金属基复合材料的种类与性能
- 格式:doc
- 大小:18.00 KB
- 文档页数:2
复合材料中的基体材料复合材料是由两种或更多种不同材料组成的材料,其中一种材料称为基体材料。
基体材料在复合材料中起到支撑和固定增强材料(通常是纤维或颗粒)的作用。
基体材料的选择对复合材料的性能和应用起着至关重要的作用。
下面将介绍一些常见的基体材料及其特点。
1.金属基体材料:金属基体材料主要是指铝、镁、钛等金属材料。
金属基复合材料具有高强度、高刚度、优良的导热性、良好的耐腐蚀性和可加工性等优点。
金属基复合材料广泛应用于航空航天、汽车工业、船舶制造和建筑等领域。
2.高分子基体材料:高分子基体材料主要是指树脂类材料,如环氧树脂、聚酯树脂、聚酰亚胺等。
高分子基复合材料具有重量轻、绝缘性能好、抗腐蚀性能好等特点。
高分子基复合材料广泛应用于航空航天、汽车工业、电子电器等领域。
3.陶瓷基体材料:陶瓷基体材料主要是指氧化铝、氧化硅、碳化硅等无机材料。
陶瓷基复合材料具有高硬度、高耐磨性、抗高温等特点。
陶瓷基复合材料广泛应用于制造耐火材料、摩擦材料和高温结构材料等领域。
4.碳基体材料:碳基体材料主要是指碳纤维、炭黑等碳材料。
碳基复合材料具有重量轻、高强度、高刚度、耐高温、导电性能好等特点。
碳基复合材料广泛应用于航空航天、汽车工业、体育器材等领域。
5.纳米基体材料:纳米基体材料主要是指纳米颗粒、纳米管、纳米片等纳米材料。
纳米基复合材料具有独特的物理、化学和力学性能,如高强度、高硬度、低摩擦系数等。
纳米基复合材料在材料科学领域具有重要的应用前景。
总之,基体材料是复合材料中重要的组成部分,其种类和性能直接影响着复合材料的性能和应用范围。
随着科技的发展,不断有新型的基体材料涌现,为复合材料的开发和应用带来了新的可能性。
现代科学的发展和技术的进步,对材料性能提出了更高的要求,往往希望材料具有某些特殊性能的同时,又具备良好的综合性能。
传统的单一材料已经很难满足这种需要。
因此,人们将注意力转向复合材料,复合材料是指由两种或两种以上成分不同,性质不同,有时形状也不同的相容性材料以物理方式合理的进行复合而制成的一种材料。
其以最大限度的发挥各种材料的特长,并赋予单一材料所不具备的优良性能,复合材料的性能还具有可设计性的重要特征。
作为复合材料重要分支的金属基复合材料(MMCs),发展于20世纪50年代末期或60年代初期。
现代材料方面不但要求强度高,还要求其重量要轻,尤其是在航空航天领域。
金属基复合材料正是为了满足上述要求而诞生的。
1.金属基复合材料的分类金属基复合材料(Metal matrix Composite,简称MMCs)是以陶瓷(连续长纤维、短纤维、晶须及颗粒)为增强材料,金属(如铝、镁、钛、镍、铁、桐等)为基体材料而制备的。
金属基复合材料分为宏观组合型和微观强化型两大类。
前者指其组分能用肉眼识别和具备两组分性能的材料(如双金属、包履板等);后者需显微观察分辨组分以改善成分来提高强度为主要目标的材料。
根据用途分类:(1)结构复合材料:高比强度、高比模量、尺才稳定性、耐热性等是其主要性能特点。
用于制造各种航天、航空、汽车、先进武器系统等高性能结构件。
(2)功能复合材料:高导热、导电性、低膨胀、高阻尼、高耐磨性等物理性能的优化组合是其主要特性,用于电子、仪器、汽车等工业。
强调具有电、热、磁等功能特性。
(3)智能复合材料:强调具有感觉、反应、自监测、自修复等特性。
根据复合材料基体可划分为铝基、镁基、钢基、钛基、高温合金基、金属间化合物基及耐热金属基复合材料等。
按按增强体分类划分为颗粒增强金属基复合材料、层状增强金属基复合材料和纤维增强金属基复合材料。
2.金属基复合材料的性能特点与传统的金属材料相比,金属基复合材料具有较高的比强度与比刚度,而与高分子基复合材料相比,它又具有优良的导电性而耐热性,与陶瓷材料相比,它又具有较高的韧性和较高的抗冲击性能。
金属基复合材料的主要特点金属基复合材料(Metal Matrix Composites, MMCs)是一种由金属或合金作为基体,与一种或多种其他材料(如陶瓷、石墨、碳纤维等)作为增强相组成的复合材料。
这种材料结合了金属和非金属材料的优点,具有许多独特的性能特点。
以下将详细阐述金属基复合材料的主要特点,包括其力学性能、热稳定性、耐磨性、抗腐蚀性以及设计灵活性等方面。
一、优异的力学性能金属基复合材料最显著的特点之一是其优异的力学性能。
由于金属基体具有良好的韧性和塑性,而增强相则具有高强度和高刚度,因此金属基复合材料在保持金属基体良好塑性的同时,能够显著提高材料的强度和刚度。
这种优异的力学性能使得金属基复合材料在航空航天、汽车、机械等领域具有广泛的应用前景。
二、良好的热稳定性金属基复合材料通常具有良好的热稳定性,能够在高温环境下保持较好的力学性能。
这是因为金属基体本身具有较好的导热性和热膨胀性,而增强相则能够有效地阻碍热裂纹的扩展。
因此,金属基复合材料在高温环境下具有较好的结构稳定性和耐久性,适用于高温工况下的结构件和零部件。
三、出色的耐磨性由于增强相的加入,金属基复合材料的硬度和耐磨性得到了显著提高。
在摩擦过程中,增强相能够有效地承受和分散载荷,减少磨损和剥落。
因此,金属基复合材料在摩擦磨损严重的场合(如轴承、齿轮等)具有广泛的应用前景。
四、优异的抗腐蚀性金属基复合材料中的增强相通常具有较好的化学稳定性,能够有效地提高材料的抗腐蚀性能。
此外,通过合理的成分设计和表面处理,还可以进一步提高金属基复合材料的耐腐蚀性能。
这使得金属基复合材料在化工、海洋等腐蚀环境中具有广阔的应用前景。
五、设计灵活性高金属基复合材料的设计灵活性较高,可以通过调整基体和增强相的成分、含量和分布来实现对材料性能的定制和优化。
例如,通过改变增强相的种类、形状和取向,可以调整材料的强度和刚度;通过调整基体的成分和处理工艺,可以改善材料的塑性和韧性。
金属层状复合材料与金属基复合材料一、金属层状复合材料与金属基复合材料的概念与分类1.1 金属层状复合材料的定义与特点金属层状复合材料是由多层金属片通过堆叠、压制或焊接等工艺制备而成的一类复合材料。
其具有以下特点: - 高强度和刚度:由于金属片的堆叠层数多,可以提高材料的强度和刚度。
- 轻质:相比传统的实心金属材料,金属层状复合材料的重量更轻。
- 耐高温:金属层状复合材料通常由高温合金制备,具有良好的高温性能。
- 优异的抗疲劳性能:金属层状复合材料能够承受长时间的重复加载而不容易疲劳破坏。
1.2 金属基复合材料的定义与特点金属基复合材料是以金属为基体,通过添加一定量的非金属相(如陶瓷颗粒、纤维等)形成的复合材料。
其具有以下特点: - 高强度和硬度:添加非金属相后可以显著提高材料的强度和硬度。
- 低密度:相对于普通金属材料,金属基复合材料的密度更低,有利于减轻结构负荷。
- 耐磨损性能:添加的非金属相可以增加金属基复合材料的耐磨损性能。
- 良好的导热性能:金属基复合材料具有良好的导热性能,适用于高温工况。
二、金属层状复合材料的制备方法与应用领域2.1 金属层状复合材料的制备方法2.1.1 堆叠法通过将多层金属片按一定顺序堆叠在一起,并加热至一定温度进行压制,形成金属层状复合材料。
### 2.1.2 焊接法利用金属的焊接工艺将多层金属片进行连接,形成金属层状复合材料。
### 2.1.3 粘结法通过在金属片之间涂布粘结剂,然后将金属片经过压制黏合在一起,形成金属层状复合材料。
2.2 金属层状复合材料的应用领域•航空航天领域:金属层状复合材料具有优异的强度和轻质特性,适用于航空航天结构件的制造,如飞机机身、发动机部件等。
•汽车领域:金属层状复合材料可以用于制造汽车车身结构,降低整车的重量,提高燃油经济性。
•建筑领域:金属层状复合材料的高强度和刚度特性,使其成为建筑结构中的重要材料,如大跨度屋顶、桥梁等。
分层铸造金属基复合材料是一种将不同材料通过铸造工艺结合在一起,以达到各种性能要求的高效方法。
这种技术在航空、汽车、能源等行业中有着广泛的应用前景。
以下是关于分层铸造金属基复合材料的详细介绍。
1. 分层铸造金属基复合材料的概念分层铸造金属基复合材料是指通过铸造工艺将两种或两种以上不同的材料制成具有分层结构的复合材料。
这些材料一层层叠加,每一层都可以根据需要设计不同的性能,如强度、硬度、耐腐蚀性等,从而使得最终的复合材料具有优异的综合性能。
2. 分层铸造技术的类型分层铸造技术主要包括但不限于以下几种:- 重力铸造:利用重力将熔融金属倒入模具中,适用于不太复杂的零件形状。
- 压力铸造:通过外力(通常是气压或液压)将熔融金属压入模具,适合生产形状复杂、尺寸精确的零件。
- 离心铸造:利用离心力将熔融金属注入旋转的模具,常用于生产对称形状的零件。
- 低压铸造:通过在熔融金属下方施加压力,使金属缓慢上升填充模具,适用于要求较高的铸件。
3. 材料选择与设计在分层铸造金属基复合材料过程中,材料的选择至关重要。
通常,选择材料时需要考虑以下因素:- 物理性能:如密度、熔点、导热性等。
- 化学性能:如耐腐蚀性、稳定性等。
- 机械性能:如强度、硬度、韧性等。
- 经济性:成本也是选择材料时必须考虑的重要因素。
设计时,还需要考虑到各层材料间的相容性,以及在铸造过程中可能发生的化学反应、热膨胀等问题。
4. 制造过程分层铸造金属基复合材料的制造过程大致可以分为以下几个步骤:1. 设计和准备:根据产品需求设计复合材料的结构,选择合适的材料,并准备相应的铸造模具。
2. 熔炼和处理:将选定的金属材料熔炼并进行适当的温度、成分调整,确保材料的质量。
3. 分层铸造:按照设计要求,通过铸造工艺将不同材料逐层铸造成型。
这一步骤可能需要特殊的技术和设备来控制材料之间的界面质量。
4. 后处理:包括去除浇口、打磨、热处理、表面处理等,以达到最终产品的要求。
金属基复合材料的现状与发展趋势金属基复合材料是指将金属作为基体材料,与其他非金属材料(如陶瓷、复合材料纤维等)进行复合制备的材料。
目前,金属基复合材料在诸多领域中得到了广泛的应用,包括航空航天、汽车、电子、建筑等。
金属基复合材料的现状主要体现在以下几个方面:1. 材料种类丰富:金属基复合材料的种类非常多样,包括金属基陶瓷复合材料、金属基纤维复合材料、金属基聚合物复合材料等。
不同种类的金属基复合材料具有不同的特性和应用领域。
2. 性能优良:金属基复合材料具有金属和非金属材料的优势,综合性能较好。
例如,金属基纤维复合材料具有较高的强度和刚度,金属基陶瓷复合材料具有较高的耐磨性和耐高温性能。
3. 制备技术成熟:金属基复合材料的制备技术已经较为成熟,包括热压、热等静压、粉末冶金、特殊金属/陶瓷涂覆等多种制备方法。
这些方法能够制备出具有均匀组织结构和良好性能的金属基复合材料。
未来,金属基复合材料的发展趋势主要包括以下几点:1. 变革材料设计:研究人员将继续探索金属基复合材料的设计、制备和性能调控方法,以实现更好的性能和应用。
例如,通过优化复合材料的界面结构和增加金属间化合物相的形成,进一步提高复合材料的力学性能和耐磨性能。
2. 发展新型金属基复合材料:随着科学技术的不断进步,新型金属基复合材料将不断涌现。
例如,碳纳米管增强金属基复合材料、石墨烯增强金属基复合材料等具有很高研究和应用价值。
3. 应用拓展:金属基复合材料在航空航天、汽车、电子等领域的应用将进一步拓展。
例如,开发具有轻质、高强度和高温耐受性能的复合材料,可用于制造飞机、汽车零件、电子器件等。
金属基复合材料具有广阔的应用前景,并且随着技术的发展和研究的深入,其性能和应用将得到进一步提高和扩展。
⾦属基复合材料以⾦属或合⾦为基体,并以纤维、晶须、颗粒等为增强体的复合材料。
按所⽤的基体⾦属的不同,使⽤温度范围为350~120℃。
其特点在⼒学⽅⾯为横向及剪切强度较⾼,韧性及疲劳等综合⼒学性能较好,同时还具有导热、导电、耐磨、热膨胀系数⼩、阻尼性好、不吸湿、不⽼化和⽆污染等优点。
例如碳纤维增强铝复合材料其⽐强度3~4×107mm,⽐模量为6~8×109mm,⼜如⽯墨纤维增强镁不仅⽐模量可达1.5×1010mm,⽽且其热膨胀系数⼏乎接近零。
⾦属基复合材料按增强体的类别来分类,如纤维增强(包括连续和短切)、晶须增强和颗粒增强等,按⾦属或合⾦基体的不同,⾦属基复合材料可分为铝基、镁基、铜基、钛基、⾼温合⾦基、⾦属间化合物基以及难熔⾦属基复合材料等。
由于这类复合材料加⼯温度⾼、⼯艺复杂、界⾯反应控制困难、成本相对⾼,应⽤的成熟程度远不如树脂基复合材料,应⽤范围较⼩。
树脂基复合材料通常只能在350℃以下的不同温度范围内使⽤。
近些年来正在迅速开发研究适⽤于350℃~1200℃使⽤的各种⾦属基复合材料。
⾦属基复合材料是以⾦属或合⾦为基体与各种增强材料复合⽽制得的复合材料。
增强材料可为纤维状、颗粒状和晶须状的碳化硅、硼、氧化铝及碳纤维。
⾦属基体除⾦属铝、镁外,还发展有⾊⾦属钛、铜、锌、铅、铍超合⾦和⾦属间化合物,及⿊⾊⾦属作为⾦属基体。
⾦属基复合材料除了和树脂基复合材料同样具有⾼强度、⾼模量外,它能耐⾼温,同时不燃、不吸潮、导热导电性好、抗辐射。
是令⼈注⽬的航空航天⽤⾼温材料,可⽤作飞机涡轮发动机和⽕箭发动机热区和超⾳速飞机的表⾯材料。
⽬前不断发展和完善的⾦属基复合材料以碳化硅颗粒铝合⾦发展最快。
这种⾦属基复合材料的⽐重只有钢的1/3,为钛合⾦的2/3,与铝合⾦相近。
它的强度⽐中碳钢好,与钛合⾦相近⽽⼜⽐铝合⾦略⾼。
其耐磨性也⽐钛合⾦、铝合⾦好。
⽬前已⼩批量应⽤于汽车⼯业和机械⼯业。
金属基复合材料
金属基复合材料是一种由金属基体和其他非金属材料(如陶瓷、碳纤维等)组
成的复合材料。
它具有金属的高强度、刚性和导热性,同时又具有非金属材料的轻量化和耐腐蚀性能。
金属基复合材料在航空航天、汽车制造、电子设备等领域有着广泛的应用。
首先,金属基复合材料的制备方法有多种,其中包括粉末冶金法、热压法、热
处理法等。
粉末冶金法是将金属粉末与非金属粉末混合后,通过压制和烧结得到复合材料。
热压法是将金属基体和非金属材料层叠在一起,然后通过高温和高压进行热压,使两者紧密结合。
热处理法则是将金属基体与非金属材料进行热处理,使其在高温下发生化学反应,形成复合材料。
其次,金属基复合材料具有优异的性能。
首先,它具有高强度和高刚性,能够
承受较大的载荷,因此在航空航天领域得到广泛应用。
其次,金属基复合材料具有良好的导热性和导电性,能够有效地传递热量和电流,因此在电子设备中有着重要的作用。
此外,金属基复合材料还具有耐磨损、耐腐蚀等特性,能够在恶劣环境下长期稳定运行。
最后,金属基复合材料的发展前景广阔。
随着科技的不断进步,金属基复合材
料的制备工艺和性能将不断得到提升,其应用领域也将不断扩大。
未来,金属基复合材料有望在汽车制造、建筑领域等方面发挥更加重要的作用,为人类社会的发展做出更大的贡献。
综上所述,金属基复合材料具有制备方法多样、优异的性能和广阔的发展前景。
它在现代工业中有着重要的地位,为各个领域的发展提供了重要支撑。
相信随着科技的不断进步,金属基复合材料将会迎来更加美好的未来。
金属基复合材料的类型金属基复合材料是一种由金属基体和增强体组成的复合材料。
金属基体通常占据主导地位,承担大部分载荷,而增强体则起到增强材料性能的作用。
根据增强体的类型、形状、尺寸和分布,金属基复合材料可分为多种类型。
以下是几种常见的金属基复合材料类型:1. 按增强体形状分类(1)颗粒增强金属基复合材料:增强体为颗粒状,如陶瓷颗粒、金属颗粒等。
这种复合材料具有较好的韧性和耐磨性,但强度和刚度相对较低。
(2)纤维增强金属基复合材料:增强体为纤维状,如碳纤维、玻璃纤维、硼纤维等。
这种复合材料具有较高的强度和刚度,但韧性和耐磨性相对较低。
(3)晶须增强金属基复合材料:增强体为晶须状,如氧化铝晶须、碳化硅晶须等。
这种复合材料具有较高的强度和刚度,较好的韧性和耐磨性。
2. 按增强体材料分类(1)陶瓷增强金属基复合材料:增强体为陶瓷材料,如氧化铝、碳化硅等。
这种复合材料具有较高的硬度和耐磨性,但韧性较低。
(2)金属增强金属基复合材料:增强体为金属材料,如不锈钢、钛合金等。
这种复合材料具有较高的强度和韧性,但耐磨性相对较低。
(3)塑料增强金属基复合材料:增强体为塑料材料,如聚四氟乙烯、聚酰亚胺等。
这种复合材料具有良好的耐磨性和耐腐蚀性,但强度和刚度较低。
3. 按增强体分布方式分类(1)连续增强金属基复合材料:增强体呈连续分布,如纤维增强金属基复合材料。
这种复合材料具有较高的强度和刚度,但韧性和耐磨性相对较低。
(2)非连续增强金属基复合材料:增强体呈非连续分布,如颗粒增强金属基复合材料。
这种复合材料具有较好的韧性和耐磨性,但强度和刚度相对较低。
4. 按制备工艺分类(1)铸造法制备的金属基复合材料:采用铸造工艺将增强体与金属基体结合,如陶瓷颗粒增强铝基复合材料。
(2)粉末冶金法制备的金属基复合材料:采用粉末冶金工艺将增强体与金属基体结合,如碳纤维增强铜基复合材料。
(3)热压法制备的金属基复合材料:采用热压工艺将增强体与金属基体结合,如碳化硅晶须增强钛基复合材料。
金属基复合材料增强体的分类
金属基复合材料具有很高的强度、刚度和耐磨性等优点,具有广
泛的应用前景。
在这些复合材料中,增强体的选择和分类对其性能起
着至关重要的作用。
本文将就金属基复合材料中常见的增强体进行分
类和详细介绍。
1、碳纤维增强体
碳纤维增强体具有高强度、高模量、低密度和耐腐蚀等优点,被
广泛应用于航空航天、汽车、体育用品和国防等领域。
在制备金属基
复合材料时,碳纤维常常被选作增强体,可以显著提高金属基复合材
料的强度和刚度。
2、陶瓷颗粒增强体
陶瓷颗粒增强体在金属基复合材料中也被广泛应用。
这种增强体
具有高硬度、高强度和高耐磨性等特点,可以显著增强金属基复合材
料的耐磨性和耐腐蚀性。
陶瓷颗粒的种类很多,常见的包括二氧化硅、氧化铝和碳化硅等。
3、金属颗粒增强体
金属颗粒增强体一般选用高强度的合金颗粒,常见的有碳化钨、
钛和铬等。
在金属基复合材料中,金属颗粒增强体的作用是增加材料
刚度和强度,同时也可以提高材料的导电性。
4、纤维/颗粒混合增强体
纤维/颗粒混合增强体是将不同种类的增强体混合使用的一种复合材料。
这种增强体在金属基复合材料中的优点是可以兼顾纤维和颗粒的优点,形成更完善的增强网络结构,从而提高材料的性能。
总之,增强体是影响金属基复合材料性能的重要因素之一。
在选择增强体时,需要综合考虑其特点和应用环境。
通过选择合适的增强体,可以打造具有高强度、高刚度、高耐磨性和高导电性等优点的金属基复合材料。
金属基复合材料的种类与性能
摘要:金属基复合材料科学是一门相对较新的材料科学,仅有40余年的发展历史。
金属基复合材料的发展与现代科学技术和高技术产业的发展密切相关,特备是航天、航空、电子、汽车以及先进武器系统的迅速发展对材料提出了日益增高的性能要求,除了要求材料具有一些特殊的性能外,还要具有优良的综合性能,有力地促进了先进复合材料的迅速发展。
单一的金属、陶瓷、高分子等工程材料均难以满足这些迅速增长的性能要求。
金属基复合材料正是为了满足上述要求而诞生的。
关键词:金属;金属基复合材料;种类;性能特征;用途
1. 金属基复合材料的分类
按增强体类型分
1.1.1颗粒增强复合材料
颗粒增强复合材料是指弥散的增强相以颗粒的形式存在,其颗粒直径和颗粒间距较大,一般大于1μm。
1.1.2层状复合材料
这种复合材料是指在韧性和成型性较好的金属基材料中含有重复排列的高强度、高模量片层状增强物的复合材料。
片曾的间距是微观的,所以在正常比例下,材料按其结构组元看,可以认为是各向异性的和均匀的。
层状复合材料的强度和大尺寸增强物的性能比较接近,而与晶须或纤维类小尺寸增强物的性能差别较大。
因为增强物薄片在二维方向上的尺寸相当于结构件的大小,因此增强物中的缺陷可以成为长度和构件相同的裂纹的核心。
由于薄片增强的强度不如纤维增强相高,因此层状结构复合材料的强度受到了限制。
然而,在增强平面的各个方向上,薄片增强物对强度和模量都有增强,这与纤维单向增强的复合材料相比具有明显的优越性。
1.1.3纤维增强复合材料
金属基复合材料中的一维增强体根据其长度的不同可分为长纤维、短纤维和晶须。
长纤维又叫连续纤维,它对金属基体的增强方式可以以单项纤维、二维织物和三维织物存在,前者增强的复合材料表现出明显的各向异性特征,第二种材料在织物平面方向的力学性能与垂直该平面的方向不同,而后者的性能基本是个向同性的。
连续纤维增强金属基复合材料是指以高性能的纤维为增强体,金属或他们的合金为基体制成的复合材料。
纤维是承受载荷的,纤维的加入不但大大改变了材料的力学性能,而且也提高了耐温性能。
短纤维和晶须是比较随机均匀地分散在金属基体中,因而其性能在宏观上是各向同性的;在特殊条件下,短纤维也可以定向排列,如对材料进行二次加工(挤压)就可达到。
当韧性金属基体用高强度脆性纤维增强时,基体的屈服和塑性流动是复合材料性能的主要特征,但纤维对复合材料弹性模量的增强具有相当大的作用。
按基体类型分
主要有铝基、镁基、锌基、铜基、钛基、镍基、耐热金属基、金属间化合物基等复合材料。
目前以铝基、镁基、钛基、镍基复合材料发展较为成熟,已在航天、航空、电子、汽车等工业中应用。
在这里主要介绍这几种材料
1.2.1铝基复合材料
这是在金属基复合材料中应用最广的一种。
由于铝合金基体为面心立方结构,因此具有良好的塑性和韧性,再加之它所具有的易加工性、工程可靠性及价格低廉等优点,为其在工程上应用创造了有利条件。
再制造铝基复合材料时通常并不是使用纯铝而是铝合金。
这主要是由于铝合金具有更好的综合性能。
1.2.2镍基复合材料
这种复合材料是以镍及镍合金为基体制造的。
由于镍的高温性能优良,因此这种复合材料主要是用于制作高温下工作的零部件。
人们研制镍基复合材料的一个重要目的是希望用它来制造燃气轮机的叶片,从而进一步提高燃气轮机的工作温度。
但目前由于制造工艺及可靠性等问题尚未解决,所以还未能取得满意的结果。
1.2.3钛基复合材料
钛比任何其他的结构材料具有更高的比强度。
此外,钛在中温时比铝合金能更好地保持其强度。
因此,对飞机结构来说,当速度从亚音速提高到超音速时,钛比铝合金显示出了更大的优越性。
随着速度进一步的加快,还需要改变飞机的结构设计,采用更细长的机翼和其他翼型,为此需要高刚度的材料。
而纤维增强钛恰好可以满足这种对材料刚度的要求。
钛基复合材料中最常用的增强体是硼纤维,这是由于钛与硼的热膨胀系数比较接近。
1.2.4镁基复合材料
以陶瓷颗粒、纤维或晶须作为增强体,可制成镁基复合材料,集超轻、高比刚度、高比强度于一身,该类材料比铝基复合材料更轻,具有更高的比强度和比刚度,将使航空航天方面的优选材料。
按用途分
1.3.1结构复合材料
主要用作承力结构,它基本上有增强体和基体组成,它具有高比强度、高比模量、尺寸稳定、耐热等特点。
用于制造各种航天、航空、电子、汽车、先进武器系统等高性能构建。
1.3.2功能复合材料
是指除力学性能外还有其他物理性能的复合材料,这些性能包括电、磁、热、声、力学(指阻尼、摩擦)等。
该材料用于电子、仪器、汽车、航天、航空、武器等。
2.金属基复合材料的性能特征
金属基复合材料的增强体主要有纤维、晶须和颗粒,这些增强体主要是无机物(陶瓷)和金属。
无机纤维主要有碳纤维、硼纤维、碳化硅纤维、氧化铝纤维、氮化硅纤维等。
金属纤维主要有铍、钢、不锈钢和钨纤维等。
用于增强金属复合材料的颗粒主要是无机非金属颗粒,主要包括石墨、碳化硅、氧化铝、碳化硅、碳化钛、碳化硼等。
金属基复合材料的性能取决于所选用金属或合金基体和增强物的特性、含量、分布等。
通过优化组合可以既具有金属特性,又具有高比强度、高比模量、耐热、耐磨等综合性能。
其主要性能有以下几点:
1.高比强度、比模量
2.导热、导电性能好
3.热膨胀系数小、尺寸稳定性好
4.良好的高温性能
5.良好的耐磨性
6.良好的断裂韧性和抗疲劳性能
7.不吸潮、不老化、气密性好
3.结束语
总之,金属基复合材料具有高比强度、比模量,良好的导热、导电性、耐磨性、高温性能,较低的热膨胀系数,高的尺寸稳定性等优点,它在航天、航空、电子、汽车、轮船、先进武器等方面均具有广泛的应用前景。