第3章03 裂缝性储层+影响储层特征因素
- 格式:pdf
- 大小:1.38 MB
- 文档页数:65
碳酸盐岩储集层碳酸盐岩油气储层在世界油气分布中占有重要地位,其油气储量约占全世界油气总储量的50%,油气产量达全世界油气总产量的60%以上。
碳酸盐岩储集层构成的油气田常常储量大、单井产量高,容易形成大型油气田,世界上共有九口日产量曾达万吨以上的高产井,其中八口属碳酸盐岩储集层。
世界许多重要产油气区的储层是以碳酸盐岩为主的;在我国,碳酸盐岩储层分布也极为广泛。
[1]碳酸盐岩的储集空间,通常分为原生孔隙、溶洞和裂缝三类。
与砂岩储集层相比,碳酸盐储集层储集空间类型多、次生变化大,具有更大的复杂性和多样性。
砂岩与碳酸盐岩储集空间比较(据Choquette和Pray,1970 修改)(一)原生孔隙1、粒间孔隙多存在于粒屑灰岩,特征与砂岩的相似,不同之处是,易受成岩后生作用的改变,常具有较高的孔隙度。
另外,有的由较大的生物壳体、碎片或其它颗粒遮蔽之下形成的孔隙,称遮蔽孔隙,也属粒间孔隙。
2、粒内孔隙是颗粒内部的孔隙,沉积前颗粒在生长过程中形成的,有两种:生物体腔孔隙:生物死亡之后生物体内的软体腐烂分解,体腔内未被灰泥充填或部分充填而保留下来的空间。
多存在于生物灰岩,孔隙度很高,但必须有粒间或其它孔隙使它相通才有效。
鲕内孔隙:原始鲕的核心为气泡而形成。
3、生物骨架孔隙4、生物钻空孔隙5、鸟眼孔隙(二)次生孔隙1、晶间孔隙2、角砾孔隙3、溶蚀孔隙根据成因和大小,包括以下几种:粒内溶孔或溶模孔:由于选择性溶解作用而部分被溶解掉所形成的孔隙,称粒内溶孔。
整个颗粒被溶掉而保留原颗粒形态的孔隙称溶模孔。
粒间溶孔:胶结物或杂基被溶解而形成。
晶间溶孔:碳酸盐晶体间的物质选择性溶解而形成。
岩溶溶孔洞:上述溶蚀进一步扩大或与不整合面淋滤溶解有关的岩溶带所形成的较大或大规模溶洞。
孔径<5mm或1cm为溶孔;>5mm或1cm为溶洞。
4、裂缝依成因可分为:①构造裂缝:边缘平直,延伸远,成组出现,具有明显的方向性、穿层。
②非构造裂缝:包括:成岩裂缝:压实、失水收缩、重结晶而形成。
油气开发地质学知到章节测试答案智慧树2023年最新中国地质大学(武汉)绪论单元测试1.美国正式出版的《石油开发地质学》在1979年由塔尔萨大学的---完成的?()参考答案:P.A.迪基2.Geological development of the study is()参考答案:Static and dynamic reservoir第一章测试1.油气田开发地质工作的核心任务是在油藏管理的全过程中,正确描述油藏开发地质特征。
()参考答案:对2.油藏的边界条件特指:()参考答案:底水;非渗透性岩性圈闭;气顶3.The recommendation of oil and gas reservoir geological classification at yourChinese book is ()参考答案:according to geometry and boundary conditions;based on reservoircharacteristics and flow;by the fluid nature4.Coal, oil and natural gas all form from the decomposition of organic matter.()参考答案:对5.流体性质主要包括()参考答案:密度、粘度、凝固点及烃类、非烃类组分6.裂缝性储集层指天然存在的裂缝对储层内流体流动具有重要影响或据预测具有重要影响的储集层。
()参考答案:对7.油气田开发是一个系统工程,在油气田开发总体系统工程中,开发地质是中心环节,它涉及到油气田开发的全过程,是油田开发的灵魂。
()参考答案:对8.油气开发地质学的研究内容广泛,研究方法也具有多样性,主要包括:()实验方法;油藏工程法;地球物理法;数学、人工智能及计算机等方法9.石油是一种成分十分复杂的液态混合物,主要成分包括:()参考答案:非烃化合物;少量氧、氧、硫、氮等微量元素;烃类化合物10.石油具有极高的电阻率,是一种非导体。
油气储层裂缝形成、分布及有效性分析近年来,随着我国油田勘探技术的不断创新与发展,对于油气储层的研究也日益加深,并从多个角度对油气储层的特征加以阐释,针对以往存在的一系列问题通过合理化的理论分析,对油气储层未来发展有一定的指导意义。
文章主要针对现阶段我国油气储层中形成裂缝的成因及分布情况进行了浅显的分析,希望通过介绍可以为相关研究人员提供一些参考建议,以便更好地推动我国石油工业的发展建设。
标签:油气储层裂缝;形成;分布;有效性引言随着各种新技术的层出不穷,对于石油探勘技术也提出了更高的要求,就目前发展阶段而言,全世界范围内仅有百分之二十是可采石油储量,受各种条件因素的限制,处于垂直及平面上的各种非均匀隔挡条件下的地下石油储量很难被开采出来。
于我国而言,此等情况更是如此,约百分之七十左右的石油储量与世界油田相同,均已进入了高含水阶段的开采时期,地下油气水分布较为复杂,这就在更大程度上对石油勘探技术提出了新的挑战,因此必须加强对油气储层的认识,通过建模预测改变原有的开采技术。
从某种角度来讲,原有的开采技术方式已经很难适应时代社会发展的需要,导致油气储层裂缝现象所占比重越来越大,油气储层不仅能够作为油气存储空间而独立存在,更能充当油气管道运输油气资源,对于油气而言有着极其重要的意义。
但现实情况中却存在很大问题,使其不能够发挥应有的效用促进我国石油工业的发展,其中主要的问题则是油气储层的裂缝问题。
针对油气储层裂缝等问题,相关学者在AAPG年会上针对此问题进行了详细地讨论,结合近年来的发展对油气储层有了新的认识与理解,并提出了新的解决措施,从而减少出现油气储层裂缝的现象,关于油气储层裂缝的研究已从宏观向微观发展,由理论沉积学向应用沉积学发展,并逐渐完善。
预计今后相当长的一段时间内,都将对油气储层裂缝形成、分布状况等有着更深地研究。
下面文章就针对现阶段油气储层裂缝的形成原因及分析进行详细的阐释,供相关人员参考。
2009年11月第16卷第6期断块油气田1研究内容1.1裂缝系统的成因研究裂缝系统的成因可对裂缝几何形态和分布的可预测性有所了解。
对于裂缝,通常以力学成因和地质成因来分类[1]。
1)力学成因分类。
在实验室的挤压、扩张和拉张试验中,可以观察到与3个主应力以一致和可预测的角度相交所形成的3种裂缝类型:剪裂缝、张裂缝和张剪缝,所有裂缝必然与这些基本类型中的一类相符合。
2)地质成因分类。
裂缝的形成受到各种地质作用的控制,如局部构造、区域应力、成岩收缩、卸载、风化等。
主要裂缝类型有构造裂缝、区域裂缝、收缩裂缝、卸载裂缝、风化裂缝、层理缝等。
另外,还有次火山岩中的隐爆裂缝、岩溶体系中的岩溶裂缝等。
1.2影响油藏动态的裂缝性质阐述岩石-裂缝系统的岩石物理性质,将为预测因基质和裂缝系统特征的横向变化或因环境条件(深度、孔隙压力的衰减、流动方向等)的改变而引起的不同深度,构造位置上储集层响应的变化提供依据。
这包括确定裂缝系统的物理形态和分布及估计与裂缝系统特征有关的储集性质(孔隙度和渗透率等)[2]。
1)裂缝形态。
天然破裂面的形态有4种基本类型:开启裂缝、变形裂缝(包括被断层泥充填的裂缝和具擦痕面的裂缝)、被矿物充填的裂缝、孔洞裂缝。
2)裂缝宽度和渗透率。
天然裂缝系统对储集层性质及产能定量评价有重要的影响。
地下裂缝宽度和渗透率的确定是了解裂缝对油层动态的影响所必须的地质参数。
3)裂缝间距。
同裂缝宽度一样,裂缝间距是预测储集层裂缝孔隙度和裂缝渗透率的又一个重要参数[3]。
1.3裂缝与基质孔隙度的联系裂缝在油气生产及储存上起重要作用的任何储集层必须看成是双孔隙度系统,一个系统在基质中,另一个在裂缝中。
如果由于2种孔隙度之间存在不利的相互影响而使储集层分析不能识别出衰竭开采的最大产储层裂缝的研究内容及方法范晓丽苏培东闫丰明(西南石油大学资源与环境学院,四川成都610500)摘要储层中裂缝既是储油空间,又是油气运移的主要通道,因此储层裂缝的研究显得尤为重要。
储层裂缝的研究摘要:储层裂缝可以在沉积、压实固结、构造变形、剥蚀抬升、油气运移等沉积盆地演化的各个环节中形成,具有复杂多样的形成机制。
任何地层和岩石都可以产生裂缝。
而这些裂缝正是油气聚集的重要空间,裂缝型油气藏油气产量占整个石油天然气产量的一半以上,是21 世纪石油增储上产的重要领域之一。
对储层裂缝的研究对我国油气的开发具有重要意义。
关键字:裂缝类型划分裂缝类型是在大量野外观测资料的分析研究基础之上,经过与邻区深井的取心资料和油气生产资料进行对比验证后总结得出来的。
根据野外观察和室内分析发现,岩体裂缝按其成因、分布特征、以及与主体构造的形成在时间和空间上的关系配置等因素综合考虑,可分为区域型、局部型和复合型3 大类型裂缝。
1.区域性构造裂缝区域构造裂缝是指在一定区域范围内分布(特别是走向)具有一定规律性的裂缝,主要特征如下。
裂缝平直、穿层深、延伸长,垂直于层面或与岩层面呈大角度相交。
同一层面上的区域裂缝一般同时发育两组,它们切割岩层在层面上呈棋盘格子状,当岩层直立或倾角较高时,在剖面上呈阶梯状。
不同方位的区域裂缝的规模、密度等有所不同,同一组裂缝其发育程度基本相似,常呈等间距分布。
调查发现:同一露头上所观测的具有上述特征的裂缝延伸方位比较一致性,但在不同观测点所测得的这类裂缝的初始产状却各不相同,如果直接作玫瑰花图,将看不出优势方位。
为此,将野外所测得的此类裂缝根据其所处的岩层产状进行赤平投影处理,求出其在岩层处于水平状态时的产状(恢复产状) ,然后再作玫瑰花图,求出其优势方位,最后根据岩层在水平状态下裂缝的优势方位,求出裂缝形成时的主应力方位(表1) 。
结果表明:不同地方的区域裂缝在岩层水平时其延伸方位有惊人的一致性,单个裂缝的走向方位与平均值方位最大误差值不超过10°,一般小于5°。
在整个研究区共有4 组较稳定的区域构造裂缝,虽然在连续沉积的不同岩性的地层中,同一组区域构造裂缝的恢复产状(走向)不完全一致,但各组裂缝产状非常接近,其微小的差异是由于不同岩性岩体的内摩擦角不同所致(表1) 。
裂缝油藏开发影响因素分析裂缝对低渗透油藏开发具有双重作用,一方面可改善储层的渗透性,提高油井的开采率;另一方面还可能增强油层的非均质性,造成水淹、水窜等事件,不利于油井的开发。
因此,我们在开采低渗透油气田时,应利用岩芯观察法、示踪剂测试技术和水驱前缘测试技术识别油层裂缝特征,制定科学、安全的开采方案,充分发挥裂缝的积极作用,抑制其消极作用,提高低渗透油气藏的开采率。
标签:裂缝性油藏;裂缝方向;井排方向研究结果表明:天然裂缝对低渗透油藏尤其是特低渗透油藏有很大影响:一方面显著提高了储层的渗透率,使油藏得以开发;另一方面加剧了储层的各向异性,增加了开发难度。
裂缝性双重介质油藏有着较强的非均质性,较强的应力敏感性,进行常规注水时容易发生水窜和较严重的水淹,且很难开发出基质中的原油,但对于此类油藏的开发又有着较为重要的意义。
相对于常规油藏,裂缝性双重介质油藏更难开发,且开发的效果较差,当前面对的问题是需要克服存在的技术难题,合理高效的进行开发[1]。
在对裂缝性油藏进行注水开发中存在几个关键因素,如注采井网的部署是否优化,特别是裂缝方向和井排方向的优化[2]。
在裂缝性油藏的开发中,国内外学者和从业人员通过数值模拟对渗吸采油机理进行分析,探讨了开发效果受开发方式的影响程度。
1、开采方式开采方式有注水开采和天然能量开采两类。
在常规油藏中,开采方式有天然能量开采,另一类是通过注水等操作,在外界的作用下对能量进行补充,以获得更高的能量水平,得到好的开发效果[4]。
而对于双重介质油藏,进行外界能量不出获得的效果会显得更为突出。
最低采出程度的方式是靠天然能量开采,这是由于在此方式下,能量不能得到补充,造成了过快的地层压力下降,地层能量也会出现降低,导致了近井地带严重的脱气,从而使得油井产量出现大幅度降低,油藏的采收率明显降低。
而在注水开发方式中,由于损失的能量能得到及时的补充,地层压力可以维持在饱和值上,使得油井的稳产期延长,提升了采出程度。
裂缝性储层渗透率返排恢复率的影响因素I. 引言A. 研究背景和意义B. 目的和研究内容C. 研究方法和步骤II. 裂缝性储层的渗透率特征A. 裂缝性储层的定义和分类B. 渗透率的测定方法和影响因素C. 渗透率分布和模型III. 渗透率返排与恢复率的关系A. 渗透率返排的定义和意义B. 返排效应对恢复率的影响C. 恢复率的计算方法和预测模型IV. 影响恢复率的因素分析A. 储层性质因素B. 储层构造因素C. 生产参数因素D. 人为因素V. 提高恢复率的措施A. 优选采收方式和生产参数B. 储层改造和增产技术应用C. 水驱和人工提高采收率的效果分析VI. 结论A. 影响因素的综合分析B. 恢复率提升的效果评估C. 研究成果的意义和展望第1章节:引言天然气、石油等化石燃料的应用广泛,然而其开采过程中存在很多难题,其中最重要的问题之一是如何高效率、低成本地提高恢复率。
裂缝性储层是一种特殊的储层类型,具有较高的石油、天然气价值和开采难度,是研究提高恢复率的关键领域之一。
渗透率是裂缝性储层中最关键的地质性质之一,影响着储层的产能和采收率。
近年来,随着科学技术的发展和储层特征的深入研究,对裂缝性储层渗透率返排与恢复率的影响因素进行了深入探究,研究结果对提高恢复率具有十分重要的参考价值。
本文将对裂缝性储层渗透率返排与恢复率的影响因素进行详细讨论,主要分为五个章节。
第二章将介绍裂缝性储层的渗透率特征,包括渗透率的定义、测量方法和影响因素等。
第三章将阐述渗透率返排与恢复率的关系,对返排效应的影响和恢复率的计算方法进行系统分析。
第四章分析影响恢复率的因素,包括储层性质因素、储层构造因素、生产参数因素和人为因素。
最后,第五章结合前面章节的研究结果,总结提高恢复率的措施,包括采收方式、生产参数优化、储层改造等方面,并对未来的研究方向和前景进行展望。
第2章节:裂缝性储层的渗透率特征裂缝性储层是地质构造与成因复杂的储层类型,具有很高的开采难度。