第6章-1 湍流基本理论-2010
- 格式:ppt
- 大小:3.96 MB
- 文档页数:27
湍流的理论与实验研究湍流是流体力学界公认的难题,被认为是经典物理学中最后一个未被解决的问题。
自然界和工程领域的绝大多数流动都是湍流,因此湍流研究具有重大意义。
近年来,随着实验测量技术和数值模拟能力的不断增强,学术界对高雷诺数和高马赫数湍流有了许多新的认识。
我国科学界也结合国家重大战略需求和学科发展前沿,分析国际上湍流研究的特点、现状和发展趋势,希望对湍流产生机制和流动本质进行深入研讨,加强与航空、航天、航海等相关单位和部门间的沟通与联系,推动湍流研究的发展。
针对国内学科发展现状,尤其是实验研究相对薄弱的特点,国家自然科学基金委员会数理科学部、工程与材料科学部和政策局,于2014年3月20-21日在北京联合举办了第110期双清论坛,论坛主题为“湍流的理论与实验研究”。
来自全国15个单位的近50位流体力学与工程领域的专家学者应邀出席。
与会专家通过充分而深入的研讨,凝练了该领域的重大关键科学问题,探讨了前沿研究方向和科学基金资助战略。
本期特刊登此次论坛学术综述。
一、湍流研究的重要意义自1883年雷诺(Reynolds)发现湍流以来,湍流问题的研究一直困扰着众多学者。
著名物理学家费曼曾说,湍流是经典物理学中最后一个未被解决的难题;2005年《科学》杂志在其创刊125周年公布的125个最具挑战性的科学问题中,其中至少两个问题与湍流相关。
在我们日常生活中,湍流无处不在。
自然界和工程应用中遇到的流动,绝大部分是复杂的湍流问题。
在自然界,从宇宙星系的时空演化,到星球内部的翻滚流动,从大气环流的全球运动,到江河湖泊的区域流动,都有湍流的身影。
在工程领域,从陆地、海洋、空天等交通运载工具,到原子弹、氢弹、导弹、战斗机、舰船等国防武器的设计;从全球气象气候的预报,到地区水利工程的设计;从传统行业如叶轮机械、房桥建筑、油气管道,到新兴行业如能源化工、医疗器械、纳米器件的设计,都需要了解和利用湍流。
因此,湍流流动的研究不仅仅是一个学科发展的问题,更具有重要的工程应用价值。
第六章流动阻力及能量损失本章主要研究恒定流动时,流动阻力和水头损失的规律。
对于粘性流体的两种流态——层流与紊流,通常可用下临界雷诺数来判别,它在管道与渠道内流动的阻力规律和水头损失的计算方法是不同的。
对于流速,圆管层流为旋转抛物面分布,而圆管紊流的粘性底层为线性分布,紊流核心区为对数规律分布或指数规律分布。
对于水头损失的计算,层流不用分区,而紊流通常需分为水力光滑管区、水力粗糙管区及过渡区来考虑。
本章最后还阐述了有关的边界层、绕流阻力及紊流扩散等概念。
第一节流态判别一、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。
1.层流观看录像1-层流层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。
特点:(1)有序性。
水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。
(2)粘性占主要作用,遵循牛顿内摩擦定律。
(3)能量损失与流速的一次方成正比。
(4)在流速较小且雷诺数Re较小时发生。
2.紊流观看录像2-紊流紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。
特点:(1)无序性、随机性、有旋性、混掺性。
流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。
(2)紊流受粘性和紊动的共同作用。
(3)水头损失与流速的1.75~2次方成正比。
(4)在流速较大且雷诺数较大时发生。
二、雷诺实验如图6-1所示,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。
(2)ef段:当υ>υ''时,流动只能是紊流。
(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。
图6-1图6-2观看录像3观看录像4观看录像5实验结果(图6-2)的数学表达式层流:m1=1.0, h f=k1v , 即沿程水头损失与流线的一次方成正比。
湍流的混沌理论1 湍流流体流动时,如果流体质点的轨迹是有规则的光滑曲线,这种流动叫层流。
没有这种性质的流动叫湍流。
1959年J.欣策曾对湍流下过这样的定义:湍流是流体的不规则运动,流场中各种量随时间和空间坐标发生紊乱的变化,然而从统计意义上说,可以得到它们的准确的平均值。
在直径为d的直管中,若流体的平均流速为v,由流体运动粘度v组成的雷诺数有一个临界值(大约为2300~2800),若Re小于该范围则流动是层流,在这种情况下,一旦发生小的随机扰动,随着时间的增长这扰动会逐渐衰减下去;若Re大于该范围,层流就不可能存在了,一旦有小扰动,扰动会增长而转变成湍流。
雷诺在1883年用玻璃管做试验,区别出发生层流或湍流的条件。
把试验的流体染色,可以看到染上颜色的质点在层流时都走直线。
当雷诺数超过临界值时,可以看到质点有随机性的混合,在对时间和空间来说都有脉动时,就是湍流。
不用统计、概率论的方法引进某种量的平均值就难于描述这一流动。
除直管中湍流外还有多种多样各具特点的湍流,虽经大量实验和理论研究,但至今对湍流尚未建立起一套统一而完整的理论。
大多数学者认为应该从纳维-斯托克斯方程出发研究湍流。
湍流对很多重大科技问题极为重要,因此,近几十年所采取的做法是针对具体一类现象建立适合它特点的具体的力学模型。
例如,只适用于附体流的湍流模型;只适用于简单脱体然后又附体的流动;只适用于翼剖面尾迹的或者只适用于激波和边界层相互作用的湍流模型等等。
湍流这个困难而又基本的问题,近年来日益受到了物理学界的重视。
研究湍流的起因和特性的理论,包括两类基本问题:①湍流的起因,即平滑的层流如何过渡到湍流;②充分发展的湍流的特性。
层流过渡为湍流的主要原因是不稳定性。
在多数情况下,剪切流中的扰动会逐渐增长,使流动失去稳定性而形成湍流斑,扰动继续增强,最后导致湍流。
这一类湍流称为剪切湍流。
两平板间的流体受下板面加热或由上板面冷却达到一定程度,也会形成流态失稳,猝发许多小尺度的对流;上下板间的温差继续加大,就会形成充分发展的湍流。