颗粒增强型金属基复合材料
- 格式:ppt
- 大小:1.47 MB
- 文档页数:27
第29卷第1期 2 0 0 8年3月
洛有色舍属
SHANGHAI NONFERROUS METALS Vo1.29 No.1
Mar.2 0 0 8
文章编号:1005—2046(2008)01—0027—05 金属基陶瓷颗粒增强复合材料的制备方法
陈 兴,杨城笑,严 彪 (同济大学材料科学与工程学院,上海市金属功能材料应用开发重点实验,上海200092)
摘 要:介绍了金属基陶瓷颗粒增强复合材料(metal matrix ceramic reinforced composites)的 基体与陶瓷增强相的选择,同时指出如何有效地改善金属基体与陶瓷颗粒增强相之间的浸湿 性问题。总结了烧结前期复合坯体的一些主要制备方法。又介绍了金属基陶瓷复合材料 (MMC)的烧结工艺,重点介绍了通电烧结,比较了各新工艺的基本原理和优缺点,最后对 金属基陶瓷颗粒增强复合材料进行了技术展望。 关键词:金属基复合材料,颗粒增强,浸湿性,烧结 中图分类号:TB333 文献标识码:A
Preparation of Composite Reinforced with Metal Matrix Ceramic Particles
C HEN Xing,YANG Cheng—xiao,YAN Biao (School ofMaterial Science&Engineering,Tongfi University,Shanghai Key Laboratory of Development&Application for Functional Metallic Materials,Shanghai 200092,China)
Abstract:The selection of the metal matrixes and reinforcing particles for the composites and the ways to improve the wetability between them are reviewed.Main preparation methods for the composite blanks before sintering and sintering technologies are introduced with electric current sintering focused and diferent new technologies compared with each other.Finally,the future prospects of the composites are forecasted. Key words:metal matrix composites;particle reinforcing;wetability;sintering
现代科学的发展和技术的进步,对材料性能提出了更高的要求,往往希望材料具有某些特殊性能的同时,又具备良好的综合性能。
传统的单一材料已经很难满足这种需要。
因此,人们将注意力转向复合材料,复合材料是指由两种或两种以上成分不同,性质不同,有时形状也不同的相容性材料以物理方式合理的进行复合而制成的一种材料。
其以最大限度的发挥各种材料的特长,并赋予单一材料所不具备的优良性能,复合材料的性能还具有可设计性的重要特征。
作为复合材料重要分支的金属基复合材料(MMCs),发展于20世纪50年代末期或60年代初期。
现代材料方面不但要求强度高,还要求其重量要轻,尤其是在航空航天领域。
金属基复合材料正是为了满足上述要求而诞生的。
1.金属基复合材料的分类金属基复合材料(Metal matrix Composite,简称MMCs)是以陶瓷(连续长纤维、短纤维、晶须及颗粒)为增强材料,金属(如铝、镁、钛、镍、铁、桐等)为基体材料而制备的。
金属基复合材料分为宏观组合型和微观强化型两大类。
前者指其组分能用肉眼识别和具备两组分性能的材料(如双金属、包履板等);后者需显微观察分辨组分以改善成分来提高强度为主要目标的材料。
根据用途分类:(1)结构复合材料:高比强度、高比模量、尺才稳定性、耐热性等是其主要性能特点。
用于制造各种航天、航空、汽车、先进武器系统等高性能结构件。
(2)功能复合材料:高导热、导电性、低膨胀、高阻尼、高耐磨性等物理性能的优化组合是其主要特性,用于电子、仪器、汽车等工业。
强调具有电、热、磁等功能特性。
(3)智能复合材料:强调具有感觉、反应、自监测、自修复等特性。
根据复合材料基体可划分为铝基、镁基、钢基、钛基、高温合金基、金属间化合物基及耐热金属基复合材料等。
按按增强体分类划分为颗粒增强金属基复合材料、层状增强金属基复合材料和纤维增强金属基复合材料。
2.金属基复合材料的性能特点与传统的金属材料相比,金属基复合材料具有较高的比强度与比刚度,而与高分子基复合材料相比,它又具有优良的导电性而耐热性,与陶瓷材料相比,它又具有较高的韧性和较高的抗冲击性能。
金属基复合材料的发展趋势金属基复合材料是一种将金属基体与其他增强材料(如纤维、颗粒等)组合在一起制成的新型材料。
它具有金属材料的优良性能,如高强度、高刚度、耐磨性等,并且能够通过引入增强材料来改善其综合性能。
随着工业技术的发展和应用的不断扩大,金属基复合材料的发展趋势主要表现在以下几个方面:1. 材料的多元化发展:金属基复合材料不仅可以使用不同种类的金属作为基体材料,还可以结合多种不同类型的增强材料,如纤维、颗粒等。
随着技术的进步,人们对于材料的性能要求越来越高,因此金属基复合材料的开发可望得到更大的关注和广泛的应用。
未来,金属基复合材料将进一步向高性能、高温、高强度等方向发展。
2. 制备工艺的改进:金属基复合材料的制备工艺对其性能起着重要的影响。
未来,人们将继续改进金属基复合材料的制备工艺,以提高材料的可塑性、成型性和耐高温性能。
例如,采用先进的热处理工艺、粉末冶金、熔融铸造等方法将有助于制备出更加优质的金属基复合材料。
3. 结构设计的优化:金属基复合材料的性能不仅与材料本身的性能有关,还与其结构设计密切相关。
通过合理的结构设计,可以优化材料的机械性能、热性能和耐腐蚀性能。
未来,人们将通过模拟分析和先进的设计方法,针对不同应用领域开发出更加优化的金属基复合材料结构。
4. 新型增强材料的研究:金属基复合材料在增强材料的选择上有很大的灵活性。
未来,人们将继续寻找新型的增强材料,并研究其与金属基体的相容性和增强效果。
例如,纳米材料、陶瓷颗粒等新型增强材料的引入,将进一步提高金属基复合材料的性能。
5. 应用领域的扩大:金属基复合材料由于其优异的性能,在航空航天、汽车制造、机械制造等领域得到了广泛应用。
未来,随着技术的发展和应用需求的不断增加,金属基复合材料将在更多领域得到应用。
尤其是在新能源、环保、生物医学等领域,金属基复合材料的应用前景将更加广阔。
总之,随着工业技术的不断发展,金属基复合材料将继续取得重大进展。
金属基复合材料的强韧化研究随着科学技术的不断发展,金属基复合材料作为一种新型材料,受到了越来越多的关注和研究。
金属基复合材料结合了金属材料的强度和刚性以及复合材料的轻质和耐磨性,具有广泛的应用前景。
然而,金属基复合材料在实际应用中还存在一些问题,其中之一就是强韧性不足。
因此,研究金属基复合材料的强韧化成为当前的热点之一。
为了提高金属基复合材料的强韧性,研究人员采用了多种方法。
其中一个常用的方法是引入纳米颗粒增强。
纳米颗粒具有较高的比表面积和界面能,可以有效地提高金属基复合材料的强度和韧性。
此外,纳米颗粒的尺寸控制和分散性也对复合材料的性能起着重要作用。
因此,在制备金属基复合材料时,研究人员需要注意纳米颗粒的选择、尺寸调控和分散性的控制。
另外,界面的性质也对金属基复合材料的强韧性有重要影响。
界面是不同相之间的交界面,其性质直接影响到复合材料的力学性能。
研究人员通过调控界面的形貌和结构来改善金属基复合材料的强韧性。
一种常见的方法是在界面上引入中间层,可以减少应力集中和界面剪切的发生,从而提高复合材料的韧性。
除了纳米颗粒增强和界面改性,金属基复合材料的微观结构设计也是提高其强韧性的重要途径。
通过合理设计金属基复合材料的微观结构,可以实现应力分布的均匀和界面的强化,从而提高复合材料的力学性能。
例如,金属基复合材料中的纤维增强结构可以改善材料的韧性,使其能够在外界载荷下有效地吸收能量。
另外,热处理技术也是提高金属基复合材料强韧性的一种常用方法。
通过合理的热处理工艺,可以改变金属基复合材料的组织结构和相态,从而调控材料的力学性能。
热处理技术包括固溶处理、时效处理、退火等,可以显著提高金属基复合材料的强度、韧性和硬度。
总结起来,金属基复合材料的强韧化研究是一个复杂而又关键的课题。
纳米颗粒增强、界面改性、微观结构设计和热处理技术等方法的综合应用是提高金属基复合材料强韧性的有效途径。
通过对金属基复合材料的强韧化研究,可以推动该新型材料在航空、汽车、电子等领域的应用,为实现可持续发展做出贡献。
金属基复合材料强度的影响因素摘要:过去30 年里金属基复合材料虽然得到了广泛的研究与发展,但其性能一致性差的问题制约了其应用,因此复合材料的性能设计受到了普遍的关注。
强度是材料在工程应用上重要的衡量指标,对强度影响因素的研究对复合材料的性能设计至关重要。
本文着重分析了复合材料中基体合金化、增强体、基体与增强体的相容性、界面、工艺等因素对强度的影响。
关键词:金属基复合材料(MMCs) ;强度;影响因素;相容性;材料设计1 引言国际上的材料专家普遍认为当前人类已经从合成材料的时代进入复合材料时代,因为要想合成一种新的单一材料使之满足各种高要求的综合指标是非常困难的。
金属基复合材料(MMCs) 具有高比强度、高比模量、低热膨胀系数等优异的性能,可广泛应用于民用工业和军事、航空、航天领域,近年来部分产品已经开始工业化生产。
尽管金属基复合材料在过去的30 年里在世界范围内得到了广泛的研究和发展,但是还没有在工业上得到广泛的应用,一般只应用于军事领域,其原因主要在于它的成本高、性能低于期望值、相对较低的稳定性和大的性能波动、不可回收利用、环境污染等几个障碍。
而且目前用现成的无机非金属磨料与已成熟的铝合金相复合的一贯做法显然不符合百年前的合金设计原理,也不是性能的最佳搭配。
目前在国内发展复合材料,关键是要实现低成本、高性能、一致性好、稳定的制备技术和根据力学原理以及使用者的期望设计出令用户满意的性价比的材料。
这就涉及到复合材料的设计问题,而强度是复合材料在工程应用上的一个重要的衡量指标,所以强度的影响因素以及复合材料的强化机理、强度预报一直是研究的热点。
但是由于金属基复合材料的强化机理不明确,至今在金属基复合材料的设计理论上还存在着较大的盲目性。
因此对复合材料强度的影响因素的研究是一个使金属基复合材料走出低谷获得突破的重要课题。
2 影响复合材料强度的因素2.1.1 基体对金属基复合材料强度的影响不同的基体对复合材料的抗拉强度、屈服强度、结合强度有较大的影响。
表面技术第52卷第8期原位纳米颗粒增强AA6016基复合材料超声空化强化后微观组织及性能的变化邹杨,刘海霞,陈杰,欧阳亚东,王雷博(江苏大学 材料科学与工程学院,江苏 镇江 212013)摘要:目的探索铝基复合材料的新型表面强化方法。
方法采用超声空化的方法对原位纳米颗粒增强AA6016铝基复合材料进行强化,使用电子天平、激光共聚焦显微镜、场发射扫描电子显微镜、显微硬度计、X射线衍射仪以及透射电镜对材料质量损失、表面形貌、残余应力、显微硬度、微观组织等方面进行系统地分析。
结果试样的质量损失和表面粗糙度随空化时间的延长而增加,在超声空化处理30 s 后,试样的表面硬度和残余压应力较原样分别提高了89.8%和57.7%,材料内部发生位错增殖,位错相互缠结,并且晶粒排列的取向差增大;当空化时间达到60 s时,显现的晶界数量增加,在晶界处出现材料剥落现象,残余应力被释放。
结论在一定的时间范围内,超声空化可以较为明显地提高材料的表面性能。
在空化泡溃灭产生的多向力作用下,铝基复合材料表面晶粒内会迅速产生大量位错,形成加工硬化层。
位错缠结和增强颗粒的钉扎作用,促使晶粒内部亚晶界的形成,最终导致晶粒细化。
关键词:铝基复合材料;超声空化强化;晶粒细化;残余应力;表面硬度中图分类号:TG178文献标识码:A 文章编号:1001-3660(2023)08-0424-09DOI:10.16490/ki.issn.1001-3660.2023.08.038Variation of Microstructure and Property of In-situNanoparticle-reinforced AA6016 Matrix Composite afterUltrasonic Cavitation StrengtheningZOU Yang, LIU Hai-xia, CHEN Jie, OUYANG Ya-dong, WANG Lei-bo(School of Materials Science and Engineering, Jiangsu University, Jiangsu Zhenjiang 212013, China)ABSTRACT: As a new composite material, in-situ nanoparticle-reinforced AA6016 aluminum matrix composite, has been developed to fulfill the requirements for the manufacturing of aerospace and automotive equipment. Although with high fatigue strength and resistance to external impact, such a material has shortcoming in terms of enduring alternating loads in收稿日期:2022-08-30;修订日期:2022-12-02Received:2022-08-30;Revised:2022-12-02基金项目:国家自然科学基金(52175410)Fund:The National Natural Science Foundation of China (52175410)作者简介:邹杨(1999—),男,硕士研究生,主要研究方向为铝基复合材料的超声空化表面改性。
原位 TiB2颗粒增强 ZL205 铝基复合材料组织控制摘要:通过混合盐反应内生的方法在ZL205铝合金基体中引入TiB2颗粒增强相,研究了TiB2颗粒增强ZL205复合材料铸态和热处理态的显微组织。
研究表明:TiB2颗粒增强ZL205复合材料基本相组成为α-Al相、CuAl2相及TiB2颗粒。
TiB2颗粒内生,改善了二者间的润湿性,促进分散,同时将颗粒增强体尺寸控制在1μm以下。
复合材料坯体挤压,利用晶粒之间的滑动促进颗粒分散,挤压后再进行热处理,促进了颗粒的进一步分散,TiB2颗粒团聚得到改善。
关键词:铝基复合材料;原位生成;微观组织引言金属基复合材料由于膨胀系数低、比刚比强度高等特点,在车辆载具、飞行器和3C电子等行业具有广阔应用前景,其中,颗粒增强铝基复合材料由于具有较低的原材料价格、良好的微观结构、稳定的各向同性性能、简单的制备加工过程等优点,是铝基复材的重要研究热点之一[1-2]。
TiB2颗粒作为增强体在铝基复合材料中备受关注,其具有熔点高、弹性模量高、强度硬度高,以及良好的导热、导电、腐蚀抗性等特点,目前被认为是理想的增强体,再者,TiB2颗粒原位生成具有粒径小、呈等轴状、表面洁净、界面稳定、润湿性好等特性,可提升铝基体的力学性能,已得到广泛的研究报道[3-4]。
Kumar S等人[5]发现,原位合成TiB2/Al7Si复合材料的弹性模量相比母材合金有明显提高。
Han等人[6]通过原位反应法制备TiB2/Al-Si合金复合材料,显著改善了增强相在基体中分布情况。
Wang等人[8]通过改良熔盐法,制备出TiB2/Al复合材料并研究了Ti、B元素收得率。
王浩伟等人[3]通过研究复合材料性能与增强颗粒尺寸、分布均匀性、体积分数等因素的关系,获得复材屈服强度与增强颗粒体积分数关联模型。
目前原位TiB2增强铝基复合材料的研究工作主要聚焦在材料的制备方法及室温力学性能上,基体材料则多为Al-Si系铝合金,较少报道ZL205为代表的Al-Cu系高性能铝合金材料的显微组织和高温力学性能的研究。
⾦属基复合材料以⾦属或合⾦为基体,并以纤维、晶须、颗粒等为增强体的复合材料。
按所⽤的基体⾦属的不同,使⽤温度范围为350~120℃。
其特点在⼒学⽅⾯为横向及剪切强度较⾼,韧性及疲劳等综合⼒学性能较好,同时还具有导热、导电、耐磨、热膨胀系数⼩、阻尼性好、不吸湿、不⽼化和⽆污染等优点。
例如碳纤维增强铝复合材料其⽐强度3~4×107mm,⽐模量为6~8×109mm,⼜如⽯墨纤维增强镁不仅⽐模量可达1.5×1010mm,⽽且其热膨胀系数⼏乎接近零。
⾦属基复合材料按增强体的类别来分类,如纤维增强(包括连续和短切)、晶须增强和颗粒增强等,按⾦属或合⾦基体的不同,⾦属基复合材料可分为铝基、镁基、铜基、钛基、⾼温合⾦基、⾦属间化合物基以及难熔⾦属基复合材料等。
由于这类复合材料加⼯温度⾼、⼯艺复杂、界⾯反应控制困难、成本相对⾼,应⽤的成熟程度远不如树脂基复合材料,应⽤范围较⼩。
树脂基复合材料通常只能在350℃以下的不同温度范围内使⽤。
近些年来正在迅速开发研究适⽤于350℃~1200℃使⽤的各种⾦属基复合材料。
⾦属基复合材料是以⾦属或合⾦为基体与各种增强材料复合⽽制得的复合材料。
增强材料可为纤维状、颗粒状和晶须状的碳化硅、硼、氧化铝及碳纤维。
⾦属基体除⾦属铝、镁外,还发展有⾊⾦属钛、铜、锌、铅、铍超合⾦和⾦属间化合物,及⿊⾊⾦属作为⾦属基体。
⾦属基复合材料除了和树脂基复合材料同样具有⾼强度、⾼模量外,它能耐⾼温,同时不燃、不吸潮、导热导电性好、抗辐射。
是令⼈注⽬的航空航天⽤⾼温材料,可⽤作飞机涡轮发动机和⽕箭发动机热区和超⾳速飞机的表⾯材料。
⽬前不断发展和完善的⾦属基复合材料以碳化硅颗粒铝合⾦发展最快。
这种⾦属基复合材料的⽐重只有钢的1/3,为钛合⾦的2/3,与铝合⾦相近。
它的强度⽐中碳钢好,与钛合⾦相近⽽⼜⽐铝合⾦略⾼。
其耐磨性也⽐钛合⾦、铝合⾦好。
⽬前已⼩批量应⽤于汽车⼯业和机械⼯业。