当前位置:文档之家› 金属分离器 简介- 2017

金属分离器 简介- 2017

金属分离器 简介- 2017
金属分离器 简介- 2017

用于检测和分离自由落体散料中的金属杂质

基本信息

产品优势

性能特点

应用领域

产品系列+技术参数

型号 过料管径

(mm) 检测精度(mm)

最大通过量

(L/h) Fe 铁 SUS 不锈钢

No Fe BH50 44 0.5 0.8 0.55 2000 BH70 67 0.7 1.1 0.75 5000 BH80 80 0.75 1.2 0.8 8000 BH100 102 0.8 1.4 0.85 12000 BH120 116 1.0 1.5 1.1 16000 BH150 155 1.5 2.0 1.6 25000 BH200 194 1.8 2.2 2.1 44000 BH250

240

2.5

2.9

2.8

68000

★ 可检测出磁性及非磁性金

属杂质,即使金属内嵌于产品中也能检测出来

★ 保护塑料行业的后续设备,避免不必要的停产发生 ★

提高产品的质量 ★ 优化生产环节,提高生产效率 ★ 避免消费者投诉及产品召

回,提高企业形象

◆ 德国技术,寿命长,超高性价比 ◆ 用于从自由落体的散料中检测分离磁性及非磁性金属杂质

◆ 特殊设计,可以有效避免震动、噪音等外部因素的干扰 ◆ 可避免产品堆积,阻塞而造成发霉 ◆ 多种口径可选,型号满足所有实际应用

◆ 通过剔除系统进行快速剔除,能减少物料损失,不会干扰正常的生产过程 ◆ 检测材料特性:散料(颗粒料、粉末等),干燥,流动性好 ◆ 剔除方式:翻板自动剔除金属杂质,同时可配声光报警 ◆ 灵敏度:最高精度可达Fe ¢0.40mm ,不锈钢SUS ¢0.7MM ◆ 支架、料斗可根据客户要求定做 ◆ 防护等级:IP54

◆ 塑料行业,化工行业,食品行业,医疗行业

产品运用-粉碎物料金属解决方案

金属分离器,广泛运用于众多领域,如橡塑行业、食品医药行业、化工和医药、回收再利用等领域。有效的对物料中含有的细小金属杂质检测和分离,有助于避免机器故障、从而提高生产率,确保生产的连续高效,在最短的时间内收回投资成本。

系列产品,适用于散料、干燥、流动性好

无长纤维,无电导性的物料

结构特点:

●设备保护等级:控制箱达到IP65的要求,箱体达到IP54的要求

●分离机构:特殊的剔除机构,能保证金属颗粒快速准确的分离

●设备进料口到出料口,是一个独立封闭的管道,清理方便,避免

混料

应用特点

●待检测物料特性: 散料、干燥,、流动性好。无长纤维,无电导

性,颗粒尺寸< 8 MM

●使用行业: 可用于橡塑胶行业、食品加工、医疗及化工行业

●待检物料温度:小于80℃,温度超过此范围,可选特殊高温选件

安装条件

紧凑化设计,可单独使用,也可以集成于管路中的自由落体段,或配在料罐下方及成品料包装出口处。安装时,避免周边存在电磁干扰和振动干扰;设备在工作过程中,避免大的金属在设备周围运动。

金属分离器工作原理

工作步骤: 待检物料通过检测系统,在控制系统的支持下,剔除金属杂质,得到干净无金属杂质物料。

原理:检测与分离过程:检测系统感应到有金属通过时,立即将此信号传送给控制系统,控制系统分析采集到的信号,对该信号分析处理,并发执行指令到分离系统。分离系统则立刻启动分离装置,将含有金属颗粒的物料推到废料口,分离出去。无金属杂质物料从正常出料口分出。

检测系统:检测系统由信号发射和接收组成。在开始通电后产生稳定高频磁场,如有金属(磁性金属铁和非磁性金属铜、铝和不锈钢等等)经过检测系统时,都会引起磁场的变化。从而产生金属感应信号。

控制系统:是由精密电源和嵌入式控制单元两部分组成。控制单元是由精密采集处理电路和嵌入式处理芯片组成。采用闭环控制系统,适时监测、采集各系统反馈信号、进行分析和处理,并驱动分离装置执行相应动作。

运用方案展示

金属分离器的典型运用是塑料回收行业的典型运用,方案特点:

●料头和不良品塑料通过输送带进入粉碎机,粉好的物料通过物料输送进入料仓,通过金属分离器后,称重

打包,或者通过管道输送到成型机

●运用于挤出设备入料口,或是造粒生产末端

●也可以单独运用

方案解读:

1,下图为输送带、粉碎机、送料+金属分离器的自动化运用。省人力资源,效率高,生产稳定

粉碎物料上料方式:

?粉碎过后的物料进入金属分离器的方式,灵活多变。可以根据客户的现场状况,物料特性,以及产量

要求,来选择合适的上料方式

?每一种上料方式,都有自己的特点。以正压上料速度最快;但噪音稍大。负压上料,是目前广为使用

的方式。吹料的方式,适用于回料不多的情况,成本低,安装方便

左图:为风机正压上料中图:泵组负压上料右图:为吹料上料方式

2,下图为挤出机的综合运用方案:挤出前和挤出的成品塑料粒子的金属检测运用,设备小巧,安装方便

4,下图为金属分离器在废旧塑料行业回收再利用的效果图。物料粉碎后,通过供料系统到除铁器,分离出回收物料中的磁性金属。其它物料通过振动输送带将粉碎物料送进金属分离器。

系统的运用,大大提升了效率,避免水洗日晒对于环境的污染和人工的浪费。

添置金属分离器要考虑增加预算、修改作业流程等一系列问题。但是,金属分离器的使用会大大减少产品的不良率和产品缺陷、提高废料利用率,以及保护生产设备,减少设备的维修费用。在很多时候,避免一次事故得到的好处就往往大大超过对金属分离器的投资。

此系列产品运用,保证了生产的安全性,节约了客户的成本,提高生产率,确保生产的连续高效。帮助客户在最短的时间内收回投资成本

油气分离器的故障分析及预防、解决方案..

但是,一个月前,准备出发到广州,不经意地检查了一下机油(因为是大众的车,所以以前机油检查的非常勤快,但是从来没有少过机油,所以放松了警惕),机油尺竟然到最下限了! 第一反应就是去看看小灰的菊花——晕死,好比吃了好几包奥利奥.........看来哥买的是真的大众 啥情况?早就听说过老万的故事,马上从头到尾把老万的帖子仔仔细细的读了一遍,原来罪魁祸首是缸盖顶部这个“油气分离器”,红框部分: 问了几个玩大众的高手,情况大概是这样的:

1,大众的车,包括进口大众,EA888系列发动机(二代)的“油气分离器”的性能不是很稳定,可靠性有些欠缺; 2,当油气分离器失效,分离效果不好的时候,或者发动机内部压力(曲柄箱内部机油蒸汽压力)过高的时候,机油蒸汽会溢出,进入发动机,参与燃烧,造成烧机油。 仔细的研究了一下图纸和说明书,在这里把我自己对”烧机油“的分析和理解,给大家分享一下,希望对大家有帮助,在大众改进设计或者使用更优良的油气分离器之前,尽量避免EA888烧机油,如有纰漏错误,希望高手指点更正。 故障现象——我们先来说一下因为这个油气分离器失效而造成烧机油的故障现象(借用老万的图片): 1,涡轮增压器进气口管箍处有油迹,肉眼直观就可以看出来,非常容易检查,我这里叫做A 漏油点:

2,油气分离器与进气歧管的连接管内有机油,需要拔下图中红圈的管子查看,这里叫做B

下面我们再来谈谈,出现A,B两个漏油点的原因及过程。 首相我们来看大众二代EA888发动机的进气原理图: 上图中的文字说明简单的叙述了一下油气分离器发生故障或功能下降后,机油蒸汽的流向。 最终机油蒸汽都是参与燃烧,被消耗掉了,即所谓的烧机油,而不是所谓的活塞环漏油等等.... 参照上图,简单说一下油气分离器的工作原理,方便大家更好的理解接下来的故障分析: 1,油气分离器安装于缸盖顶端,进口与发动机曲柄箱联通;

油气分离器项目简介

油气分离器项目简介 背景和意义: 纵观国内外各种内燃机,为控制曲轴箱内混合气不致排到大气中污染环境,都采用回收燃烧技术,此为欧2(或国2)以上排放标准的技术要求。但是为确保内燃机的工作安全,又都采用了分离效率较低的迷宫、稀滤网等油气分离技术;由于允许部分雾状机油进入汽缸燃烧,致使内燃机在长期运行过程中,积碳日积月累,并吸附在内燃机的各机件上,最终导致内燃机处在恶性工作状态。特别是国内引进的多款柴油机,如:斯太尔系列、康明斯系列、火车机车等,在国外的设计已经达到欧3以上排放技术标准,可是在国内,由于没有合适的环保型油气分离装置相匹配,目前还是把曲轴箱内气体直接排到大气中污染环境。为此,人们有必要在内燃机回收燃烧曲轴箱内混合气的过程中,配置既能确保内燃机运行安全,又能充分分离油气的装置,这样对于改善和稳定其工作性能及环保目的,有着极其重要的作用和意义!。 产品技术特点和效果: 首先必须设计并开发出具有高效分离能力的滤网技术组合,且其气体通过性也要达到相应的技术要求;然后在油气分离器的外壳上设计旁通通道,以改变原有的密封技术要求,这样,当油气分离器内部滤网堵塞时,曲轴箱内气体能通过外壳上的旁通通道进行强制减压,以确保内燃机的长期工作安全和性能要求;本产品采用六重油气分离技术组合,在负压或车机状态下能同时对滴状和雾态机油进行高效分离,分离效果使滤后气体中的机油含量小于0.1克/立方米(居资料进口件的技术要求是0.67克/立方米),这样,就能使内燃机长期处在良性循环工作状态,达到节油环保的目的。完善内燃机技术的同时,创造尽可能多的经济效益和社会效益。 应用或产业化前景: 此项技术自2003年以来,相关技术已经申请了8项国家技术专利,其中发明专利1项,实用新型7项,并已全部授权。开发成功的产品已经应用到国家863项目的轿车柴油机上,是目前内燃机的升级技术。从减少排放的角度可成为公交公司车辆、出租车公司车辆、火车机车、轮船动力等项目的改造技术,可成为政府减少排放的指标性项目工程,市场前景非常广阔,经济效益和社会效益巨大,是一项利国、利民、利生态的高科技项目。 建德三源内燃机节能减排技术开发有限责任公司 洪志才 2012.5.18

油气分离器的分离效果

油气分离器常见结构分离效果分析 摘要:通过介绍油气分离器在喷油螺杆压缩机中的作用,比较分析了油气分离器的进气管及内置附件的结构设计对油气分离效果的影响,得出了一种较为合理的结构形式,能更好地达到油气分离的目的,并在实际应用中取得了良好的效果。 1 油气分离器的作用 在喷油螺杆压缩机中,油气分离器能分离压缩空气中的润滑油。因为在压缩气体时,一些油同时被喷入压缩机的齿间容积中,因而形成了油气混合物。为了确保压缩气体的质量,必须利用油气分离器来分离压缩空气中多余的油,同时将分离出来的润滑油循环利用。 2 油气分离效果 在喷油螺杆压缩机中形成了压缩气体和润滑油的混合物,其中润滑油是以气相和液相两种状态存在的。气相润滑油是油气混合物在一定的温度和压力下由液相润滑油气化形成,但气相油在油气混合物中的比例很少,而液相油占的比例较多。液相油的油滴直径大部分在1 m 以上,少量的油滴直径在0.O1~1 m之间。由于油气混合物的流速不是很快,油滴受重力作用,大的油滴都落人油气分离器的底部,然后通过回油管道再循环利用;小直径的油滴长时间悬浮在压缩空气中,不能靠自身的重力作用而落人油气分离器的底部。油气分离器的作用是将这些小油滴从压缩气体中分离出来,从而使排出的压缩空气中油的含量在0.003%0之内。因而,油气分离器的性能好坏直接影响喷油螺杆压缩机排出的压缩气体的质量。喷油螺杆压缩机中压缩空气的含油量不仅与油气分离器的滤芯质量有关,而且与油气分离器的进气管及内置附件的结构设计有关。油气分离器采用的油气分离有两级:一级分离是机械碰撞分离,是指油气混合物通过碰撞油气分离器的内置附件,在自身重力作用下,或通过油气分离器的进气管及内置附件产生的离心力作用,将油气混合物中1 脚以 上的大直径油滴分离出来,落入油气分离器的底部;二级分离是油滴聚结再分离,它是指油气混合物以较慢的速度进入油气分离器的滤芯,将直径在1 m以下的较大直径油滴先在滤芯表面过滤出来,较小直径的油滴在进入滤芯内部后亲和聚结为直径较大的油滴,并在自身重力作用下落入油气分离器的底部。油气分离器是上述两级分离方法的综合分离,机械分离作为一次分离,滤芯分离作为二次分离。 3 油气分离器的结构分析 油气分离器的进气管及内置附件的结构设计,直接关系到一次分离效果的好坏。内置附件的型式有:隔筒组件、导流板等。近年来常见的进气管及内置附件的结构大致有以下四种设计。 第一种是进气管垂直简体焊接。在进气管附近设置隔筒组件,油气混合物撞击隔筒进行一次粗分离,此结构如图1所示。

气液分离器的原理

气液分离器采用的分离结构很多,其分离方法也有: 1、重力沉降; 2、折流分离; 3、离心力分离; 4、丝网分离; 5、超滤分离; 6、填料分离等。 但综合起来分离原理只有两种: 一、利用组分质量(重量)不同对混合物进行分离(如分离方法 1、2、3、6)。气体与液体的密度不同,相同体积下气体的质量比液体的质量小。 二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以气体粒子比液体粒子小些。 一、重力沉降 1、重力沉降的原理简述 由于气体与液体的密度不同,液体在与气体一起流动时,液体会受到重力的作用,产生一个向下的速度,而气体仍然朝着原来的方向流动,也就是说液体与气体在重力场中有分离的倾向,向下的液体附着在壁面上汇集在一起通过排放管排出。 2、重力沉降的优缺点 优点: 1)设计简单。 2)设备制作简单。

3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。 1)设计简单。 2)设备制作简单。 3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。

优点:4、由于气液混合物总是处在重力场中,所以重力沉降也广泛存在。由于重力沉降固有的缺陷,使科研人员不得不开发更高效的气液分离器,于是折流分离与离心分离就出现了。 二、折流分离 1、折流分离的原理简述 由于气体与液体的密度不同,液体与气体混合一起流动时,如果遇到阻挡,气体会折流而走,而液体由于惯性,继续有一个向前的速度,向前的液体附着在阻挡壁面上由于重力的作用向下汇集到一起,通过排放管排出。 2、折流分离的优缺点 优点: 1)分离效率比重力沉降高。 2)体积比重力沉降减小很多,所以折流分离结构可以用在(高)压力容器内。 3)工作稳定。 缺点: 1)分离负荷范围窄,超过气液混合物规定流速后,分离效率急剧下降。 2)阻力比重力沉降大。 3、改进 从折流分离的原理来说,气液混合物流速越快,其惯性越大,也就是说气液分离的倾向越大,应该是分离效率越高,而实际情况却恰恰相反,为什么呢? 究其原因: 1)在气液比一定的情况下,气液混合物流速越大,说明单位时间内分离负荷越重,混合物在分离器内停留的时间越短。 2)气体在折流的同时也推动着已经着壁的液体向着气体流动的方向流动,如果液体流到收集壁的边缘时还没有脱离气体的这种推动力,那么已经着壁的液体将被气体重新带走。在气液比一定的情况下,气液混合物流速越大,气体这种继续推动液体的力将越大,液体将会在更短的时间内

油气分离器设计计算

摘要 为了满足油气井产品计量、矿场加工、储存和管道输送的需要,气、液混合物要进行气液分离。本文是某低温集气站中分离器的设计与计算,选用立式分离器与旋风式两种。立式分离器是重力式分离器的一种,其作用原理是利用生产介质和被分离物质的密度差来实现基本分离。旋风式分离器的分离原理是由于气、液质量不同,两相在分离器筒内所产生的离心力不同,液滴被抛向筒壁聚集成较大液滴,在重力作用下沿筒壁向下流动,从而完成气液两相分离。分离器的尺寸设计根据气液混合物的压力﹑温度以及混合物本身的性质计算确定。最后确定分离器的直径、高度、进出口直径。 关键词:立式两相分离器旋风式分离器直径高度进出口直径 广安1#低温集气站的基本资料: 出站压力:6MPa 天然气露点:5C <-?

气体组成(%):C 1=85.33 C 2=2.2 C 3=1.7 C 4=1.56 C 5 =1.23 C 6=0.9 H 2S=6.3 CO 2=0.78 凝析油含量:320/g m 0.78l S = 1. 压缩因子的计算 ① 天然气的相对分子质量 ∑=iMi M ? 式中 M ——天然气的相对分子质量; i ?——组分i 的体积分数; Mi ——组分i 的相对分子质量。 则计算得, M=20.1104 ② 天然气的相对密度 天然气的相对密度用S 表示,则有: S= 空 天 M M 式中 M 天、M 空分别为天然气的相对分子质量。 已知:M 空=28.97 所以,天然气相对密度S= 空 天 M M =20.1104/28.97=0.694 ③ 天然气的拟临界参数和拟对比参数 对于凝析气藏气: 当 0.7S < 时,拟临界参数: 4.7780.248106.1152.21pc pc P S T S =-=+ 计算得,

油气计量分离器原理

第一节 计量站 一、计量分离器 二、量油、测气操作

图5-3 储集管量油示意图 2)测气方法主要有:节流式流量计测气和垫圈流量计测气两种: A)节流式流量计测气(图5-4):V1*A1=V2*A2 气计量公式: 在不精确考虑Fx,Fy,Fz时, 图5-4 测气流程示意图(1-出气管线;2-挡板;3、4-上下流管;5-上流阀;6-下流阀;7-平衡阀;8、9-防空阀;10-U型玻璃管) B)垫圈流量计测气 垫圈流量计由测气短节和“U”形管组成(图5-5),它的下流通大气,下流压力为大气压,上流测出的压差H即为上下流压差。 气量计算公式:

图5-5 垫圈测气原理图 油气分离器的结构工作原理 一、油气分离器的类型和工作要求 1、分离器的类型 1)重力分离型:常用的为卧式和立式重力分离器; 2) 碰撞聚结型:丝网聚结、波纹板聚结分离器; 3) 旋流分离型:反向流、轴向流旋流分离器、紧凑型气液分离器; 4) 旋转膨胀型: 2、对分离器工作质量的要求 1)气液界面大、滞留时间长;油气混合物接近相平衡状态。 2)具有良好的机械分离效果,气中少带液,液中少带气。 二、计量分离器 1、结构:如图所示

1)水包:分离器隔板下面的容积内装有水,其侧下部焊有小水包,小水包中间焊有小隔板,小水包中的水与分离器隔板以下的大水包及玻璃管相连通。 2)分离筒:储存油气混合物并使其分离的密闭圆筒。 3)量油玻璃管:通过闸门及管线,其上端与分离器顶部相通下部与小水包连通,玻璃管与分离筒构成一个连通器供量油用。 4)加水漏斗与闸门:给分离器的水包加水用。 5)出气管:进入分离器的油气混合物进行计量时天然气的外出通道。 6)安全阀:保护分离器,防止压力过高破坏分离器。 7)分离伞:在分离筒的上部,由两层伞状盖子组成。使上升的气体改变流动方向,使其中携带的小液滴粘附在上面,起到二次分离的作用。 8)进油管:油气混合物的进口 9)散油帽:油气混合物进入分离器后喷洒在散油帽上使油气分开,还可稳定液面。 10)分离器隔板:在分离器下部油水界面处焊的金属圆板直径与分离筒内径相同,但边缘有缺口,使其上下连通,其面上为油下面为水,中间与出油管线连通。

油气分离器的结构工作原理

油气分离器的结构工作原理 一、油气分离器的类型和工作要求 1、分离器的类型 1)重力分离型:常用的为卧式和立式重力分离器; 2)碰撞聚结型:丝网聚结、波纹板聚结分离器; 3)旋流分离型:反向流、轴向流旋流分离器、紧凑型气液分离器;4)旋转膨胀型: 2、对分离器工作质量的要求 1)气液界面大、滞留时间长;油气混合物接近相平衡状态。 2)具有良好的机械分离效果,气中少带液,液中少带气。 二、计量分离器 1、结构: 如图所示 1)水包:分离器隔板下面的容积内装有水,其侧下部焊有小水包,小水包中间焊有 小隔板,小水包中的水与分离器隔板以下的大水包及玻璃管相连通。 2)分离筒: 储存油气混合物并使其分离的密闭圆筒。 3)量油玻璃管: 通过闸门及管线,其上端与分离器顶部相通下部与小水包连通,玻璃管与分离筒构成一个连通器供量油用。 4)加水漏斗与闸门:

给分离器的水包加水用。 5)出气管:进入分离器的油气混合物进行计量时天然气的外出通道。 6)安全阀: 保护分离器,防止压力过高破坏分离器。 7)分离伞:在分离筒的上部,由两层伞状盖子组成。使上升的气体改变流动方向,使其中携带的小液滴粘附在上面,起到二次分离的作用。 8)进油管: 油气混合物的进口 9)散油帽:油气混合物进入分离器后喷洒在散油帽上使油气分开,还可稳定液面。 10)分离器隔板: 在分离器下部油水界面处焊的金属圆板直径与分离筒内径相同,但边缘有缺口,使其上下连通,其面上为油下面为水,中间与出油管线连通。 11)排油管:是分离器中的油排出通道,其焊在分离器隔板中心处,并与分离器隔板以上相通。 12)支架: 用来支撑分离器。 2、工作原理 油气混合物经进油管线进入分离器后,喷洒在挡油帽上(散油帽),扩散后的 油靠重力沿管壁下滑到分离器的下部,经排油管排出。同时,气体因密度小而上升,经分离伞集中向上改变流动方向,将气体中的小油滴粘附在伞壁上,聚集后附壁而下,脱油后的气体经分离器顶部出气管进入管线进行测气。

空压机油气分离器爆炸的原因分析

空压机油气分离器爆炸的原因分析 在油田使用的过滤器尽管五花八门,但按过滤机理对其结构特点进行分析主要涉及滤层厚度、孔隙大小和孔隙状态。过滤器的工作机理是以筛除作用为主还是以吸附作用为主取决于滤层的厚度。滤层相对较薄的过滤器主要是筛除作用;而滤层较厚的过滤器则以吸附作用为主。阿特拉斯过滤器的精度取决于滤层孔隙的大小,但在同样大小孔隙的情况下,吸附作用的过滤精度远大于筛除作用,因此在油田以吸附作用为主的深床过滤器实际应用得较多。但以吸附作用为主的过滤器反洗较难,脱附是这种过滤器反洗的关键,既取决于滤材对悬浮物的吸附强度,也取决于滤层孔隙的大小。如果把滤层孔隙状态在过滤时与反洗时保持不变的过滤器称为固定孔隙过滤器,而把在反洗时能改变过滤时孔隙状态的过滤器称为非固定孔隙过滤器,则固定孔隙过滤器的反洗要比非固定孔隙过滤器困难得多。由于水中含的油对大多数过滤介质的吸附强度都很大,在固定孔隙过滤器中脱附非常困难,所以固定孔隙过滤器一般说来不适合含油采出水的过滤。 现对油田使用的几种典型的过滤器分析如下: 1.石英砂过滤器 石英砂过滤器是一种典型的深床过滤器,其结构特点是滤层较厚,过滤介质石英砂的密度较大,滤床比较稳定。石英砂过滤器工作的机理主要是吸附作用,而筛除作用是次要的。由于滤床在反冲洗时是固定的,属于固定孔隙过滤器,被吸附在滤层中的微小颗粒脱附比较困难,因此用反洗来恢复过滤性能的效果有限,使用一段时间后过滤性能会严重下降,往往需要更换滤料。这种过滤器一般应用在对水质要求相对不高的清水过滤。 2.轻质滤料过滤器 油田使用的轻质滤料空压机配件过滤器主要是核桃壳过滤器,这种过滤器的基本结构和过滤原理与石英砂过滤器相同,区别是作为滤料的核桃壳的密度较小,一般在 1.2g /cm 左右。由于滤料较轻,反冲洗时在水流作用下滤层成为沸腾床,由滤料间隙形成的微孔被解除,吸附的悬浮物得以脱附。因此,这种过滤器属于非固定孔隙过滤器,反洗再生能力较强,过滤性能稳定,适合于中高渗透率地层水质要求的采出水过滤。 3.微孔陶瓷过滤器

旋风分离器工作原理

旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm的固体颗粒。在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。压力降正常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。设计使用寿命旋风分离器的设计使用寿命不少于20年。 结构设计 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。通常,气体入口设计分三种形式:a) 上部进气b) 中部进气c) 下部进气对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm 的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点

柴油机油气分离器简单介绍

油气分离器的介绍 一、前言 随着近年来国内环保要求的提高,对汽车排量要求达到欧三、欧四水平,柴油机的结构发生了很大的变化,变化之一就是在曲轴箱通风系统中配有高效的油气分离器。油气分离器一般采取了闭式连接的方式用于消除曲轴箱污染物的排放,欧五排放要求将对曲轴箱污染排放做要求。本文将探讨一下发动机曲轴箱油气分离器设计中所关注的要点。 二、正文 (一)、油气分离器在柴油机中的安装位置 油气分离器如图所示,在闭式连接中所安装位置,进气口与曲轴箱连接,出气口与增压器连接,底部回油口与油底壳相连接。开式连接出气口直接与大气相通,其余连接相同。 (二)、油气分离器的作用 1、曲轴箱通风 在发动机工作时,总有一部分可燃混合气和废气经活塞环窜到曲轴箱内,窜到曲轴箱内的汽油蒸气凝结后将使机油变稀,性能变坏。废气内含有水蒸气和二氧化硫,水蒸气凝结在机油中形成泡沫,破坏机油供给,这种现象在冬季尤为严重;二氧化硫遇水生成亚硫酸,亚硫酸遇到空气中的氧生成硫酸,这些酸性物质的出现不仅使机油变质,而且也会使零件受到腐蚀。由于可燃混合气和废气窜到曲轴

箱内,曲轴箱内的压力将增大,机油会从曲轴油封、曲轴箱衬垫等处渗出而流失。曲轴箱内压力增大,使活塞运动时阻力增大,造成发动机功率损失,发动机装有曲轴箱通风装置就可以避免或减轻上述现象,因此,发动机曲轴箱通风装置的作用是:1.防止机油变质:2.防止曲轴油封、曲轴箱衬垫渗漏;3减少发动机功率损失。 油气分离器作用就是在曲轴箱通风时,将机油与气体分离的装置。 (三)、油气分离器各设计要点 1、关于油气分离器外形与安装位置 油气分离器回油口与柴油机油底壳相连接,为了方便将分离后的机油经回油口靠重力作用流回到油底壳内,油气分离器底部外形是圆锥状,与漏斗相似。在发动机上必须竖直安装并且安装位置比较高。一般位于发动机的最顶端。 竖直安装的油气分离器 2、开式连接时油气分离器工作阻力与安全阀开启压力 油气分离器工作阻力是指发动机正常工作时,油气分离器在进行油气分离时所形成的阻力。在开式连接中,工作阻力是油气分离最重要的特性。油气分离器进气口与曲轴箱直接相连,油气分离器阻力就直接决定了曲轴箱内压力的高低。曲轴箱内压力过高,油底壳的机油就回通过管路、回油口进入油气分离器内,从出气口喷出。这就是主机厂常说的油气分离器“喷油”现象。该现象在潍柴试验室出现过多次。根据公式 P=ρgh (公式1) P :曲轴箱压力;

LPG气液分离器原理

气液分离器的工作原理 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 汽液分离罐是利用丝网除沫,或折流挡板之类的内部构件,将气体中夹带的液体进一步凝结,排放,以去除液体的效果。 基本原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。 QQ截图未命名.gif (93.74 KB) 分离器的结构与原理相辅相成,分离器不止是分离气液也分离气固,如旋风除尘器原理是利用离心力分离气体中的固体. 气液分离器,根据分离器的类型不同,有旋涡分离,折留板分离,丝网除沫器, 旋涡分离主要是根据气体和液体的密度,做离心运动时,液体遇到器壁冷凝分离。 基本都是利用沉降原理的,瞬间扩大管道半径,造成压降,温度等的变化,达到分离的目的. 使用气液分离器一般跟后系统有关,因为气体降温减压后会出现部分冷凝而后系统设备处理需要纯气相或液相,所以

主反应后装一个气液分离器静止分离出气相和液相给后系统创造条件。。。 工厂里常见的气液分离器是利用闪蒸的原理,闪蒸就是介质进入一个大的容器,瞬间减压气化并实现气液分离,出口气相中含饱和水,而游离的水和比重大的液滴会由于重力作用分离出来,另外分离器一般带捕雾网,通过捕雾网可将气相中部分大的液滴脱除。 气液分离器无非就是让互相混杂的气相液相各自聚合成股,液滴碰撞聚结,气体除去液滴后上升,从而达到分离的目的。 原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。算过一个气液分离器就是一个简单的压力容器,里面有相应的除沫器一清除雾滴。 气液分离器其基本原理是利用惯性碰撞作用,将气相中夹带的液滴或固体颗粒捕集下来,进而净化气相或获得液相及固相。其为物理过程,常见的形式有丝网除雾器、旋流板除雾器、折板除雾器等。 单纯的气液分离并不涉及温度和压力的关系,而是对高速气流(相对概念)夹带的液体进行拦截、吸收等从而实习分离,旋流挡板等在导流的同时,为液体的附着提供凭借,就好像空气中的灰尘要有物体凭借才能停留下来一样。而不同分离器在设计时,还优化了分离性能,如改变温度、压力、流速等 气液分离是利用在制定条件下,气液的密度不同而造成的分离。 我觉得较好的方法是利用不同的成分其在不同的温度或压力下熔沸点的差异,使其发生相变,再通过不同相的物理性质的差异进行分离 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 化工厂中的分离器大都是丝网滤分离气液,这种方法属于机械式分离,原理就是气体分子小可以通过丝网空隙,而液态分子大,被阻分离开, 还有一种属于螺旋式分离,气体夹带的液体由分离器底部螺旋式上升,液体被碰撞“长大”最终依靠重力下降,有时依靠降液管引至分离器底部 气液分离器,出气端一般在上,因为比重低,内部空气被抽离,或在出气端连气泵 而液体经旋转,再次冷凝下降从下部排出 利用气体与液体的密度不同。。从而将气体与液体进行隔离开来 1、气液分离器有多种形式。 2、主要原理是:根据气液比重不同,在较大空间随流速变化,在主流体转向的过程中,气相中细微的液滴

制冷系统中油分离器结构及工作原理

制冷系统中油分离器结构及工作原理 一、油分离器与集油器 (一)油分离器的作用 在蒸汽压缩式制冷系统中,经压缩后的氨蒸汽(或氟利昂蒸汽),是处于高压高温的过热状态。由于它排出时的流速快、温度高。汽缸壁上的部份润滑油,由于受高温的作用难免成油蒸汽及油滴微粒与制冷剂蒸汽一同排出。且排汽温度越高、流速越快,则排出的润滑油越多。对于氨制冷系统来说,由于氨与油不相互溶,所以当润滑油随制冷剂一起进入冷凝器和蒸发器时会在传热壁面上凝成一层油膜,使热阻增大,从而会使冷凝器和蒸发器的传热效果降低,降低制冷效果。据有关资料介绍在蒸发表面上附有0.1mm油膜时,将使蒸发温度降低2.5℃,多耗电11~12%。所以必须在压缩机与冷凝器之间设置油分离器,以便将混合在制冷剂蒸汽中的润滑油分离出来。总结起来,油分离器的主要作用有: 1.确保润滑油返回到压缩机储油槽中,防止压缩机由于润滑油的缺乏而引起故障,延长压缩机适用寿命。 2.流动速度减小和流动方向变化的互相作用引起润滑油的聚集,这样在高温下分离出来的润滑油被集中收集,并自动返回到曲轴箱中,提高效率。 3.防止压缩机产生液击。 4.更好的发挥冷凝器和蒸发器的效率。 5.减小系统高压端的震动和噪音。 6.同时这些特点还可以会使得系统的电费用降低。 (二)油分离器的工作原理 大家都知道,汽流所能带动的液体微粒的尺寸是与汽流的速度有关。若把汽流垂直向上运动产生的升力与微粒的重量相平衡时的汽流速度称为平衡速度,并用符号ω表示。则显然当汽流速度等于平衡速度时,则微粒在汽流中保持不动;如果汽流速度大于平衡速度时则将微粒带走;而当汽流速度小于平衡速度,微粒就会跌落下来,从而使油滴微粒制冷剂汽流中分离出来。 油分离器的基本工作原理主要就是利用润滑油和制冷剂蒸气的密度不同;以及通道截面突然扩大,气流速度骤降(油分离器的筒径比高压排气管的管径大3~15倍,使进入油分离器后蒸气的流速从原先的10~25m/s下降至0.8~1m/s);同时改变流向,使密度较大的润滑油分离出来沉积在油分离器的底部。或利用离心力将油滴甩出去,或采用氨液洗涤,或用水进行冷却降低汽体温度,使油蒸汽凝结成油滴,或设置过滤层等措施来增强油的分离效果。 (三)油分离器的形式和结构目前常见的油分离器有以下几种:洗涤式、离心式、过滤式、及填料式等四种结构型式,下面分述它们的结构及工作原理。 1、洗涤式油分离器 洗涤式油分离器适用于氨系统,它的主体是钢板卷焊而成的圆筒,两端焊有钢板压制的筒盖和筒底。进汽管由筒盖中心处伸入至筒下部的氨液之内。进气管的下端焊有底板,管端

航空发动机用动压式油气分离器性能研究

航空发动机用动压式油气分离器性能研究动压式油气分离器是小型航空发动机滑油系统中的重要部件,是一种利用离心力对油气混合物进行分离的装置,具有结构简单、空间紧凑、效率相对较高等优点,对其性能的研究是国内外的前沿问题之一。因分离器内部为三维强旋湍流,伴随着气液两相分离,涉及到气泡的破碎、铺展与聚合等复杂的流动过程,对其流动机理和性能分析的研究相当困难,尚未从整体上提出描述分离器性能的数学模型。本文结合动压式油气分离器的工作原理和工作条件,采用实验研究、理论分析和数值模拟相结合的方法对分离器性能进行系统的研究。 首先,设计并搭建了小型动压式油气分离器性能测试实验系统,对4种不同结构形式实验模型进行了系统研究,通过对所得实验数据的整理和分析,给出了最佳结构组合形式;论文提出容积法测量分离效率,分析了筒体直径、筒体长度、入口倾斜角和出气管长度等因素对分离器性能的影响规律。研究结果表明:内嵌式出气管与切向出油管相结合的结构形式可获得较优的分离性能;入口倾斜角、长径比、出气管长度和直径均存在最佳取值,可使分离器性能最优。其次,采用理论分析的方法建立了动压式油气分离器内的气泡运动轨迹模型,分析了流量、切向速度和筒体直径对分离性能的影响规律。 研究结果表明:进口处滑油切向速度的增大有助于提高分离性能,但当其增大到一定程度时,分离性能提高速度减缓;当平均轴向速度较小时,流量增加对离心力的影响大于对气泡停留时间的影响,分离效率随滑油流量的增大而升高,但当平均轴向速度较大时,流量的影响则相反;在一定流量范围内确定了分离性能最优时的筒体直径。再次,利用数值模拟手段对动压式油气分离器内的两相流场进行了详细研究,分析了3种工况参数和6种结构参数对动压式油气分离器性能

空压机油气分离器的工作原理

空压机油气分离器的工作原理 空压机油气分离器的工作原理 产品关键字:油气分离器 油气分离元件是决定空压机压缩空气品质的关键部件,高质量的油气分离元件不仅可保证压缩机的高效率工作,且滤芯寿命可达数千小时。从压缩机头出来的压缩空气夹带大大小小的油滴。大油滴通过油气分离罐时易分离,而小油滴(直径1um以下悬浮油微粒)则必须通过油气分离滤芯的微米及玻纤滤料层过滤。油微粒经过滤材的扩散作用,直接被滤材拦截以及惯性碰撞凝聚等机理,使压缩空气中的悬浮油微粒很快凝聚成大油滴,在重力作用下油集聚在油分芯底部,通过底部凹处回油管进口返回机头润滑油系统,从而使压缩机排出更加纯净无油的压缩空气。压缩空气中的固体粒子经过油分芯时滞留在过滤层中,这就导致了油分芯压差(阻力)不断增加。随着油分芯使用时间增长,当油分芯压差达到0.08到0.1Mpa时,滤芯必须更换,否则增加压缩机运行成本(耗电)。上海信然公司以使用世界一流滤材为基础,测试油分芯排气含油量,压差为依据,愿为您提供低残油量、低压差、长寿命的油分芯。 高效滤芯超期使用的危害: (1)过滤效率差,压缩机空气品质无法满足使用要求,导致用气设备不能正常工作或产品合格率大大降低;

(2)堵塞后压阻增大,导致机组实际排气压力增大,机组能耗增加,生产成本增高; 2、油滤芯的作用: 油滤芯的作用是滤除空压机专用油中的金属颗粒、杂质等,使进入主机的油是非常干净的,以保护主机安全运行。 油滤芯的材料:高精度滤纸 油滤芯的更换标准: (1)实际使用时间达到设计寿命时间后更换。油滤芯设计使用寿命通常为2000小时。到期后必须予以更换。空压机环境状况较差的应缩短使用时间。 (2)设计使用寿命期限内堵塞报警后立即予以更换,油滤芯堵塞报警设定值通常为1.0-1.4bar。 油滤芯超期使用的危害: (3)堵塞后回油量不足导致排气温度过高,缩短油和油分芯使用寿命; (4)堵塞后回油量不足主机润滑不足,导致主机寿命严重缩短;滤芯破损后未经过滤的含大量金属颗粒杂质的油进入主机,导致主机损坏。 3、空滤芯的作用:空滤芯是空压机的一道重要的保护屏障! (1)滤除空压机吸入的空气中的粉尘杂质,吸入的空气越洁

柴油机迷宫式油气分离器分离效率数值模拟

柴油机迷宫式油气分离器分离效率数值模拟 来源:机房360 作者:mopper整理更新时间:2010/11/8 11:23:33 摘要:在排放法规要求越来越严格的今天,高性能的油气分离器对降低排放、减少机油消耗至关重要。迷宫式油气分离器因其布置空间小,结构简单,在小型紧凑的发动机上应用日益广泛。传统的迷宫式油气分离器开发方法是将不同结构的迷宫样件进行油气分离试验,试验成本高,开发周期长。 第1页:模拟方法 1.系统介绍 在排放法规要求越来越严格的今天,高性能的油气分离器对降低排放、减少机油消耗至关重要。迷宫式油气分离器因其布置空间小,结构简单,在小型紧凑的发动机上应用日益广泛。传统的迷宫式油气分离器开发方法是将不同结构的迷宫样件进行油气分离试验,试验成本高,开发周期长。而应用CFD(ComputationalFluidDynamic)而己仿真技术,结合商业流体软件,在计算机虚拟环境中模拟油气分离器的流动、压损与分离效率,可以更直观地对油气分离器内的气体流动进行评价,并能快速进行方案优化。 国外从2000年左右开始对汽车油气分离器分离效率数值模拟方法进行探索和研究,计算方法主要为在空气连续流动结果基础上进行离散油滴粒子轨迹捕捉,日本nissan汽车公司针对油滴粒子反弹规律也做过专门研究四"闭。国内目前在车用油气分离器的数值模拟计算方法与应用方面都鲜有报 本文介绍了一种模拟油气分离器分离效率的方法,以某柴油机迷宫式油气分离器为例,对比了不同结构的迷宫流动、压损与分离效率的差别,并形象、直观地显示了不同直径油滴在迷宫内的分布情况,能快速有效地进行方案评价与结构优化。 2.计算模型 活塞漏气中包括气体和液体成分,数值计算中需要求解气相与液相的守恒方程。文中选取湍流模型来模拟油气分离器中气体的连续相流动引;而液体的运动则选取离散液滴模型(DiscreteDropletModel),用拉格朗日方法计算液滴在计算流域内的轨迹与捕捉运动。由于油雾粒子占总活塞漏气量的体积分数与质量分数均较低,计算中忽略离散相对连续相的影响,即,先模拟气体流动再模拟液滴轨迹1。本次模拟计算需要求解连续相流动控制方程与离散相运动轨迹方程。 连续相控制方程的通用格式如式(1)所示:

空压机油气分离器的故障分析

空压机油气分离器的故障分析 随着空压机性能和应用技术的不断提升,越来越广泛的国民经济领域都应用到了空压机。尤其是喷油式螺杆空压机,其在工业动力领域使用比率大大提高,由此,国内越来越多企业生产螺杆式空压机已满足市场的需求。而作为空压机实操方面的朋友有必要深入了解一下它的组成及其配件的使用保养,这样才会让空压机更大限度的发挥好它的优势,更好的提高工作效率。 喷油式螺杆空压机内的油气分离芯是重要部件之一,油气分离芯主要用来确保压缩空气的含油量在3ppm之内,降低空压机的耗油量。油气混合物经分离器内的机械 (初级)分离后,再经油气分离滤芯进行精细分离。 从空压机机头出来的压缩空气夹带大大小小的油滴。大油滴通过油气分离罐时易分离,而小油滴(直径1um以下悬浮油微粒)则必须通过油气分离滤芯的微米级玻纤滤料层过滤。油微粒经过滤材的扩散作用,直接被滤材拦截以及惯性碰撞凝聚等机理,使压缩空气中的悬浮油微粒很快凝聚成大油滴,在重力作用下集聚在油分芯底部,通过底部凹处回油管进口返回机头润滑油系统,从而使空压机排出更加纯净无油的压缩空气。 因此说,油气分离滤芯是决定喷油螺杆空压机排出压缩空气品质的关键部件。高品质的油分滤芯,在正确的安装和使用时,可确保压缩空气的高品质,使用寿命可达数千小时。由于油气分离芯有一定的使用寿命,油气分离效果不佳时,就需要及时更换油气分离芯,以保证油气分离的高效性。现在,许多空压机生产厂家不断通过技术改造来提升油气分离芯的产品质量,减少压缩空气含油量。一些喷油螺杆空压机用户也定期更换使用质量较好的油气分离芯。 一般情况下,螺杆空压机配套油气分离芯必须选择大于或等于空压机的出气流量,防止使用过程中吸入的空气滤清器过滤不了的细小粉尘将油气分离芯的细分离层堵塞,从而

空气分离器结构及原理

空气分离器结构及原理 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

空气分离器结构及原理 目前应用最多的是卧式空气分离器和立式空气分离器。 卧式空气分离器也称四重套管式空气分离器,一般应用在大中型氨制冷系统的冷库,一座冷库只选用一台卧式空气分离器就够了。立式空气分离器一般用在中小型氨制冷系统。卧式空气分离器的分离效果好。 一、卧式空气分离 器 1、结构及原理:卧式 空气分离器如右图所示,它 是由4根直径不同的无缝钢 管组成,管1与管3相通, 管2与管4相通。混合气体 自冷凝器来,通过混合进气 阀进入管2,氨液自膨胀阀 来,进入管1后吸收管2内 的混合气体热量而气化,氨 气出口经降压管接至总回气 管道,则氨气被压缩机吸 入。管2里的混合气体被降 温,其中氨气被凝结为氨液 流入管4的底部,空气不会 被凝结为液体,仍以气态存 在,将分离出来的空气经放 空气阀放出,达到使系统内空气分离出去的目的。 2、操作方法:首先打开混合气体阀,让混合气体进入管2,再打开回气阀,使管3与回气总管相通,然后微开与管1相连接的膨胀阀,向管1供液,供液不能过快过多,以降压管自控器分离器接口向上的1.5m以内结霜为最好。放空气阀外接一根钢管,管上套一根橡皮管通入水桶内,橡皮管入水一端系一重物,防止橡皮管出口露出水面。微微开启放空气阀,水中便有气泡由下向上浮起,放空气阀不要开启过大,以水内有一定速度气泡跑出为准。管4的底部外表面逐渐开始结霜,当霜结到外管直径的1/3高度时,将管1外来供液的膨胀阀关闭,打开空气分离器本身自有的节流阀,让管4底部凝结的氨液经节流阀供入管1内,这样就实现放空气自身凝结的氨液给自己供液。一般地说,此时已进入自行放空气阶段。操作人员要经常查看降压管的霜不可结得过高;再看空气分离器外壁上的霜不可结得太少或没有,如果太少或没有,证明凝结的氨液量少,给管1供液会不足。此时应再利用管1外接的膨胀阀补充一点氨液,使管外霜结到外管直径的1/3高度的地方。水桶内气泡上升过程中,体积不缩小,水温不升高,放出的是空气。如果在上升过程中,体积逐渐缩小,甚至无气泡产生而只有水的流动,证明放空气完毕。因为氨气与水相溶,不产生气泡,甚至水呈乳白色,水温上升。 放空气完毕,应关闭混合气体阀、放空气阀,并检查外接膨胀阀是否关闭。自身节流阀仍为开启的,让氨气仍旧被压缩机抽走,空气分离器内的余氨被尽量抽走后,

一级油气分离器

绪论 0.1 实训介绍 生产实习是高等工科院校教学过程中的一个重要的实践环节,是理论与实际相结合的有效方式,对于同学们接触工人、了解工厂、热爱自己的专业、热爱未来工作、扩大视野,并为后续课程学习增加感性认识提供了一个难得的机会。 生产实习目的是:通过观察和分析化工设备各生产过程,学到本专业的生产实践知识和获得化工设备制造的感性认识,有利于对后续课程的学习和理解;理论联系实际。用已学的理论知识去分析实习场所看到的实际生产技术,使理论知识得到充实、印证、巩固、深化,既体会学习书本知识的必要性,又提高解决实际工程技术问题的能力;得到一次综合能力的训练和培养。 实习过程中大家对以下几个方面进行学习:了解化工设备制造生产中的主要工装设备;对化工设备的典型零件制造工艺过程做较深入地分析;了解主要化工设备的结构和装配过程;获取化工设备生产中的检验知识,了解生产过程中的质量保证体系和全面质量管理;收集化工设备制造的组织方式及技术管理资料;了解工厂的技术改造、革新和新工艺及计算机或数控设备在生产中的使用情况;培养运用基础课和技术基础课知识去解决生产问题的能力,建立初步的工程技术观点。 在现场实习过程中,主要对其下料车间、预制车间、组装车间、球容车间、机加及无损检测等车间进行实习。

图0-1 实习车间实景 下料车间:本车间主要把各种板材、管材、型钢切割成制造化工设备用的坯料。为此要了解:化工设备常用板材的牌号、规格,型材的种类,各种材料的当前价格等 组装车间:对设备零件进行组对、焊接、检验、制造出合格的化工设备产品的地方。主要了解:组对所需工装设备;装配单元划分方法;组对精度的调整、测量;各种焊接方法和设备,所适合的材料,焊接位置,保护焊缝熔池的方法;焊缝及近缝区缺陷的种类,产生的原因、预防和消除的办法;化工设备压力试验的目的、种类、试压装置、步骤及注意事项。 无损检测室:对化工设备的制造全过程进行无损检测,以便发现缺陷及时返修,检验通过的母材或零部件可以进入下一工序,检测通过的设备准备包装出厂。 0.2大庆油田建设集团有限责任公司建材公司石油石化设备厂 大庆油田建设集团有限责任公司建材公司石油石化设备厂,始建于一九六三年,是随着大庆油田开发建设逐步发展起来的石油化工容器、油田专用设备的专业制造厂,其技术水平、制造能力、生产规模在全国石油系统居于前列。全厂占地面积36万平方米,主要生产厂房5.5万平方米,主要生产设备200多台,年处理钢材量1万多吨。其中化工容器生产厂房12000平方米,油田专用容器生产厂房18000平方米,球片、封头生产厂房9000平方米,锅炉生产厂房3000平方米,彩板H型钢生产线2条,厂房面积4000平方米,全封闭无损检测室900平方米。固定资产净值10560万元,钢材处理能力20000吨/年,产值超亿元。40多年来,生产压力容器13000余台,遍布各大油田。 图0-2实习工厂办公大楼

油气分离器的工作原理

压机A+_+hH5Y 0V%空压机油气分离器的工作原理 产品关键字: 油气分离器 油气分离元件是决定空压机压缩空气品质的关键部件,高质量的油气分离元件不仅可保证压缩机的高效率工作,且滤芯寿命可达数千小时。从压缩机头出来的压缩空气夹带大大小0o7~3hQo 2^6D 小的油滴。大油滴通过油气分离罐时易分离,而小油滴(直径1um以下悬浮油微粒)则必须通过油气分离滤芯的微米及玻纤滤料层过滤。油微粒经过滤材的扩散作用,直接被滤材拦截以及惯性碰撞凝聚等机理,使压缩空气中的悬浮油微粒很快凝聚成大油滴,在重力作用下油集聚在油分芯底部,通过底部凹处回油管进口返回机头润滑油系统,从而使压缩机排出更加纯净无油的压缩空气。压缩空气中的固体粒子经过油分芯时滞留在过滤层中,这就导致了油分芯压差(阻力)不断增加。随着油分芯使用时间增长,当油分芯压差达到0.08到0.1Mpa时,滤芯必须更换,否则增加压缩机运行成本(耗电)。上海信然公司以使用世界一流滤材为基础,测试油分芯排气含油量,压差为依据,愿为您提供低残油量、低压差、长寿命的油分芯。 高效滤芯超期使用的危害: (1)过滤效率差,压缩机空气品质无法满足使用要求,导致用气设备不能正常工作或产品合格率大大降低; (2)堵塞后压阻增大,导致机组实际排气压力增大,机组能耗增加,生产成本增高; 2、油滤芯的作用: 油滤芯的作用是滤除空压机专用油中的金属颗粒、杂质等,使进入主机的油是非常干净p

65p 01kCR 的,以保护主机安全运行。 油滤芯的材料: 高精度滤纸 油滤芯的更换标准: (1)实际使用时间达到设计寿命时间后更换。油滤芯设计使用寿命通常为2000小时。到Z 8OVz0A 4P1o 4_$ m#LQ WQ+U 期后必须予以更换。空压机环境状况较差的应缩短使用时间。 (2)设计使用寿命期限内堵塞报警后立即予以更换,油滤芯堵塞报警设定值通常为 1.0-1.4bar。 油滤芯超期使用的危害: (3)堵塞后回油量不足导致排气温度过高,缩短油和油分芯使用寿命;6Y56 W+K@*(4)堵塞后回油量不足主机润滑不足,导致主机寿命严重缩短;滤芯破损后未经过滤的含大量金属颗粒杂质的油进入主机,导致主机损坏。 3、空滤芯的作用:

相关主题
文本预览
相关文档 最新文档