第七章 湍流理论基础
- 格式:pdf
- 大小:347.42 KB
- 文档页数:78
湍流理论湍流理论theory of turbulence研究湍流的起因和特性的理论,包括两类基本问题:①湍流的起因,即平滑的层流如何过渡到湍流;②充分发展的湍流的特性。
湍流的起因层流过渡为湍流的主要原因是不稳定性。
在多数情况下,剪切流中的扰动会逐渐增长,使流动失去稳定性而形成湍流斑,扰动继续增强,最后导致湍流。
这一类湍流称为剪切湍流。
两平板间的流体受下板面加热或由上板面冷却达到一定程度,也会形成流态失稳,猝发许多小尺度的对流;上下板间的温差继续加大,就会形成充分发展的湍流。
这一类湍流称热湍流或对流湍流。
边界层、射流以及管道中的湍流属于前一类;夏天地球大气受下垫面加热后产生的流动属于后一类。
为了弄清湍流过渡的机制,科学家们开展了关于流动稳定性理论(见流体运动稳定性)分岔(bifurcation)理论和混沌(chaos)理论的研究,还进行了大量实验研究(见湍流实验)。
对于从下加热流层而向湍流过渡的问题,原来倾向于下述观点:随着流层温差的逐渐增加,在发生第一不稳定后,出现分岔流态;继而发生第二不稳定,流态进一步分岔;然后第三、第四以及许多更高程度的不稳定接连发生;这种复杂的流动称为湍流。
实验结果支持这一论点。
但是,这一运动过程在理论上得不出带有连续谱的无序运动,而与实验中观察到的连续谱相违。
最近,对不稳定系统的理论分析提出了另一种观点:在发生第一、第二不稳定之后,第三不稳定就直接导致一个可解释为湍流的无序运动。
这一观点也得到实验的支持。
剪切流中湍流的发生情况更为复杂。
实验发现,平滑剪切流向湍流过渡常会伴有突然发生的、作奇特波状运动的湍流斑或称过渡斑。
可以设想,许多逐渐形成的过渡斑,由于一再出现的新的突然扰动而互相作用和衰减,使混乱得以维持。
把过渡斑作为一种孤立的非线性波动现象来研究,有可能对湍流过渡现象取得较深刻的理解。
因此,存在着不止一条通向湍流的途径。
过去认为,一个机械系统发生无序行为往往是外部干扰或外部噪声影响的结果。
湍流模型理论§3.1 引言自然界中的实际流动绝大部分是三维的湍流流动,如河流,血液流动等。
湍流是流体粘性运动最复杂的形式,湍流流动的核心特征是其在物理上近乎于无穷多的尺度和数学上强烈的非线性,这使得人们无论是通过理论分析、实验研究还是计算机模拟来彻底认识湍流都非常困难。
回顾计算流体力学的发展,特别是活跃的80年代,不仅提出和发展了一大批高精度、高分辨率的计算格式,从主控方程看相当成功地解决了Euler方程的数值模拟,可以说Euler方程数值模拟方法的精度已接近于它有效使用范围的极限;同时还发展了一大批有效的网格生成技术及相应的软件,具体实现了工程计算所需要的复杂外形的计算网格;且随着计算机的发展,无论从计算时间还是从计算费用考虑,Euler方程都已能适用于各种实践所需。
在此基础上,80年代还进行了求解可压缩雷诺平均方程及其三维定态粘流流动的模拟。
90年代又开始一个非定常粘流流场模拟的新局面,这里所说的粘流流场具有高雷诺数、非定常、不稳定、剧烈分离流动的特点,显然需要继续探求更高精度的计算方法和更实用可靠的网格生成技术.但更为重要的关键性的决策将是,研究湍流机理,建立相应的模式,并进行适当的模拟仍是解决湍流问题的重要途径。
要反映湍流流场的真实情况,目前数值模拟主要有三种方法:1。
平均N-S方程的求解,2。
大涡模拟(LES),3。
直接数值模拟(DNS)。
但是由于叶轮机械内部结构的复杂性以及目前计算机运算速度较慢,大涡模拟和直接数值模拟还很少用于叶轮机械内部湍流场的计算,更多的是通过求解平均N-S方程来进行数值模拟。
因为平均N-S方程的不封闭性,人们引入了湍流模型来封闭方程组,所以模拟结果的好坏很大程度上取决于湍流模型的准确度。
自70年代以来,湍流模型的研究发展迅速,建立了一系列的零方程、一方程、两方程模型和二阶矩模型,已经能够十分成功的模拟边界层和剪切层流动。
但是,对于复杂的工业流动,比如航空发动机中的压气机动静叶相互干扰问题,大曲率绕流,激波与边界层相互干扰,流动分离,高速旋转以及其他一些原因,常常会改变湍流的结构,使那些能够预测简单流动的湍流模型失效,所以完善现有湍流模型和寻找新的湍流模型在实际工作中显得尤为重要。
湍流的理论与分析湍流是一种复杂的流动形式,并且广泛存在于自然界和工程实践中。
对湍流的理论研究和分析不仅有助于深入理解流体现象,还可以为湍流控制和能源利用等方面提供支持。
本文将从湍流的定义、产生机理、湍流统计理论和湍流模拟等方面进行探讨。
一、湍流的定义湍流是指一种相对瞬态的流体运动状态,其中流体的速度和方向发生剧烈变化,造成流体的混合和扰动,呈现出随机不规则的涡动结构。
与层流(稳态流动)相比,湍流的运动特征更加复杂,无法用简单的数学公式描述。
湍流的主要特征为不规则、随机、涡动等。
二、湍流的产生机理湍流的产生机理复杂,其中包括传统的机械湍流、自然湍流、边界层失稳等多种因素。
机械湍流是由于固体物体运动时与周围介质相互作用产生的湍流现象,如风力机翼片和涡轮机叶片的湍流。
自然湍流是由于自然界中各种复杂流动引起的,如河流、海洋和大气的运动等。
边界层失稳是当涡旋从高速的流动区进入低速的流动区时产生的,例如水流从管道进入膨胀段时发生的湍流现象。
三、湍流统计理论湍流统计理论是对湍流运动规律的理论分析,是研究湍流基本性质和湍流现象的一种方法。
湍流统计理论中有两个重要的概念,一个是湍流的集成时间,另一个是湍流脉动,这两个概念分别给出了湍流时间与空间扰动中的统计特征。
其中湍流的集成时间是指机械能向湍流能转化和湍流能转化为机械能时所需的时间因子,而脉动是指在一个给定点的流动路径上,流体参数波动的相对不稳定性。
四、湍流模拟湍流模拟是一种基于数值计算的湍流研究方法,主要有两种方式:直接数值模拟(DNS)和大涡模拟(LES)。
直接数值模拟是对湍流运动的一种高精度的数值计算方法,它通过离散化流动中的微小物理尺度,运用数值方法以求解流场运动方程,得到高精度的湍流场数据。
但DNS需要的计算量庞大,计算成本高昂。
大涡模拟是在保留湍流中大尺度涡旋信息的同时,模拟和模拟所得的速度与涡旋脉动能谱于实验结果的吻合程度。
而LES所需要的计算量较之DNS低,同时保留的流场尺度也比DNS更大,能够得到更加直观的湍流现象展示。
湍流问题十讲:理解和研究湍流的基础湍流是流体力学中的一个重要问题,它在自然界和工程应用中广泛存在。
湍流的复杂性使得我们需要深入了解其基础概念和研究方法。
本文将以十讲的形式,介绍湍流的基础知识和研究方法。
第一讲:湍流的基本概念湍流是流体在高速运动下出现的不规则涡旋运动。
它与层流不同,层流是指流体以平行于管道方向的层状流动。
湍流的出现使流体流动变得混乱复杂,存在着各种大小的涡旋结构。
湍流的基本特征包括湍流速度场的不规则性、涡旋的随机性和能量级联等。
第二讲:湍流的物理机制湍流的产生主要受到流体的非线性而不稳定的特性影响。
湍流的物理机制包括非线性不稳定性和能量级联。
非线性不稳定性指的是流体在高速运动下所产生的各种非线性效应,如非定常性、湍流粘度等。
能量级联则指的是湍流中能量的级联传递现象,由大尺度的涡旋向小尺度的涡旋传输。
第三讲:湍流的数学模型为了更好地理解和研究湍流,我们需要建立相应的数学模型。
湍流的数学模型包括雷诺平均模型、大涡模拟模型和直接数值模拟模型。
雷诺平均模型是最简单的湍流模型,假设湍流场的波动可以通过时间平均来描述。
大涡模拟模型则考虑湍流中的大尺度涡旋,并利用数值方法对其进行模拟。
直接数值模拟模型是最精确的湍流模型,将流动的各个时间和空间尺度都考虑在内。
第四讲:湍流的统计特性湍流的统计特性对于研究湍流现象非常重要。
湍流的统计特性包括均值场、涡旋相关性和能量谱等。
通过对这些统计量的分析,我们可以揭示湍流中的一些规律和特点。
第五讲:湍流的测量和实验方法湍流的研究需要借助于测量和实验方法。
常用的湍流测量方法包括热线、激光多普勒测速、PIV等。
这些方法可以提供湍流场的速度、梯度等信息。
此外,实验方法也是研究湍流的重要手段,通过在实验室中进行湍流的模拟研究,我们可以获得一些有关湍流性质的重要信息。
第六讲:湍流的数值模拟方法湍流的数值模拟是研究湍流的重要方法之一。
常用的湍流数值模拟方法包括RANS、LES和DNS等。
湍流基础知识0 引言Reynolds 在1883年在圆管流动中发现了自然界中两种不同的流动状态,第一种为流体运动比较规则,各层之间不会发生掺混,称为层流;第二种为流体运动呈现高度不规则状态,流体运动过程中各层之间发生掺混,称之为湍流。
在湍流流动中,物理量呈现高频的不规则运动,每个物理量都是随机函数,这种随机性主要具有两方面特点:1)在相同实验,或者外界条件相同的重复实验,空间中某点物理量随时间的变化关系不具有重复性;2)在相同试验,或者外界条件相同的重复实验,取出足够多样本进行统计平均,所得到的平均量与样本无关。
在实际问题中,与高频无规则而且无法充分的脉动相比,人们更关系湍流流动中可重复的平均量的变化。
在实际应用中主要存在三种平均方法:1)样本平均:取出足够多样本进行平均;2)时间平均:在一次实验中,取物理量在某时间段随时间变化关系,并对其进行时间平均,上述时间段应该是远大于脉动时间尺度,而又远小于平均运动时间尺度的物理量,由于在湍流运动中,平均运动和脉动的时间尺度通常相差较大,因此该值在理论上存在;时间平均方法适用于定常流动情况,例如湍流边界层流动;3)空间平均:在一次实验中,取物理量在某空间范围的变化关系,并对其进行空间平均,上述区域应该是远大于湍流脉动的空间尺度,并且远小于平均运动的空间尺度;空间平均适用于均匀流动情况,如管流。
各态历经假设:假定在多次重复实验中出现的所有可能状态,在一次实验中(时间足够长或空间范围足够大)即可以相同概率出现,那么采用一次实验即可完成湍流统计平均量的研究,这样就大大减少了实验次数。
采用上述平均方法,那么湍流变量就可以分解为平均量与脉动量两部分,我们关系的是平均量的演化关系,而脉动量则需要更关系其平均值,实际上这种平均方法就可以知道,单一脉动量的平均值为0,不过脉动量之间的乘积的平均量就不为0,而且,这些值还会对平均量的运动产生影响,从而使得湍流运动与层流运动产生本质不同,那么这种不同到底是什么原因呢,雷诺通过将NS 方程进行时间平均的方式进行了说明,并由此开始了湍流的研究。
《湍流基础知识的综合性概述》一、引言湍流是自然界和工程技术领域中普遍存在的一种复杂流动现象。
从大气中的风云变幻到海洋中的波涛汹涌,从飞机在天空中的飞行到管道中流体的流动,湍流无处不在。
对湍流的研究不仅具有重要的理论意义,还对众多工程领域的发展起着至关重要的作用。
本文将对湍流的基础知识进行全面的阐述与分析,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、基本概念1. 定义湍流是一种高度复杂的三维非定常流动,其特征是流体的速度、压力等物理量在时间和空间上呈现出随机的、不规则的变化。
与层流相比,湍流具有更高的雷诺数,流体质点的运动更加混乱和无序。
2. 特征(1)随机性:湍流中的流体质点运动具有很大的随机性,速度和压力等物理量的变化无法用确定的函数来描述。
(2)三维性:湍流是三维的流动,在三个方向上都存在着复杂的运动。
(3)非定常性:湍流的流动状态随时间不断变化,具有很强的时间依赖性。
(4)扩散性:湍流能够促进流体中物质和能量的混合与扩散。
3. 雷诺数雷诺数是判断流体流动状态的重要参数。
当雷诺数小于某一临界值时,流体为层流;当雷诺数大于临界值时,流体可能转变为湍流。
雷诺数的计算公式为:$Re=\frac{\rho vL}{\mu}$,其中$\rho$为流体密度,$v$为流体速度,$L$为特征长度,$\mu$为流体动力粘度。
三、核心理论1. 统计理论由于湍流的随机性,统计理论成为研究湍流的重要方法之一。
统计理论通过对湍流中物理量的统计平均来描述湍流的特性,如平均速度、脉动速度、雷诺应力等。
常用的统计方法包括相关分析、谱分析等。
2. 湍流模型为了在工程计算中模拟湍流流动,人们提出了各种湍流模型。
湍流模型主要分为两大类:一类是基于雷诺平均的湍流模型,如$k-\epsilon$模型、$k-\omega$模型等;另一类是大涡模拟(LES)和直接数值模拟(DNS)。
雷诺平均的湍流模型通过对湍流脉动进行统计平均,将湍流问题转化为求解平均流动方程和湍流模型方程的问题。
第七章湍流理论基础
认识湍流——雷诺实验
湍流具有——随机性、非线性性
123(,,,)
i i u u x x x t =湍流是三维空间中的不规则非定常流动。
学习湍流——预测、控制
•各项物理意义如下:
各项物义如下
(1)总动能的当地变化率,由湍流流动的不恒定性而引起。
恒定性而引起
(2)总动能的迁移变化率,由时均流场的空间不均匀性引起。
(3)时均总势能的迁移变化率,反映时均场)时均总势能的迁移变化率反映时均场的空间不均匀性。
(4)由脉动场的空间不均匀引起的脉动压能和脉动动能的迁移变化率
和脉动动能的迁移变化率。
(5)时均粘性应力与时均流速的乘积,为粘性应力作功的功率
(6)湍流切应力对时均流场作功的功率。
(7)脉动粘性应力对脉动流场作功的功率。
(8)时均流动耗散项,即粘性应力所作的变)时均流动耗散项即粘性应力所作的变
形功。
(9)脉动流动耗散项,即脉动粘性应力对脉
动流场的变形速率所作的脉动变形功。
动流场的变形速率所作的脉动变形功
各项物理意义:
(1)单位体积流体所具时均动能的当地变化率(2)单位体积流体所具时均动能的迁移变化率(3)压差与重力对流体作功的功率,单位体积流体所具时均势能的迁移变化率
(4)时均粘性应力作功而传递能量的扩散项(5)单位体积流体的耗散项,时均粘性应力所做的变形功
(6)雷诺应力作功的扩散项
)雷诺应力对时均流场所作的变形功脉动(7)雷诺应力对时均流场所作的变形功,脉动能量的产生项,对时均流是能量的损失。
各项物理意义:
(1)单位体积流体所具脉动动能的当地变化率。
(2)单位体积流体所具脉动动能的迁移变化率。
(3)由脉动场的空间不均匀引起的脉动压能和脉动动能的迁移变化率。
(4)脉动粘性应力对脉动流场作功的功率。
)脉动粘性应力对脉动流场作功的功率
(5)脉动流动耗散项,即脉动粘性应力对脉动流场的变形速率所作的脉动变形功。
的变速率所作的脉动变功
(6)脉动动能产生项。
§7-3 湍流流动的基本性质
73
湍流能量的输运性和耗散性以及湍流的有旋性是湍流的重要特性
一、湍流能量的输运性
分子的动能输运率表现为宏观的粘性,分子的分子的动能输运率表现为宏观的粘性分子的内能输运率表现为热传导。
湍流的动量输运表现为湍流的“粘性”,湍流的内能输运表现为现为湍流的“粘性”湍流的内能输运表现为湍流的热传导。
湍流状态下的物面粘性阻力和传导热较之层流而言大很多。
四、若干典型条件下的湍流的特点
(一)均匀各向同性湍流
均匀各向同性湍流是种最简单的湍流,均匀各向同性湍流是一种最简单的湍流,在这种湍流流场中,不同点和同一点在不同方向上的湍流特性都是一样的,这种湍同方向上的湍流特性都是样的这种湍流存在于无界的流场中,或远离边界的流场中。
场中。