金属基复合材料
- 格式:doc
- 大小:521.36 KB
- 文档页数:14
现代科学的发展和技术的进步,对材料性能提出了更高的要求,往往希望材料具有某些特殊性能的同时,又具备良好的综合性能。
传统的单一材料已经很难满足这种需要。
因此,人们将注意力转向复合材料,复合材料是指由两种或两种以上成分不同,性质不同,有时形状也不同的相容性材料以物理方式合理的进行复合而制成的一种材料。
其以最大限度的发挥各种材料的特长,并赋予单一材料所不具备的优良性能,复合材料的性能还具有可设计性的重要特征。
作为复合材料重要分支的金属基复合材料(MMCs),发展于20世纪50年代末期或60年代初期。
现代材料方面不但要求强度高,还要求其重量要轻,尤其是在航空航天领域。
金属基复合材料正是为了满足上述要求而诞生的。
1.金属基复合材料的分类金属基复合材料(Metal matrix Composite,简称MMCs)是以陶瓷(连续长纤维、短纤维、晶须及颗粒)为增强材料,金属(如铝、镁、钛、镍、铁、桐等)为基体材料而制备的。
金属基复合材料分为宏观组合型和微观强化型两大类。
前者指其组分能用肉眼识别和具备两组分性能的材料(如双金属、包履板等);后者需显微观察分辨组分以改善成分来提高强度为主要目标的材料。
根据用途分类:(1)结构复合材料:高比强度、高比模量、尺才稳定性、耐热性等是其主要性能特点。
用于制造各种航天、航空、汽车、先进武器系统等高性能结构件。
(2)功能复合材料:高导热、导电性、低膨胀、高阻尼、高耐磨性等物理性能的优化组合是其主要特性,用于电子、仪器、汽车等工业。
强调具有电、热、磁等功能特性。
(3)智能复合材料:强调具有感觉、反应、自监测、自修复等特性。
根据复合材料基体可划分为铝基、镁基、钢基、钛基、高温合金基、金属间化合物基及耐热金属基复合材料等。
按按增强体分类划分为颗粒增强金属基复合材料、层状增强金属基复合材料和纤维增强金属基复合材料。
2.金属基复合材料的性能特点与传统的金属材料相比,金属基复合材料具有较高的比强度与比刚度,而与高分子基复合材料相比,它又具有优良的导电性而耐热性,与陶瓷材料相比,它又具有较高的韧性和较高的抗冲击性能。
金属基复合材料的结构设计金属基复合材料的结构设计,说白了就是把两种或更多种材料的优点混合在一起,搞个“合体”,让他们各自的优点得以发挥,缺点则被弥补掉。
别小看这个组合,做得好的话,可以让材料的性能达到你想象不到的程度,比单纯的金属或者单纯的其他材料强多了。
你可能会想,金属也有好的一面,为什么还要和别的材料搭配呢?说实话,金属虽然强,但也有它的“脾气”,比如耐腐蚀性差、重量重、热膨胀不稳定等等,这时候,你找个合适的材料搭配一下,发挥出一个“1+1>2”的效果,那就太牛了。
举个例子,咱们身边的车子,汽车制造中就经常用到金属基复合材料。
光是车身外壳,用的就是强度高又轻的金属材料。
但是车身也要能抵抗外界的撞击、疲劳等压力,所以里面就要加上一些其它的复合材料,让车身更加稳固。
别看它们在一块儿,实际上这些材料的结构设计是非常讲究的。
要知道,怎么让金属和其他材料“亲密无间”地结合,是需要一定技巧的。
它们之间的界面、温度变化、甚至是细微的分子结构,都会影响最终的表现。
如果设计不当,可能就会出现问题。
想象一下,车子在高速行驶时,外壳的金属和内部的复合材料分道扬镳,那真是“内外不合”,车主可就要担心了。
金属基复合材料的设计需要考虑哪些方面呢?咱们得知道材料的“脾气”,不是什么材料都能轻易融合的。
你看,金属和陶瓷这类材料就不太合得来,它们的膨胀系数差异大,如果强行搭配,很可能会出现热膨胀导致的裂缝。
你说它们不搭配吧,也挺可惜的,因为陶瓷材料耐高温的性能很棒,金属则有很好的加工性和强度。
为了避免出问题,设计师会考虑不同材料之间的相容性,选择那些膨胀率差不多,或者在热应力下也能保持稳定的材料。
然后,金属基复合材料的结构设计还需要考虑它的载荷能力。
举个简单的例子,就像你背书包一样,背的越重,肩膀上的压力越大,书包的肩带就需要更结实,避免拉坏。
而金属基复合材料就是在模拟这种“载重”的情况。
你想,让它既能承受巨大的力量,又不会变形或损坏,怎么设计都得小心。
金属基复合材料的特性金属基复合材料是一种由金属基体和非金属增强相组成的材料。
它具有独特的特性,使其在许多领域得到广泛应用。
本文将介绍金属基复合材料的特性,包括高强度、高刚度、耐磨性、耐腐蚀性和导热性。
1. 高强度金属基复合材料具有较高的强度,这是由于增强相的加入使其具有更好的抗拉强度和屈服强度。
增强相可以是纤维、颗粒或片状材料,如碳纤维、陶瓷颗粒或硼片。
这些增强相的加入可以有效地提高金属基体的强度,使其在承受高载荷时不易发生变形或破裂。
2. 高刚度金属基复合材料的刚度也较高,这是由于增强相的加入使其具有更好的抗弯刚度和剪切刚度。
增强相的加入可以有效地提高金属基体的刚度,使其在受力时不易发生变形或屈曲。
这使得金属基复合材料在需要高刚度的应用中具有优势,如航空航天、汽车和船舶制造等领域。
3. 耐磨性金属基复合材料具有较好的耐磨性,这是由于增强相的加入使其具有更好的耐磨性能。
增强相可以有效地提高金属基体的硬度和耐磨性,使其在摩擦和磨损环境中具有更长的使用寿命。
这使得金属基复合材料在需要耐磨性的应用中得到广泛应用,如机械零件、刀具和轴承等领域。
4. 耐腐蚀性金属基复合材料具有较好的耐腐蚀性,这是由于增强相的加入使其具有更好的耐腐蚀性能。
增强相可以有效地提高金属基体的抗腐蚀能力,使其在腐蚀介质中具有更长的使用寿命。
这使得金属基复合材料在需要耐腐蚀性的应用中得到广泛应用,如化工设备、海洋工程和石油钻探等领域。
5. 导热性金属基复合材料具有较好的导热性,这是由于金属基体的导热性能较好。
金属基体可以有效地传导热量,使其在需要导热性的应用中具有优势,如散热器、电子器件和航空发动机等领域。
综上所述,金属基复合材料具有高强度、高刚度、耐磨性、耐腐蚀性和导热性等特性。
这些特性使得金属基复合材料在许多领域得到广泛应用,如航空航天、汽车、机械制造和化工等领域。
随着科技的不断进步,金属基复合材料的特性将得到进一步的提升和应用拓展。
金属基复合材料制备金属基复合材料是指以金属作为基体,并添加一种或多种金属、非金属或有机物作为增强相,经一系列工艺制备而成的一种新型材料。
金属基复合材料具有金属的导电、导热、强度高等优点,同时又能克服金属材料的缺点,比如低的自重和高的成本。
因此,金属基复合材料具有广泛的应用前景,并被广泛运用于航空航天、汽车制造等领域。
一种常见的制备方法是粉末冶金法。
这种方法首先需要制备金属和增强相的可压粉末,然后通过压制、烧结等工艺将其烧结成块状材料。
具体操作步骤如下:1.混合:将金属和增强相的粉末按一定比例混合均匀,可以使用球磨机等设备进行混合。
2.压制:将混合好的粉末放入模具中,并施加一定的压力,压制成所需形状的绿体。
压制的压力和时间要根据材料的性质进行适当的控制。
3.烧结:将压制好的绿体置于高温炉中进行烧结。
在烧结过程中,金属和增强相之间会发生扩散反应,从而形成金属基复合材料的相。
另一种常见的制备方法是熔体复合法。
这种方法利用金属的熔化性质,在熔融状态下将增强相加入金属中,并通过一系列工艺制备所需的金属基复合材料。
具体操作步骤如下:1.准备金属和增强相:首先需要准备金属和增强相的原材料,可以选择适当的金属粉末、非金属粉末或有机物。
2.混合:将金属和增强相的原材料混合均匀,可以使用球磨机等设备进行混合。
混合时,可以根据需要添加一些助熔剂或增塑剂。
3.加热熔融:将混合好的原材料置于高温炉中进行加热,使其达到熔融状态。
加热温度和时间要根据材料的熔点和熔化性质进行适当的控制。
4.凝固:将熔融状态的金属和增强相冷却至固态,并形成金属基复合材料的块状。
除了上述制备方法,还有其他制备方法,比如穿梭法、叠层法等。
这些制备方法在不同的材料和需求下有不同的适用性。
金属基复合材料制备中需要注意的一些问题包括原材料的选择、混合均匀性、压制参数的选择、烧结温度的控制等。
此外,制备中还需要对所得到的材料进行性能测试和微观结构观察,以进一步确认制备的成功与否,并对其性能进行评估。
金属基复合材料
金属基复合材料是一种由金属基体和其他非金属材料(如陶瓷、碳纤维等)组
成的复合材料。
它具有金属的高强度、刚性和导热性,同时又具有非金属材料的轻量化和耐腐蚀性能。
金属基复合材料在航空航天、汽车制造、电子设备等领域有着广泛的应用。
首先,金属基复合材料的制备方法有多种,其中包括粉末冶金法、热压法、热
处理法等。
粉末冶金法是将金属粉末与非金属粉末混合后,通过压制和烧结得到复合材料。
热压法是将金属基体和非金属材料层叠在一起,然后通过高温和高压进行热压,使两者紧密结合。
热处理法则是将金属基体与非金属材料进行热处理,使其在高温下发生化学反应,形成复合材料。
其次,金属基复合材料具有优异的性能。
首先,它具有高强度和高刚性,能够
承受较大的载荷,因此在航空航天领域得到广泛应用。
其次,金属基复合材料具有良好的导热性和导电性,能够有效地传递热量和电流,因此在电子设备中有着重要的作用。
此外,金属基复合材料还具有耐磨损、耐腐蚀等特性,能够在恶劣环境下长期稳定运行。
最后,金属基复合材料的发展前景广阔。
随着科技的不断进步,金属基复合材
料的制备工艺和性能将不断得到提升,其应用领域也将不断扩大。
未来,金属基复合材料有望在汽车制造、建筑领域等方面发挥更加重要的作用,为人类社会的发展做出更大的贡献。
综上所述,金属基复合材料具有制备方法多样、优异的性能和广阔的发展前景。
它在现代工业中有着重要的地位,为各个领域的发展提供了重要支撑。
相信随着科技的不断进步,金属基复合材料将会迎来更加美好的未来。
金属基复合材料的类型金属基复合材料是一种由金属基体和增强体组成的复合材料。
金属基体通常占据主导地位,承担大部分载荷,而增强体则起到增强材料性能的作用。
根据增强体的类型、形状、尺寸和分布,金属基复合材料可分为多种类型。
以下是几种常见的金属基复合材料类型:1. 按增强体形状分类(1)颗粒增强金属基复合材料:增强体为颗粒状,如陶瓷颗粒、金属颗粒等。
这种复合材料具有较好的韧性和耐磨性,但强度和刚度相对较低。
(2)纤维增强金属基复合材料:增强体为纤维状,如碳纤维、玻璃纤维、硼纤维等。
这种复合材料具有较高的强度和刚度,但韧性和耐磨性相对较低。
(3)晶须增强金属基复合材料:增强体为晶须状,如氧化铝晶须、碳化硅晶须等。
这种复合材料具有较高的强度和刚度,较好的韧性和耐磨性。
2. 按增强体材料分类(1)陶瓷增强金属基复合材料:增强体为陶瓷材料,如氧化铝、碳化硅等。
这种复合材料具有较高的硬度和耐磨性,但韧性较低。
(2)金属增强金属基复合材料:增强体为金属材料,如不锈钢、钛合金等。
这种复合材料具有较高的强度和韧性,但耐磨性相对较低。
(3)塑料增强金属基复合材料:增强体为塑料材料,如聚四氟乙烯、聚酰亚胺等。
这种复合材料具有良好的耐磨性和耐腐蚀性,但强度和刚度较低。
3. 按增强体分布方式分类(1)连续增强金属基复合材料:增强体呈连续分布,如纤维增强金属基复合材料。
这种复合材料具有较高的强度和刚度,但韧性和耐磨性相对较低。
(2)非连续增强金属基复合材料:增强体呈非连续分布,如颗粒增强金属基复合材料。
这种复合材料具有较好的韧性和耐磨性,但强度和刚度相对较低。
4. 按制备工艺分类(1)铸造法制备的金属基复合材料:采用铸造工艺将增强体与金属基体结合,如陶瓷颗粒增强铝基复合材料。
(2)粉末冶金法制备的金属基复合材料:采用粉末冶金工艺将增强体与金属基体结合,如碳纤维增强铜基复合材料。
(3)热压法制备的金属基复合材料:采用热压工艺将增强体与金属基体结合,如碳化硅晶须增强钛基复合材料。
金属基复合材料名词解释
嘿,你知道啥是金属基复合材料不?这可不是什么普通玩意儿啊!咱就说金属,那可是老重要了,像钢铁啦,铝合金啦,那都是在生活中到处都能看到的。
那金属基复合材料呢,就是把这些金属和其他的材料奇妙地组合在一起!比如说,把陶瓷颗粒加进去,哇塞,就好像给金属注入了一股强大的力量。
就好比啊,金属是个强壮的大力士,陶瓷颗粒就是给他配备的秘密武器,让他变得更厉害、更强大!你想想看,一辆汽车,要是用了金属基复合材料,那得多结实,多耐用啊!又或者飞机上的一些部件,用上这种材料,那安全性不就蹭蹭往上涨嘛!
再来说说这金属基复合材料的优点,那可真是多得让你惊叹!它强度高啊,比单纯的金属可强多了,这就像一个普通人经过特训后变成了超级英雄!而且它还耐磨、耐高温,这不就是传说中的“金刚不坏之身”嘛!你说牛不牛?
那它是怎么被制造出来的呢?这可不是随便就能搞定的事儿哦!需要经过一系列复杂的工艺,就像雕琢一件珍贵的艺术品一样。
科研人员们可是花费了大量的心血在这上面呢。
还有啊,它的应用范围那叫一个广!从航空航天到汽车制造,从电子设备到医疗器械,到处都有它的身影。
这就好像一个全能选手,哪里需要它,它就出现在哪里!你说神奇不神奇?
我觉得金属基复合材料就是材料界的一颗璀璨明星,它的出现给我们的生活带来了巨大的改变和进步,难道不是吗?。
金属基复合材料的制备技术
金属基复合材料是指通过将金属基体(主要由金属构成)与其他非金属材料(如陶瓷、聚合物等)相结合而形成的新材料。
这种材料具有金属的优良机械性能和非金属材料的特殊性能,被广泛应用于航空航天、汽车工业等领域。
制备金属基复合材料的技术包括粉末冶金法、表面增强方法和熔融混合法等。
粉末冶金法是制备金属基复合材料的一种常用方法。
该方法通过将金属和非金属粉末混合均匀,并在高压下通过热压或烧结等工艺,使粉末颗粒相互结合,形成具有金属基体和非金属颗粒分布均匀的复合材料。
该方法适用于制备高温强度、磨损性能要求较高的金属基复合材料。
表面增强方法是制备金属基复合材料的另一种常见方法。
该方法通过在金属表面涂覆一层非金属材料,如陶瓷、聚合物等,从而增强金属的力学性能、抗磨损性能、耐腐蚀性能等。
该方法可以通过喷涂、电沉积、热处理等手段实现。
熔融混合法是制备金属基复合材料的一种较为简单有效的方法。
该方法通常采用熔融、熔体热处理以及凝固等过程,将金属和非金属材料进行混合,然后通过冷却凝固使其形成金属基复合材料。
该方法适用于制备具有特殊物理性质要求的金属基复合材料。
除了上述方法外,还有其他一些特殊的制备技术可应用于金属基复合材料的制备。
例如,骨架熔渗法通过在金属骨架上填充非金属材料,并通过液相渗透使非金属材料与金属骨架紧密结合;金属转变法是一种通过在金属基体中形成间晶相,改变金属的熔点和机械性能的方法。
总之,金属基复合材料的制备技术多种多样,适用于不同的复合材料和应用领域。
通过选择合适的制备方法,可以制备出具有优异性能的金属基复合材料,满足不同领域的需求。
金属基复合材料
金属基复合材料(Metal Matrix Composites,MMC)是指用金
属作为基体,加入一定比例的增强材料,经过加工制备成具有优异性能和特点的复合材料。
金属基复合材料能够综合了金属的导热性、导电性和良好的可塑性,以及增强材料的高强度、高硬度和高耐磨性。
这使得金属基复合材料在许多领域具有广泛的应用。
金属基复合材料可以通过不同的方法制备,其中最常见的方法是粉末冶金法。
在这种方法中,将金属基体和增强材料的粉末按照一定比例混合,并通过热等静压、热变形等工艺进行成型。
然后经过热处理和后续的加工工艺,得到具有一定结构和性能的金属基复合材料。
金属基复合材料具有许多优点。
首先,金属基复合材料具有较高的强度和硬度,使其能够承受更大的力和压力。
其次,金属基复合材料具有优异的耐腐蚀性能,使其在恶劣环境下能够长期稳定运行。
此外,金属基复合材料还具有良好的抗疲劳性能和热膨胀性能,可以适应不同的工作条件和温度变化。
金属基复合材料在汽车、航空航天、电子、建筑以及军工等领域得到广泛应用。
在汽车领域,金属基复合材料可以用于制造发动机零部件、车身结构件和刹车系统等。
在航空航天领域,金属基复合材料可以用于制造发动机叶片、航空航天结构件和燃气轮机等。
在电子领域,金属基复合材料可以用于制造散热器、连接器和电子封装材料等。
在建筑领域,金属基复合材料
可以用于制造抗疲劳、抗震和耐久的结构材料。
总之,金属基复合材料是一种具有优异性能和特点的复合材料,广泛应用于各个领域。
随着科学技术的不断发展,相信金属基复合材料将会有更加广泛的应用前景。
1、复合材料的定义和分类是什么?定义:是由两种或多种不同类型、不同性质、不同相材料,运用适当的方法,将其组合成具有整体结构、性能优异的一类新型材料体系。
分类:按用途可分为:功能复合材料和结构复合材料。
结构复合材料占了绝大多数。
按基体材料类型分类可分为:聚合物基复合材料、金属基复合材料、无机非金属基复合材料(包括陶瓷基复合材料、水泥基复合材料、玻璃基复合材料)按增强材料形态可分为:纤维增强复合材料(包括连续纤维和不连续纤维)、颗粒增强复合材料、片材增强复合材料、层叠式复合材料。
3、金属基复合材料增强体的特性及分类有哪些?增强物是金属基复合材料的重要组成部分,具有以下特性:1)能明显提高金属基体某种所需特性:高的比强度、比模量、高导热性、耐热性、耐磨性、低热膨胀性等,以便赋予金属基体某种所需的特性和综合性能;2)具有良好的化学稳定性:在金属基复合材料制备和使用过程中其组织结构和性能不发生明显的变化和退化;3)有良好的浸润性:与金属有良好的浸润性,或通过表面处理能与金属良好浸润,基体良好复合和分布均匀。
此外,增强物的成本也是应考虑的一个重要因素。
分类:纤维类增强体(如:连续长纤维、短纤维)、颗粒类增强体、晶须类增强体、其它增强体(如:金属丝)。
4、金属基复合材料基体的选择原则有哪些? 1)、金属基复合材料的使用要求;2)、金属基复合材料组成的特点;3)、基体金属与增强物的相容性。
5、金属基复合材料如何设计?复合材料设计问题要求确定增强体的几何特征(连续纤维、颗粒等)、基体材料、增强材料和增强体的微观结构以及增强体的体积分数。
一般来说,复合材料及结构设计大体上可分为如下步骤:1)对环境与负载的要求:机械负载、热应力、潮湿环境 2)选择材料:基体材料、增强材料、几何形状 3)成型方法、工艺、过程优化设计 4)复合材料响应:应力场、温度场等、设计变量优化 5)损伤及破坏分析:强度准则、损伤机理、破坏过程6、金属基复合材料制造中的关键技术问题有哪些?1)加工温度高,在高温下易发生不利的化学反应。
在加工过程中,为了确保基体的浸润性和流动性,需要采用很高的加工温度(往往接近或高于基体的熔点)。
在高温下,基体与增强材料易发生界面反应,有时会发生氧化生成有害的反应产物。
这些反应往往会对增强材料造成损害,形成过强结合界面。
过强结合界面会使材料产生早期低应力破坏。
高温下反应产物通常呈脆性,会成为复合材料整体破坏的裂纹源。
因此控制复合材料的加工温度是一项关键技术。
2)增强材料与基体浸润性差是金属基复合材料制造的又一关键技术,绝大多数的金属基复合材料如:碳/铝、碳/镁、碳化硅/铝、氧化铝/铜等,基体对增强材料浸润性差,有时根本不发生润湿现象。
3)按结构设计需求,使增强材料按所需方向均匀地分布于基体中也是金属基复合材料制造中的关键技术之一。
增强材料的种类较多,如短纤维、晶须、颗粒等,也有直径较粗的单丝,直径较细的纤维束等。
在尺寸形态、理化性能上也有很大差异,使其均匀地、或按设计强度的需要分布比较困难。
7、金属基复合材料的成形加工技术有哪些? 1)铸造成型,按增强材料和金属液体的混合方式不同可分为搅拌铸造成型、正压铸造成型、铸造成型。
2)塑性成形,包括铝基复合材料的拉伸塑性、金属基复合材料的高温压缩变形、铝基复合材料的轧制塑性、铝基复合材料的挤压塑性、金属基复合材料的蠕变性能、非连续增强金属基复合材料的超塑性(包括组织超塑性、相变超塑性、其他超塑性)。
3)连接,具体又可分为:应用于MMCs 的常规连接技术(包括熔融焊接、固相连接、钎焊、胶粘),新型MMCs 连接技术(包括等离子喷涂法、快速红外连接法(RIJ )),机械切削加工(包括5.4.1 SiCw/Al复合材料的切削加工、(Al3Zr+Al2O3)P/ZL101A原位复合材料的切削加工)。
8、金属基复合材料的各种界面结合机制?1)机械结合:基体与增强物之间纯粹靠机械连接的一种结合形式,由粗糙的增强物表面及基体的收缩产生的摩擦力完成;2)溶解和润湿结合:基体与增强物之间发生润湿,并伴随一定程度的相互溶解而产生的一种结合形式;3)反应结合:基体与增强物之间发生化学反应,在界面上形成化合物而产生的一种结合形式;4)交换反应结合:基体与增强物之间,除发生化学反应在界面上形成化合物外,还有通过扩散发生元素交换的一种结合形式;5)氧化物结合:这种结合实际上是反应结合的一种特殊情况;6)混合结合:这种结合是最重要、最普遍的结合形式之一,因为在实际的复合材料中经常同时存在几种结合形式。
9、影响金属基复合材料性能的关键因素?损伤及失效机制?性能影响因素:基体影响、增强体影响、基体和增强体相容性的影响、工艺的影响、界面的影响。
金属基复合材料的损伤与失效通常包括三种形式:增强相的断裂导致的基体塑性失效,增强相和基体之间界面的脱开导致的基体塑性失效,基体内孔洞的成核、长大与汇合导致的基体塑性失效。
10、金属基复合材料的应用及发展趋势?制约其应用的关键问题?金属基复合材料自进入工业应用发展阶段以来,逐步拓宽了应用范围,大体有以下应用:1)在航天领域的应用:连续纤维增强金属基复合材料在航天器上的应用,铝基复合材料在导弹中的应用,铝基复合材料在航天领域的其他应用;2)在汽车工业上的应用:在内燃机方面的应用,在制动系统上的应用;3)在电子封装领域的应用。
其发展趋势集中在以下方面:完善非连续增强金属基复合材料体系,重点发展高性能低成本非连续增强金属基复合材料,开展非连续增强金属基复合材料制备科学基础和制备工艺方法研究,开展非连续增强金属基复合材料热处理技术的研究,开展非连续增强金属基复合材料高温塑性变形和高速超塑性研究,开展非连续增强金属基复合材料的机械加工研究,开展非连续增强金属基复合材料在不同环境下的行为研究,开展非连续增强金属基复合材料的连接技术研究。
有许多因素与金属基复合材料(MMCs )的大规模应用相关联,原材料制备方法、二次加工、回收能力、质量控制技术等都制约着MMCs 的应用。
从MMCs 在汽车和航空、航天领域中的应用来看,应用成本是主要的制约因素,而增强体的成本高是造成复合材料应用成本居高不下的主要原因。
具体关键问题有:增强体的选择问题、生产数量、局部增强手段、二次加工性能、回收能力、质量控制体系。
11、什么是SHS法原位生成技术,举例说明其过程。
其基本原理是:将增强相的组分原料与金属粉末混合,压坯成型,在真空或惰性气氛中预热引燃,使组分之间发生放热化学反应,放出的热量、引起未反应的邻近部分继续反应,直至全部完成。
反应生成物即为增强相呈弥散分布于基体中,颗粒尺寸可达亚微米级。
其典型工艺为:利用合金熔体的高温引燃铸型中的固体SHS系,通过控制反应物和生成物的位置,在铸件表面形成复合涂层,它可使SHS材料合成与致密化、铸件的成形与表面涂层的制备同时完成。
潘复生等人将SHS技术和铸渗工艺相结合,制备了颗粒增强的铁基复合材料涂层。
在这种工艺中,SHS过程使基体产生一定数量的增强颗粒,而随后的熔铸过程则利用高温金属液的流动,对SHS过程中易产生的孔隙进行充填,因此两个过程的综合作用下获得较为致密的复合材料。
12、什么是LSM法原位生成技术,举例说明其过程。
其基本原理是将含有Ti和B的盐类(如KBF4和K2TiF6)混合后,加入到高温的金属熔体中,在高温作用下,所加盐中的Ti和B就会被金属还原出来而在金属熔体中反应形成TiB2增强粒子,扒去不必要的的副产物,浇注冷却后即获得了原位TiB2增强的金属基复合材料。
13、金属基复合材料的界面优化和控制途径有哪些?1)对增强材料进项表面涂层处理:在增强材料组元上预先涂层以改善增强材料与基体的浸润性,同时涂层还应起到防止发生反应阻挡层的作用;2)选择金属元素:改善基体的合金成分,造成某一元素在界面上富集形成阻挡层来控制界面反应,尽量选择避免易参与界面反应生成脆硬界面相、造成强界面结合的合金元素;3)优化制备工艺和参数,金属基复合材料的界面反应程度主要取决于制备方法和工艺参数,因此优化制备工艺和严格控制工艺参数是优化界面结构和控制界面反应发应的有效途径。
14、汽车、摩托车的刹车盘原来采用铸铁材料,查找相关资料并结合你的思考,分析其工作条件和提出其性能要求,然后指出你选用或设计何种复合材料并说明,最后提出你的制备思路。
汽车、摩托车的刹车盘工作在高温、高压下,摩擦的条件下,磨损非常严重。
因此刹车盘应该具有耐磨、耐高温(良好的导热性)、抗疲劳性等性能。
综合其工作条件及满足其性能要求,我们可以选用颗粒增强型铝基复合材料。
选用的增强体颗粒是SiCP,制备方法为真空压力浸渍法。
因为颗粒增强铝,得到的材料具有耐一定的高温,耐磨,导热性好,抗疲劳性好的优点。
制备思路:同下图15、集成电路现在应用广泛,现在集成电路现在越来越来越高,功率越来越大,为保证其可靠性,查找相关资料并结合你的思考,分析其工作条件和提出其性能要求,然后指出你选用和设计何种复合材料并说明理由,最后提出你的制备思路。
集成电路长时间高负荷运转,因此本身处于较高温度条件下,因此需要寻找高导热系数的材料作为分装基材,但这种材料还需要同时满足与电路硅片及基绝缘陶瓷基板的热膨胀系数(CTE)相匹配的要求,否则会因热失配形成残余应力损害电路。
因此可以选用真空压力浸渍法进行了碳化硅颗粒增强铝封装器件。
基体是铝,增强颗粒是碳化硅。
这种铝基复合材料导热系数高,并且能与电路硅片和基绝缘陶瓷基板热膨胀系数相匹配,满足集成电路所需要的性能要求。
1.内生增强的金属基复合材料具有如下特点(第5页):1)增强体是从金属基体中原位形核、长大的热力学稳定相,因此,增强体表面无污染,避免了与基体相容性不良的问题,且界面结合强度高。
2)通过合理选择反应元素(或化合物)的类型、成分及其反应性,可有效地控制原位生成增强体的种类、大小、分布和数量。
3)省去了增强体单独合成、处理和加入等工序,因此,其工艺简单,成本较低。
4)从液态金属基体汇总原位形成增强体的工艺,可用铸造方法制备形状复杂、尺寸较大的近净成形构件。
5)在保证材料具有较好的韧性和高温性能的同时,可较大幅度地提高材料的强度和弹性模量。
2.金属基复合材料特性(第5页):高比强度,高比模量良好的导电导热性能热膨胀系数小,尺寸稳定性好良好的高温性能耐磨性能好良好的疲劳性能和断裂韧度不吸潮,不老化,气密性好1.增强体的作用(第8页)增强体是金属基复合材料的重要组成部分,它起着提高金属基体的强度、模量、耐热性、耐磨性等性能的作用。
2.选择增强体的主要考虑因素(5个)(原则)(1)力学性能:杨氏模量和塑性强度;(2)物理性能:密度和热扩散系数;(3)几何特性:形貌和尺寸;(4)物理化学相容性;(5)成本因素。