湍流理论介绍
- 格式:doc
- 大小:312.00 KB
- 文档页数:5
湍流理论
湍流理论
theory of turbulence
研究湍流的起因和特性的理论,包括两类基本问题:①湍流的起因,即平滑的层流如何过渡到湍流;②充分发展的湍流的特性。
湍流的起因层流过渡为湍流的主要原因是不稳定性。在多数情况下,剪切流中的扰动会逐渐增长,使流动失去稳定性而形成湍流斑,扰动继续增强,最后导致湍流。这一类湍流称为剪切湍流。两平板间的流体受下板面加热或由上板面冷却达到一定程度,也会形成流态失稳,猝发许多小尺度的对流;上下板间的温差继续加大,就会形成充分发展的湍流。这一类湍流称热湍流或对流湍流。边界层、射流以及管道中的湍流属于前一类;夏天地球大气受下垫面加热后产生的流动属于后一类。
为了弄清湍流过渡的机制,科学家们开展了关于流动稳定性理论(见流体运动稳定性)分岔(bifurcation)理论和混沌(chaos)理论的研究,还进行了大量实验研究(见湍流实验)。
对于从下加热流层而向湍流过渡的问题,原来倾向于下述观点:随着流层温差的逐渐增加,在发生第一不稳定后,出现分岔流态;继而发生第二不稳定,流态进一步分岔;然后第三、第四以及许多更高程度的不稳定接连发生;这种复杂的流动称为湍流。实验结果支持这一论点。但是,这一运动过程在理论上得不出带有连续谱的无序运动,而与实验中观察到的连续谱相违。最近,对不稳定系统的理论分析提出了另一种观点:在发生第一、第二不稳定之后,第三不稳定就直接导致一个可解释为湍流的无序运动。这一观点也得到实验的支持。
剪切流中湍流的发生情况更为复杂。实验发现,平滑剪切流向湍流过渡常会伴有突然发生的、作奇特波状运动的湍流斑或称过渡斑。可以设想,许多逐渐形成的过渡斑,由于一再出现的新的突然扰动而互相作用和衰减,使混乱得以维持。把过渡斑作为一种孤立的非线性波动现象来研究,有可能对湍流过渡现象取得较深刻的理解。因此,存在着不止一条通向湍流的途径。
过去认为,一个机械系统发生无序行为往往是外部干扰或外部噪声影响的结果。然而,最近观察到:在某个系统里进行确定的基本操作会导致混乱的重复发生。这类系统可认为含有一个能吸引系统维持混乱的奇怪吸引子。这种混乱现象称为短暂混沌。预期对这种短暂混沌的可普遍化特性的研究将会得到说明完全发展的无序现象(湍流)的新线索。
湍流基本方程充分发展的湍流流动图像极其复杂,虽经一百多年的研究,成果并不显著。目前大多数学者都是从纳维-斯托克斯方程
[478-101] (1) 出发进行研究;近年来,有人从统计物理学中的玻耳兹曼方程或BBGKY谱系方程出发进行研究。
对充分发展的湍流,除考虑它的瞬时量外,更要考虑各种用以描述湍流概貌的平均量。从瞬时量导出平均量的平均方法有好多种。有了平均法,就可把任一瞬时量分解成平均量和脉动量之和。例如,
=+,=[kg2]+,式中[kg2]、[kg2]为速度和压力的瞬时量;、[kg2]
为其平均量;[kg2]和为其脉动量。对式(1)取平均,就得到平均速度和平均压力所满足的雷诺方程:
[479-01](2)
式中最后一项是雷诺方程对纳维-斯托克斯方程的附加项,[kg2]体现了脉动场对平均场的作用,而[479-07]则称为雷诺应力或湍流应力。式中最后一项中的量实质上是新未知量,所以式(2)和连续性方程
[479-102](3)所组成的方程组关于和[kg2]是不封闭的,因而无法求解。学者们一直努力寻求封闭方程组的办法;早年的普朗特混合长理论是一种尝试,后来发展的模式理论也是一种尝试。
湍流的半经验理论和模式理论 J.V.布森涅斯克早在1877年作出假设:二元湍流的雷诺应力正比于平均速度梯度,即
[479-02]
式中为涡粘性系数。这一假设是仿照牛顿粘性定律作出的。实际上,不是单由物性决定的常数,而是和流动有关的变量,尤其在近壁区,它的变化很大。后来,L.普朗特仿照气体分子运动论,提出了混合长理论,即令
[479-03](4)
式中取[kg2]、[kg2]坐标;为相应脉动速度分量;[kg2]称为混合长。显然,
=[479-1]。根据平板边界层的测量,和离壁之距[kg2][kg2]的关系可近似地表示为:[479-06]
式中=0.15~0.20;=0.40;=0.075~0.09;为边界层厚度[kg2]对于二元混合层和射流,[kg2]近似地和射流的宽度成比例。在二元情况下可用式(4)封闭式(2)、(3)。
对于直圆管湍流,由混合长理论可以得出用对数函数近似表示的水桶型的速度分布。经过实验修正后,这个对数分布律为:
[479-103]
式中[479-04]称动力速度;为壁面摩擦力。
除了混合长理论外。G.I.泰勒提出过一种模拟涡量输运的理论;T.von卡门也提出一种假定局部脉动场相似的理论。现在有人称这些半经验理论为平均场封闭模式或“0”方程模式。这种模式比较简单,且计算结果也比较符合某些工程实际。
上述半经验理论是近似的,适用范围有限。后来,经过改进和推广,出现了“1”方程模式,其中除了平均运动方程外,还补充一个湍能方程或一个关于混合长的微分方程;还有所谓“2”方程模式和应力输运模式,以及更高阶的封闭模式。
封闭是指一种解一连串方程的方法,这一连串方程把流动的一些平均量和另一些平均量联系起来。封闭需要有一种允许把这一连串方程截止在一个可以处理的数目上的假设。如果这假设是一个良好的近似,则所取的封闭模式就有适当的应用范围。近年来,二阶封闭较受
重视,而应用得较多的则是一种称为[kg]-[kg]模式的“2”方程模式。它用湍能[kg2][kg2]
和湍能耗散率[kg2][kg2]两个量来描写湍流的脉动场,用下式表示雷诺应力:[479-05](5)
式中=/,为比例常数。再对[kg2]和[kg2][kg2]分别补充一个方程,就
可组成同时计算平均速度场和湍流场的封闭方程组-[kg2]模式已用于计算一些平面平行湍流,但计算稍为复杂的湍流时,效果不好。
应力输运模式用六个关于雷诺应力分量的输运方程增补方程(2)、(3),并引进一些附加假定。周培源早在1945年发表了他对应力输运模式较系统的研究工作,当时没有电子计算机,只能作一般性讨论。从60年代起开始应用计算机研究这一模式。在应力输运模式中,
湍流的脉动场用七个量(六个雷诺应力分量和一个耗散率)描写,比只用[kg2]和[kg2][kg2]两个量似乎合理些,但同样存在封闭的困难。因耦合的方程数目增多,对边界条件和初始条件的要求也增多,从而给计算带来许多困难。
上述两种二阶封闭都立足于雷诺平均法则,湍流场被分解为平均场和脉动场。脉动场由
[kg2][479-010][kg2]和[kg2][kg2]来代表[479-010]中既有大涡的作用,也有小涡的作用,也就是把脉动场中的大涡和小涡同等看待,这可能是造成封闭方程组过分复杂的原因。此外,雷诺平均法则不能反映一些拟序性的大涡结构。为此,又开始探索新的平均方法和封闭模式。“滤波”平均(即将小涡滤去)和大涡模拟就是这一方面的尝试。
还有和封闭理论相反的、被称为开式理论的方法。它不是用假设来截断一连串的方程,而是在许多可能的解中寻求给出某些重特要征的上界的解。
上述模式理论和半经验理论都是对非均匀湍流作定量的预估,寻求用一个简单的统计模式来代替复杂的实际过程,以预测各种工程的或其他实用场合中的湍流特性。
湍流的统计理论研究湍流一般要用统计平均概念。统计的结果是湍流细微结构的平均,描述流体运动的某些概貌,而这些概貌对实际湍流细节应该是适当敏感的,因此可以认为,几乎所有湍流理论(包括上两节所述的理论)都是统计理论,但一般著作中所讲的统计理论实际上是指引进多点相关后的统计理论。
泰勒在20年代初研究湍流扩散时,引进了流场同一点在不同时刻的脉动速度的相关[kg2][480-01],从而开创了湍流统计理论的研究。这一相关称拉格朗日相关,可描
述流动的扩散能力。用扩散系数来表示这种能力,则
[480-02]
式中[480-03][kg2]称为相关系数。知道了拉格朗日相关,就可以算出
湍流扩散系数1935年泰勒又引进同一时刻不同点上速度分量的相关[479-09],用以描述湍流脉动场,此即所谓欧拉相关。相应的相关系数
[480-04]
泰勒利用这一类相关研究了一种理想湍流──均匀各向同性湍流。这种量简单的理想化湍流的定义是:平均速度和所有平均量都对空间坐标的平移保持不变,而且各相关函数沿任