统的运作,由此产生的性能和安全等方面的不足,很大程度上取决于他们的经验和能力。基于这个原因,激发了许多人对桥式起重机自动控制系统设计的兴趣。众所周知,缺乏实际控制输入会导致严重的非线性运动和摇摆运动,同时带来了大幅摇摆振荡,尤其是在起重和到达的阶段。这些不良现象也使传统的控制方式不能达到目标,因此,架空吊车系统属于不完整的控制系统类别,只允许数量有限的输入量来控制多个输出。在这种情况下,无法控制的振荡,可能会导致严重的稳定性和安全性的缺乏,并强烈制约着运作效率。此外,起重机系统可能会遇到不同加载条件下参数变化范围的影响。因此,一个强大的和微妙的控制器,它能够减少这些不利的摇摆和不确定性,不仅提高了效率和安全性,也使该系统更适用于其他工程范围。 在文献[1]中提出的非线性控制器是通过Lyapunov的方法和滑动面控制技术改进后的方案,可以实现车位置控制。然而,没有考虑到摆角的动态稳定性。在文献[2]中提出的是利用比例微分(PD)控制器设计的渐近调节系统,可控制桥式起重机在自然阻尼振荡时的位置。在文献[3]中提出的一种模糊逻辑的滑模控制控制系统,是桥式吊车系统的发展方向。在文献[4]中,利用了非线性耦合控制法来稳定摆角,并使用拉萨尔不变性定理来完成三自由度桥式吊车系统的动作。但是,系统参数必须是预先知道的。在文献[5]中,伯格等人通过调节变量变换的方法设计的起重机系统。在文献[6]中,作者使用了一个自适应反馈线性化方法来使系统稳定。在文献[7]中提出的是一个利用机械系统的被动属性用来

桥式起重机PLC控制系统

PLC控制变频器在桥式起重机中的应用 传统桥式起重机的电力拖动系统采用交流绕线转子异步电动机转子串电阻的方法进行起动和调速,继电―接触器控制,这种控制系统的主要缺点有: 1.1 桥式起重机工作环境恶劣,工作任务重,电动机以及所串电阻烧损和断裂故障时有发生。 1.2 继电―接触器控制系统可靠性差,操作复杂,故障率高。 1.3 转子串电阻调速,机械特性软,负载变化时转速也变化,调速不理想。所串电阻长期发热,电能浪费大,效率低。要从根本上解决这些问题,只有彻底改变传统的控制方式。 随着计算机技术和电力电子器件的迅猛发展,电气传动和自动控制领域也日新月异。其中,具有代表性的交流变频装置和可编程控制器获得了广泛的应用,为PLC控制的变频调速技术在桥式起重机拖动系统中的应用提供了有利条件。 2、系统硬件构成 PLC控制的桥式起重机变频调速系统框图如图1所示 桥式起重机大车、小车、主钩,副钩电动机都需独立运行,大车为两台电动机同时拖动,所以整个系统有5台电动机,4台变频器传动,并由4台PLC分别加以控制。 2.1 可编程控制器:完成系统逻辑控制部分 控制电动机的正、反转、调速等控制信号进入PLC,PLC经处理后,向变频器发出起停、调速等信号,使电动机工作,是系统的核心。 2.2 变频器:为电动机提供可变频率的电源,实现电动机的调速。 2.3 制动电阻:起重机放下重物时,由于重力加速度的原因电动机将处于再生制动状态,拖动系统的动能要反馈到变频器直流电路中,使直流电压不断上升,甚至达到危险的地步。因此,必须将再生到直流电路里的能量消耗掉,使直流电压保持在允许范围内。制动电阻就是用来消耗这部分能量的。 桥式起重机大车、小车、副钩、主钩电动机工作由各自的PLC控制,大车、小车、副钩、主钩电动机都运行在电动状态,控制过程基本相似,变频器与 PLC之间控制关系在硬件组成以及软件的实现基本相同,而主钩电动机运行状态处于电动、倒拉反接或再生制动状态,变频器与PLC之间控制关系在硬件组成以及软件的实现稍有区别。控制小车电动机的变频器与PLC控制原理图如图2所示。

起重机的电气控制系统

起重机的电气控制系统 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

起重机的电气控制系统 一、概述 起重机钢结构负责载荷支承;起重机机构负责动作运转;起重机机构动作的起动、运转、换向和停止等均由电气或液压控制系统来完成,为了起重机运转动作能平稳、准确、安全可靠是离不开电气有效的传动、控制与保护。 二、起重机电气传动 起重机对电气传动的要求有:调速、平稳或快速起制动、纠偏、同步保持、机构间的动作协调、吊重止摆等。其中调速常作为重要要求。一般起重机的调速性能是较差的,当需要准确停车时,司机只能采取“点车”的操纵方法,如果“点车”次数很多,不但增加了司机的劳动强度,而且由于电器接电次数和电动机起动次数增加,而使电器、电动机工作年限大为缩短,事故增多,维修量增大。 有的起重机对准确停车要求较高,必须实行调速才能满足停准要求。有的起重机要采用程序控制、数控、遥控等,这些技术的应用,往往必须在实现了调速要求后,才有可能。由于起重机调速绝大多数需在运行过程中进行,而且变化次数较多,故机械变速一般不太合适,大多数需采用电气调速。 电气调速分为两大类:直流调速和交流调速。 直流调速有以下三种方案: 固定电压供电的直流串激电动机,改变外串电阻和接法的直流调速; 可控电压供电的直流发电机——电动机的直流调速;

可控电压供电的晶闸管供电——直流电动机系统的直流调速。 直流调速具有过载能力大、调速比大、起制动性能好、适合频繁的起制动、事故率低等优点。缺点是系统结构复杂、价格昂贵、需要直流电源等。 交流调速分为三大类:变频、变极、变转差率。 变频调速技术目前已大量地应用到起重机的无级调速作业当中,电子变压变频 调速系统的主体——变频器已有系列产品供货。 变极调速目前主要应用在葫芦式起重机的鼠笼型双绕组变极电动机上,采用改 变电机极对数来实现调速。 变转差率调速方式较多,如改变绕线异步电动机外串电阻法、转子晶闸管脉冲 调速法等。 除了上述调速以外还有双电机调速、液力推动器调速、动力制动调速、转子脉冲调速、蜗流制动器调速、定子调压调速等等。 三、起重机的自动控制 (一)可编程控制器 程序控制装置一般由电子数字控制系统组成,其程序自动控制功能主要由可编程控制器来实现。 (二)自动定位装置 起重机的自动定位一般是根据被控对象的使用环境、精度要求来确定装置的结构形式。自动定位装置通常使用各种检测元件与继电接触器或可编程序控制器,相互配合达到

桥式起重机电气控制毕业设计论文

275T/50橋式起重機電氣控制設計 摘要 橋式起重機是橋架在高架軌道上運行的一種橋架型起重機,又稱天車。橋式起重機的橋架沿鋪設在兩側高架上的軌道縱向運行,起重小車沿鋪設在橋架上的軌道橫向運行,構成一矩形的工作範圍,就可以充分利用橋架下麵的空間吊運物料,不受地面設備的阻礙。橋式起重機廣泛地應用在室內外倉庫、廠房、碼頭和露天貯料場等處。橋式起重機可分為普通橋式起重機、簡易粱橋式起重機和冶金專用橋式起重機三種。普通橋式起重機一般由起重小車、橋架運行機構、橋架金屬結構組成。起重小車又由起升機構、小車運行機構和小車架三部分組成。起升機構包括電動機、制動器、減速器、捲筒和滑輪組。電動機通過減速器,帶動捲筒轉動,使鋼絲繩繞上捲筒或從捲筒放下,以升降重物。本文重點研究起重機的控制,通過使用串電阻的調速方法已實現對電機的控制,從而控制起重機。 關鍵字:起重小車;電動機;串電阻調速

275T/50 bridge crane electrical control design ABSTRACT Bridge crane is a bridge in an elevated running track as a bridge-type crane, also known as Crane。Bridge crane installed in the bridge along the track on both sides of the elevated vertical run,Lifting trolley along the bridge on the laying of the track in the horizontal run, which constitute the scope of work of a rectangle, you can take full advantage of the space bridge was being lifted the following materials, the hindered from ground equipment.Bridge crane widely used in indoor and outdoor warehouses, factories, docks and outdoor storage yard, etc.Bridge crane bridge crane can be divided into ordinary, simple beam bridge crane and metallurgical three special bridge crane.Lifting bodies, including the motor, brake, reducer, drum and pulle y blocks。Car lifting and lifting by the agencies, institutions and small car running frame is composed of three parts.Lifting bodies, including the motor, brake, reducer, drum and pulley blocks. Motor through reducer, driven rotating drum so that the wire rope around the drum or from the reel down to take-off and landing weights.This article focuses on the crane's control, through the use of series resistance to achieve the speed control method of motor control to control a crane. Keywords: lifting trolley; motor; governor resistor string

起重机的电气控制系统

起重机的电气控制系统 一、概述 起重机钢结构负责载荷支承;起重机机构负责动作运转;起重机机构动作的起动、运转、换向和停止等均由电气或液压控制系统来完成,为了起重机运转动作能平稳、准确、安全可靠是离不开电气有效的传动、控制与保护。 二、起重机电气传动 起重机对电气传动的要求有:调速、平稳或快速起制动、纠偏、同步保持、机构间的动作协调、吊重止摆等。其中调速常作为重要要求。一般起重机的调速性能是较差的,当需要准确停车时,司机只能采取“点车”的操纵方法,如果“点车”次数很多,不但增加了司机的劳动强度,而且由于电器接电次数和电动机起动次数增加,而使电器、电动机工作年限大为缩短,事故增多,维修量增大。 有的起重机对准确停车要求较高,必须实行调速才能满足停准要求。有的起重机要采用程序控制、数控、遥控等,这些技术的应用,往往必须在实现了调速要求后,才有可能。由于起重机调速绝大多数需在运行过程中进行,而且变化次数较多,故机械变速一般不太合适,大多数需采用电气调速。 电气调速分为两大类:直流调速和交流调速。 直流调速有以下三种方案: 固定电压供电的直流串激电动机,改变外串电阻和接法的直流调速; 可控电压供电的直流发电机——电动机的直流调速;

可控电压供电的晶闸管供电——直流电动机系统的直流调速。 直流调速具有过载能力大、调速比大、起制动性能好、适合频繁的起制动、事故率低等优点。缺点是系统结构复杂、价格昂贵、需要直流电源等。 交流调速分为三大类:变频、变极、变转差率。 变频调速技术目前已大量地应用到起重机的无级调速作业当中,电子变压变频 调速系统的主体——变频器已有系列产品供货。 变极调速目前主要应用在葫芦式起重机的鼠笼型双绕组变极电动机上,采用改 变电机极对数来实现调速。 变转差率调速方式较多,如改变绕线异步电动机外串电阻法、转子晶闸管脉冲 调速法等。 除了上述调速以外还有双电机调速、液力推动器调速、动力制动调速、转子脉冲调速、蜗流制动器调速、定子调压调速等等。 三、起重机的自动控制 (一)可编程控制器 程序控制装置一般由电子数字控制系统组成,其程序自动控制功能主要由可编程控制器来实现。 (二)自动定位装置 起重机的自动定位一般是根据被控对象的使用环境、精度要求来确定装置的结构形式。自动定位装置通常使用各种检测元件与继电接触器或可编程序控制器,相互配合达到自动

基于PLC控制的桥式起重机电气设计(图文)

f21 基于PLC控制的桥式起重机电气设计(图文) 桥式起重机是生产企业广泛应用的生产工具之一。传统的电气控制系统接线复杂。介绍一种采用SIMENSS7-200型PLC控制的起重机电控系统。智能化程度较高。 关键词:PLC,起重机,控制系统,HMI,智能化 1.引言 桥式起重机是生产企业广泛应用的生产工具之一,传统的电气控制系统接线复杂,故障率高,难以维护。本文结合生产实际的,介绍一种采用SIMENS S7-200型PLC控制的起重机电控系统,其控制线路简单,安全可靠,智能化程度较高,能够有效地提高生产效率。 2 总体设计方案 一个完整的基于PLC控制的桥式起重机电气系统,主要由六大模块组成[1],分别为:1)配电保护模块2)主起升机构模块3)副起升机构模块4)大车运行机构模块5)小车运行机构模块6)PLC 控制模块。通过联动台上的主令控制器、按钮等手动控制装置,把信号传递给PLC的输入模块,CPU内的程序对这些信号进行处理,再由输出模块输出控制信号控制中间继电器、指示灯、报警器、显示装置等。中间继电器带动大的接触器,进一步控制起重机各机构电机的启动、停止及运行。免费论文。各种保护信号如限位开关、过流继电器、门开关、超载限制器等也将信号反馈到PLC的输入模块,起到安全保护的作用。免费论文。系统总图见图1。 2.1 控制系统安全保护 (1)安全门开关联锁保护:在门开关没关的情况下,总接触器不能吸合,在总接触器吸合的情况下,打开门开关,总接触器断开。 (2)超载保护:当起重量达到额定起重量的95%时,开始报警,达到额定起重量的105%,报警并输出停止信号,此时,起升机构只能下降,不能上升。 (3)断相、相序保护:通过断相相序保护器来实现。 (4)各机构限位保护:包括主副起升、下降限位;大车左行、右行限位;小车前行、后行限位,到达限位时,切断对应方向电源,此时,该机构只能向相反方面运行。 (5)设置急停开关,在出现紧急事故的情况下,切断总电源。急停开关一般为红色蘑菇头非自复位型。 (6)设置零位保护,各机构控制器只有在零位的情况下,总接触器才能吸合,防止在停电后,主令没回零的情况,各机构自行运行,带来危险。 (7)设置热继电器,当电机通过的电流超过 电动机的额定电流,电机温度过热时,其相应的热继电器工作,断开主回路,起到保护电机的作用。 (8)设置电铃或报警装置,在出现故障时,可进行报警。在起重机动作之前应该报警,必须在响铃后方可操作大车运行机构。 2.2输入输出信号设计 通过用户对桥机控制档位及安全的要求,需要以下控制信号: 主副钩起升、下降信号、2档、3档、4档,小车和大车的前、后、左、右方向信号及2档、3档、4档;主副起升限位、大小车限位;热继电器信号、超载信号、变频器故障信号;安全门开关,启动、停止、急停、照明、电铃、变频器复位信号;初步确定所有的手动输入信号和反馈信号总共48个,对应的输出有31个。 3 PLC的内部逻辑运算原理与梯形图的绘制 3.1 PLC的扫描执行原理

桥式起重机变频调速控制系统

前言 桥式起重机作为物料搬运机械在整个国民经济中有着十分重要的地位,经过几十年的发展,我国桥式起重机制造厂和使用部门在设计、制造工艺、设备使用维修、管理方面,不断积累经验,不断改造,推动了桥式起重机的技术进步。但在实际使用中,传统桥式起重机的控制系统所采用交流绕线转子串电阻的方法进行启动和调速,继电—接触器控制,在工作环境差,工作任务重时,电动机以及所串连电阻烧损和断裂故障时有发生;继电—接触器控制系统可靠性差,操作复杂,故障率高;转子串电阻调速,机械特性软,负载变化时转速也变化,调速不理想。所串连电阻长期发热,电能浪费大,效率低。要从根本上解决这些问题,只有彻底改变传统的控制方式。 近年来,随着计算机技术和电力电子器件的迅猛发展,同时也带动电气传动和自动控制领域的发展。其中,具有代表性的交流变频调速装置和可编程控制器获得了广泛的应用,为PLC控制的变频调速技术在桥式起重机系统提供了有利条件。变频技术的运用使得起重机的整体特性得到较大提高,可以解决传统桥式起重机控制系统存在诸多的问题,变频调速以其可靠性好,高品质的调速性能、节能效益显著的特性在起重运输机械行业中具有广泛的发展前景。 本次设计采用PLC和变频器技术,以PLC控制变频器,即以程序控制取代继电—接触器控制,控制变频器实现变频调速,设计出PLC控制的桥式起重机的变频调速系统,进而实现了起重机的半自动化控制。此系统特别适用于桥式起重机在恶劣条件下的工作情况,对改善桥式起重机的调速性能,提高工作效率和功率因数,减小起制动冲击以及增加起重机使用的安全可靠性是非常有益的。

1 绪论 1.1 桥式起重机电气传动技术的国外发展概况 电气调速控制的方法很多,对直流驱动来讲60年代采用发电机—电机系统。从控制电阻分级控制,到交磁放大控制,到可控硅SCR激磁控制,到主回路可控硅即晶闸管整流供电系统。随着电子技术的飞速发展,集成模块出现,计算机、微处理器应用,因此控制从分立组成模拟量控制发展至今天的数字量控制。 从交流驱动来讲:常规的常采用绕线式电动机转子串电阻调速,为满足重物下放时的低速,一般依靠能耗制动、反接制动,后来还采用涡流制动,还有靠转子反馈控制制动、反接制动、单相制动器抱闸松劲的所谓软制动,随着电子技术的发展,国外开发研制变频调速,PLC 可编程序控制器的应用控制系统的性能更加完美。目前国外几种常用调速系统配置及其性能: l) DC-300直流驱动调速系统:GE公司DC-300,DC-2000是微处理器数字量控制的直流驱动调速系统,其控制功率从300HP到4000HP,并采用PLC对整机驱动系统实施故障诊断、检测、报警及控制。 该驱动系统实施主回路SCR整流,其控制是给定模拟量通过数模转换成数字量,通过速度环、电流环到SCR移现触发的逻辑无环流的调速系统。可用测速反馈或电压反馈,对磁场弱磁,以实施恒功率控制。

基于PLC控制桥式起重机变频系统的设计设计

基于PLC控制桥式起重机变频系统的设计设计

基于PLC控制桥式起重机变频系统的设计 摘要:桥式起重机作为物料搬运系统中一种典型设备,在企业生产活动中应用广泛作用显著,因此对于提高桥式起重机的运行效率,确保运行的安全可靠性,降低物料搬运成本是十分重要。传统的桥式起重控制系统主要采用继电器接触器进行控制,采用交流绕线串电阻的方法进行启动和调速,这种控制系统存在可靠性差,操作复杂,故障率高。电能浪费大,效率低等缺点。 针对桥式起重机控制系统中存在的上述问题,把可编程序控制器和变频器应用于桥式起重机控制系统上,并进行了较详细的设计。 1.根据桥式起重机的运行特点,桥式起重机控制系统采用PLC控制系统、变频调速系统等

组成。 2.PLC系统采用三菱公司产品,能控制起重机大车、小车的运行方向和速度;吊钩的升、降方向及速度,同时能检测各个电机故障现象,减小了传统继电—接触式控制系统的中间环节。减少了硬件和控制线,极大提高了系统的稳定性,可靠性。 3. 实验表明,采用PLC该控制系统,使桥式起重机工作可靠,使用方便,同时具有动态显示的功能,节能效果好明显。 关键词:可编程序控制器;变频调速;桥式起重机;电气控制系统

Frequency of Bridge Crane Based on PLC Control System Design Abstract:The bridge crane carries a kind of typical equipment in the supplies system,so it have extensive function in the activity of Producing enterprise,so it important improve the bridge crane operational efficiency,guarantee the safe reliability to be operated,reduce the cost of the supplies carrying. But the traditional bridge crane control system mainly adopts relay and contactor to control bridge crane,adopt the methods of Wire winding bunch of resistance to start and adjust speed of motor,the control system have many disadvantages,for example: dependability is bad,it is complicated to operate,fault rate is high .the electric energy is wasted greatly,efficiency is low. To the question that exist in the bridge crane control system,the Paper apply Programmable Controller and frequency

起重机的电气控制系统

起重机的电气控制系统 The manuscript was revised on the evening of 2021

起重机的电气控制系统 一、概述 起重机钢结构负责载荷支承;起重机机构负责动作运转;起重机机构动作的起动、运转、换向和停止等均由电气或液压控制系统来完成,为了起重机运转动作能平稳、准确、安全可靠是离不开电气有效的传动、控制与保护。 二、起重机电气传动 起重机对电气传动的要求有:调速、平稳或快速起制动、纠偏、同步保持、机构间的动作协调、吊重止摆等。其中调速常作为重要要求。一般起重机的调速性能是较差的,当需要准确停车时,司机只能采取“点车”的操纵方法,如果“点车”次数很多,不但增加了司机的劳动强度,而且由于电器接电次数和电动机起动次数增加,而使电器、电动机工作年限大为缩短,事故增多,维修量增大。 有的起重机对准确停车要求较高,必须实行调速才能满足停准要求。有的起重机要采用程序控制、数控、遥控等,这些技术的应用,往往必须在实现了调速要求后,才有可能。由于起重机调速绝大多数需在运行过程中进行,而且变化次数较多,故机械变速一般不太合适,大多数需采用电气调速。 电气调速分为两大类:直流调速和交流调速。 直流调速有以下三种方案: ?固定电压供电的直流串激电动机,改变外串电阻和接法的直流调 速; ?可控电压供电的直流发电机——电动机的直流调速; ?可控电压供电的晶闸管供电——直流电动机系统的直流调速。

直流调速具有过载能力大、调速比大、起制动性能好、适合频繁的起制动、事故率低等优点。缺点是系统结构复杂、价格昂贵、需要直流电源等。 交流调速分为三大类:变频、变极、变转差率。 ?变频调速技术目前已大量地应用到起重机的无级调速作业当中,电 子变压变频调速系统的主体——变频器已有系列产品供货。 ?变极调速目前主要应用在葫芦式起重机的鼠笼型双绕组变极电动机 上,采用改变电机极对数来实现调速。 ?变转差率调速方式较多,如改变绕线异步电动机外串电阻法、转子 晶闸管脉冲调速法等。 除了上述调速以外还有双电机调速、液力推动器调速、动力制动调速、转子脉冲调速、蜗流制动器调速、定子调压调速等等。 三、起重机的自动控制 (一)可编程控制器 程序控制装置一般由电子数字控制系统组成,其程序自动控制功能主要由可编程控制器来实现。 (二)自动定位装置 起重机的自动定位一般是根据被控对象的使用环境、精度要求来确定装置的结构形式。自动定位装置通常使用各种检测元件与继电接触器或可编程序控制器,相互配合达到自动定位的目的。

相关主题
文本预览
相关文档 最新文档