裂缝性储层预测新方法和新技术
- 格式:pdf
- 大小:8.07 MB
- 文档页数:67
技术应用与研究2018·0382Chenmical Intermediate当代化工研究最大似然法裂缝预测技术在元坝地区的应用*王浩1 王宇峰2 王永华1(1.中石化西南油气分公司勘探开发研究院 四川 610041 (2.中国石油西南油气田公司川西北气矿 四川 621700)摘要:本文利用最大似然法对元坝地区长兴组储层的裂缝进行了预测。
结果表明:最大似然法预测裂缝与实钻具有较高的吻合度,且精度高,说明该方法可以用来预测该地区的裂缝发育情况。
关键词:裂缝预测;最大似然法;元坝地区中图分类号:T 文献标识码:AApplication of fracture prediction method with maximum likelihood method in Yuanba areaWang Hao 1, Wang Yufeng 2, Wang Yonghua 1(1.Research Institute of Exploration and Development, Southwest Petroleum Branch Company, Sichuan, 6100412. Northwest of Sichuan Gas Field, PetroChina Southwest Oil & Gasfield Company, Sichuan, 621700)Abstract :This paper uses maximum likelihood method to predict fracture of Changxing formation in Yuanba area The results show thatthe maximum likelihood method has high coincidence degree and high accuracy, which shows that the method can be used to predict the fracture development of Changxing formation in Yuanba area.Key words :fracture prediction ;maximum likelihood method ;changxing formation防腐环氧粉末涂料涂装的涂覆施工性、稳定性均有一定的不足。
裂缝性储层渗透率张量定量预测方法刘敬寿;戴俊生;邹娟;杨海盟;汪必峰;周巨标【摘要】针对裂缝渗透率张量难以准确定量预测的问题,借助于古今岩石力学层产状的变化,预测裂缝的现今产状;以断裂力学中裂缝表面能以及岩石应变能理论为基础,预测现今裂缝的线密度;通过现今应力场数值模拟,计算三向挤压状态下裂缝的开度,进而确定现今裂缝的平行渗透率. 利用裂缝的现今产状将静态坐标系与动态坐标系统一到大地坐标系中,建立了多组裂缝渗透率张量的定量预测模型,给出了渗透率主值、主值方向的计算公式,并且通过调整动态坐标系旋转角预测单元体内不同方向的渗透率. 定义了表征渗透率各向异性的3个参数:裂缝渗透率极差比、渗透率突进系数和渗透率变异系数,定量评价裂缝渗透率的非均质性.以铜城断裂带东翼阜宁组二段储层为例,进行了裂缝渗透率张量预测工作.%Aiming at difficulties to quantitatively predict fracture permeability tensor ,present fracture occurrence was pre-dicted based on occurrence change of rock mechanical layers .Present liner density of fracture was predicted based on the facture surface energy theory and the rock strain energy theory of fracture mechanics .According to the results of present stress field numerical simulation ,fracture opening was calculated in three direction extrusion stress state and then present facture parallel permeability was determined .By using present fracture attitudes , static and dynamic coordinate systems were unified into geodetic coordinate system ,a quantitative prediction model of multi-group fracture permeability tensors was constructed ,formula for calculating the principal value of permeability and main value direction were given ,and per-meability at differentdirections in unit body was predicted by adjusting the dynamic coordinate system rotation angle . Three parameters,the ratio of the maximum and minimum value of the permeability ,heterogeneity coefficient of permea-bility and variation coefficient of permeability ,were defined to quantitatively evaluate fracture permeability heterogeneity . Fu-2 Member fractured reservoir in the eastern flank of Tongcheng fault belt was taken as an example to predict fracture permeability tensor .【期刊名称】《石油与天然气地质》【年(卷),期】2015(036)006【总页数】8页(P1022-1029)【关键词】渗透率张量;渗透率各向异性;定量预测;裂缝;铜城断裂带【作者】刘敬寿;戴俊生;邹娟;杨海盟;汪必峰;周巨标【作者单位】中国石油大学(华东) 地球科学与技术学院,山东青岛266555;中国石油大学(华东) 地球科学与技术学院,山东青岛266555;中国石油冀东油田分公司勘探开发研究院,河北唐山063004;中国石油大学(华东) 地球科学与技术学院,山东青岛266555;中国石油大学(华东) 地球科学与技术学院,山东青岛266555;中国石化江苏油田分公司安徽采油厂,安徽天长239300【正文语种】中文【中图分类】TE122.2在低渗透储层勘探开发过程中,裂缝是油气渗流的主要通道,裂缝渗透率的非均质性是影响油水流动方向的主控因素,裂缝性油气藏勘探开发的难点在于储层岩体中裂缝分布范围、发育程度的预测以及裂缝渗透率各向异性分析评价[1-4]。
页岩气储层可压裂性评价技术随着全球对清洁能源的需求不断增加,页岩气作为一种非常规天然气资源,逐渐受到了广泛。
页岩气储层具有巨大的储量和生产潜力,但其开采和生产过程涉及到复杂的工程技术和地质因素。
为了提高页岩气储层的开采效率,本文将探讨页岩气储层可压裂性评价技术的重要性及研究进展。
页岩气储层是一种非常规天然气储层,主要分布在盆地内沉积岩层中。
这些储层通常具有较低的孔隙度和渗透率,因此需要进行压裂作业以提高产能。
可压裂性评价技术是指通过对储层特性进行分析,评估其是否适合进行压裂作业以提高产能的技术。
页岩气储层具有一些特殊性质,如多孔性、裂缝性等。
多孔性是指储层中存在许多纳米级孔隙,这些孔隙是页岩气的主要存储空间。
裂缝性是指储层中存在天然裂缝或岩石断裂,这些裂缝可以为页岩气提供运移通道和存储空间。
这些特点对可压裂性评价技术具有重要影响,因为它们将直接影响压裂作业的效果和产能。
可压裂性评价技术主要包括岩芯实验和数值模拟两种方法。
岩芯实验是通过钻取储层中的岩石样品,在实验室进行压裂实验,观察储层的压裂特性和反应。
这种方法可以较为准确地模拟实际压裂作业过程中的情况,从而对储层的可压裂性进行评价。
但是,岩芯实验成本较高,需要大量的时间和人力。
数值模拟是通过计算机模型对储层进行模拟压裂,以评估其可压裂性和产能。
这种方法可以通过调整模型参数来模拟不同条件下的压裂作业,具有较高的灵活性和成本效益。
但是,数值模拟需要依赖一定的假设和简化,其准确性和可靠性受到一定限制。
在实际应用中,页岩气储层可压裂性评价技术已经得到了广泛的应用。
例如,在北美地区的页岩气田,通过可压裂性评价技术对储层进行评估,可以有效地指导压裂作业和提高产能。
在国内,该技术也逐渐得到了重视和应用,例如在川渝地区的页岩气田,通过可压裂性评价技术的运用,成功地提高了产能和开采效率。
页岩气储层可压裂性评价技术对于提高页岩气田的开采效率和产能具有重要意义。
本文介绍了该技术的相关概念、方法和实践经验,并指出了该技术在应用过程中需要注意的问题和未来的发展方向。
《裂缝性特低滲透油藏物理模拟实验方法及其应用》篇一裂缝性特低渗透油藏物理模拟实验方法及其应用一、引言在油气资源勘探与开发领域,裂缝性特低渗透油藏因其特殊的储层结构而成为重要的开采对象。
本文针对这一特殊油藏,提出了物理模拟实验方法,通过精确的物理模型来模拟和解释地下油气储层的实际情况,以期为油气开发提供有效的技术支撑。
二、实验原理与目的物理模拟实验是利用物理模型来模拟地下油藏的储层特征和流体流动规律的一种方法。
对于裂缝性特低渗透油藏,其储层中裂缝发育,渗透率低,流体流动复杂,因此需要采用物理模拟实验来研究其流动规律和开发策略。
本实验的目的是通过建立物理模型,研究裂缝性特低渗透油藏的流体流动特性,为油田开发提供理论依据和技术支持。
三、实验方法与步骤1. 实验材料与设备- 砂箱:用于构建物理模型。
- 沙子:用于模拟地下岩石结构。
- 岩芯或石粉:用于配制砂箱中岩石结构的介质。
- 测量设备:包括压力计、流量计等。
- 实验用油:用于模拟原油。
2. 实验步骤- 构建物理模型:根据地质资料和实际需求,在砂箱中构建裂缝性特低渗透油藏的物理模型。
- 填充介质:将沙子、岩芯或石粉按照一定比例混合后填充到砂箱中,以模拟地下岩石结构。
- 注入流体:通过注入管向模型中注入实验用油,模拟原油在地下的流动过程。
- 数据采集:在实验过程中,使用压力计、流量计等设备采集数据。
- 分析数据:根据采集的数据分析流体在物理模型中的流动规律和储层特性。
四、实验结果分析通过对实验数据的分析,可以得出以下结论:1. 裂缝性特低渗透油藏中流体的流动受裂缝发育程度的影响较大,裂缝发育程度越高,流体流动性越好。
2. 在一定压力下,低渗透油藏的采收率与注水速率、注水压力等因素密切相关。
合理的注水策略可以显著提高采收率。
3. 通过物理模拟实验可以较好地预测实际油田的开发效果,为油田开发提供理论依据和技术支持。
五、应用实例以某油田为例,通过物理模拟实验研究了其裂缝性特低渗透油藏的流体流动特性。
第15卷第6期2008年11月文章编号:1005-8907(2008)06-055-04DFN模型裂缝建模新技术王建华(吉林油田公司勘探开发研究院,吉林松原138000)摘要DFN模型是目前世界上描述裂缝的一项先进技术,它通过展布于三维空间中的各类裂缝片组成的裂缝网络集团来构建整体的裂缝模型,实现了对裂缝系统从几何形态到其渗流行为的逼真细致的有效描述,吉林油田晴子井油田采用这一技术很好地解决了油田开发的诸多问题。
关键词裂缝建模;离散型裂缝网络;DFN模型;晴子井油田中图分类号:TE319文献标识码:ADFN model:A new modelling technology for fractureWang Jianhua(Research Institute of Exploration and Development,Jilin Oilfield Company,CNPC,Songyuan138000,China).The DFN model is an advanced technology of fracture description currently in the world.A whole fracture model can be established through the fracture network composed by the various types of crack sheet,which is distributed in the three-dimensional space.The careful description is implemented from the geometry to the filtration behavior in fracture network.Many problems have been solved during the oilfield development according to the technology in Qingzijing Area of Jilin Oilfield.Key words:fracture modeling,discrete fracture network,DFN model,Qingzijing Oilfield.1传统模型存在的问题1)在裂缝型油藏中,地下流体主要是在裂缝及其交织成的裂缝网络中进行。
非常规储层压裂改造技术进展及应用一、本文概述随着全球能源需求的持续增长,非常规储层资源的开发利用越来越受到重视。
非常规储层,如页岩、致密砂岩等,由于其低孔低渗特性,压裂改造技术成为了提高其开采效率的关键。
本文旨在综述非常规储层压裂改造技术的最新进展,包括压裂液体系、压裂工艺、裂缝监测与控制等方面,并探讨这些技术在国内外油气田的实际应用情况。
通过对相关文献的梳理和案例分析,本文旨在为非常规储层压裂改造技术的发展提供理论支持和实践指导,推动该领域的技术创新和产业升级。
二、非常规储层压裂改造技术的发展历程非常规储层压裂改造技术的发展,经历了从传统水力压裂到现代复杂储层压裂技术的转变。
在过去的几十年里,随着全球能源需求的不断增长,以及对传统油气资源的日益开采,非常规储层如页岩、致密砂岩等逐渐成为油气勘探开发的重要领域。
这些储层具有低孔、低渗、非均质性强等特点,使得常规的压裂技术难以满足开发需求,推动了非常规储层压裂改造技术的不断创新与发展。
初期,非常规储层压裂主要依赖于传统的水力压裂技术,通过高压泵注大量液体来形成裂缝,从而提高储层的渗透性。
然而,这种方法在非常规储层中往往效果不佳,因为这些储层的岩石性质复杂,裂缝扩展困难。
随着技术的进步,科研人员开始尝试使用多种压裂液体系,如泡沫压裂液、稠化压裂液等,以提高压裂效果和降低对储层的伤害。
同时,为了更精确地控制裂缝的扩展方向和长度,研究人员开始引入地质导向、数值模拟等先进技术,为压裂施工提供更为准确的指导。
近年来,随着水平井技术的广泛应用,非常规储层压裂改造技术迎来了新的突破。
水平井技术能够使得井筒与储层接触面积更大,有利于裂缝的扩展和油气的流动。
在此基础上,研究人员又进一步开发出了分段压裂、多级压裂等复杂压裂技术,以适应不同储层条件和开发需求。
随着环保要求的日益严格,非常规储层压裂改造技术也在不断探索环保型压裂液和减少水资源消耗的新方法。
例如,利用二氧化碳等环保介质作为压裂液,既能够满足压裂需求,又能减少对环境的影响。