当前位置:文档之家› 基因组分析显示:卵巢癌有7种疾病亚群

基因组分析显示:卵巢癌有7种疾病亚群

基因组分析显示:卵巢癌有7种疾病亚群
基因组分析显示:卵巢癌有7种疾病亚群

基因组分析显示:卵巢癌有7种疾病亚群

通过基因组分析发现,卵巢癌可分为7个亚群。最新研究显示,识别卵巢癌组织类型,体细胞基因组中的点突变和结构变异是强大且具有判别性质的生物标志物。

一项新研究表明,基因组分析可为卵巢癌提供新的治疗信息。由BC癌症研究所和哥伦比亚大学引领的一项国际研究追踪了100多个卵巢癌的点突变和结构变异,经过分析,确定了7种肿瘤分子亚型。相关研究结果于4月25日在线发表在《Nature Genetics》杂志上。

本文作者写道,“我们的研究结果表明,识别卵巢癌组织类型,体细胞基因组中的点突变和结构变异是强大且具有判别性质的生物标志物。”

在本次研究中,研究人员主要分析了133例卵巢癌。其中59例为高级别浆液性卵巢癌,35例为卵巢透明细胞癌,29例为子宫内膜癌,10例为成人型卵巢颗粒细胞瘤。研究人员对这些患者进行基因组测序,将肿瘤样本和正常样本进行匹配。

除了通过扩增子测序来验证潜在的结构变异,该研究团队还剖析了BRCA1/2胚系突变、BRCA1基因启动子甲基化状态以及肿瘤的微卫星不稳定模式。此外,他们还把临床可用数据纳入到分析中。

研究人员结合了点突变、拷贝数、微小插入和缺失、结构变异等20个基因组特征,最终将这些病例分成了7个亚群,其中至少一种亚群对卵巢癌的预后提供了线索,这种亚群是高级别浆液性卵巢癌的一种类型,标志性的特征为碱基折返倒置(foldback inversions)。

研究人员报道称,大约40%的高级别浆液性卵巢癌出现折返倒置,这往往与无进展生存期以及铂类化疗后总生存期较差有关,尤其是当肿瘤出现较高水平的碱基倒置时。其余的高级别浆液性卵巢肿瘤往往表现出同源重组缺陷的迹象,通常拥有更好的结果。

随后他们对来自国际癌症基因组协会和肿瘤基因图谱计划中的600例卵巢癌数据进行了分析,结果与上述研究相一致。他们还确定了卵巢透明细胞癌的亚群,标志特征为与年龄相关的突变。另外,他们还在子宫内膜瘤亚型中看到了微卫星不稳定性和相关的突变。

作者指出,总体而言,这项研究结果提供了一种新的卵巢癌疾病分型方式,确定了新的生物分子分型,给未来治疗提供了新的机会。

时代基因致力于个体化生命健康,让每一个中国人了解自己的基因,把握健康未来。

微卫星不稳定性的生物学意义

?综 述? 微卫星不稳定性的生物学意义 及其应用前景3 丁 一 童坦君(北京医科大学生物化学与分子生物学系,北京100083) 摘要 微卫星为遍布于人类基因组中的简单重复序列。在人群中,它们呈现高度多 态性,并且稳定遗传。微卫星的高度多态性是微卫星不稳定性的表现,它与错配修复 基因的缺陷有关。微卫星不稳定性已广泛应用于肿瘤学的研究,并依此提出了肿瘤 发生的“增变基因”途径。在遗传学、老年病学及其它一些生命科学,微卫星不稳定性 同样具有广泛的应用前景。 关键词 微卫星不稳定性;错配修复基因;增变基因 Microsatellite Instability:A Potential Tool for the study of Life Sciences DIN G Y i, TON G Tan2J un(Depart ment of B iochemist ry and Molecular B iology,Beiji ng Medi2 cal U niversity,Beijing100083) Abstract Microsatellites are simply repeated nucleotide sequences scattered throughout the human genome.They are highly polymorphic among human population and inherit2 ed in a stable manner.The microsatellite instability(M I)is highly polymorphic,which is associated with the defects in DNA mismatch repair genes.M I has been widely used by scientists to study the tumorigenesis.On the basis of their findings,a“mutator that mutates the other mutator”model for tumorigenesis has been proposed.M I is also a po2 tential tool for the study of genetics,aging and other life sciences. K ey w ords Microsatellite instability;Mismatch repair gene;Mutator 微卫星(microsatellites)遍布于人类基因组中,在动物及部分微生物基因组中也有存在。它们是由同一脱氧寡核苷酸重复串联而成,重复顺序为1~6bp,重复次数不超过60次,片段长度通常小于350bp,在人群中表现出高度的个体特异性,并且稳定遗传。人类基因组中包含数万个微卫星位点,由于它们一般处于可积累中性突变的非编码DNA区域,在人群中呈现高度多态性。 微卫星多态性是微卫星不稳定性(microsatellite instability,M I)的表现。微卫星多态性表现于同一微卫星位点在不同个体之间以及同一个体的正常组织与某些异常组织之间,微卫星位点的重复单位的数目不同。微卫星多态性的检测采用PCR方法。选择位于微卫星序列两 3 国家自然科学基金资助课题(39670806)

病例分析

病例分析 包括:诊断及依据、鉴别诊断、进一步检查项目、治疗原则(15分钟 22分) 病种 75种: 1、呼吸系统(慢性阻塞性肺疾病、、支气管哮喘、支气管扩张、肺炎、肺结核、肺癌、呼吸衰竭、血胸和气胸、肋骨骨折) 2、心血管系统(心力衰竭、心律失常、冠心病、高血压、脏瓣膜病、结核性心包炎) 3、消化系统(胃食管反流病、食管癌、胃炎、消化性溃疡、消化道穿孔、胃癌、肝硬化、 肝癌、胆石病、胆道感染、急性胰腺炎、溃疡性结肠炎、肠梗阻、结、直肠癌、肠结核、结核性腹膜炎、急性阑尾炎、肛管、直肠良性病变、腹外疝、腹部闭合性损伤) 4、泌尿系统(含男性生殖系统)(急性肾小球肾炎、慢性肾小球肾炎、尿路感染、尿路结石、前列腺增生、)慢性肾衰竭 5、女性生殖系统(异位妊娠、急性盆腔炎、子宫颈癌、子宫肌瘤、卵巢癌、卵巢囊肿蒂扭转) 6、血液系统(缺铁性贫血、再生障碍性贫血、急性白血病、淋巴瘤、特发性血小板减少性紫癜) 7、内分泌系统(甲状腺功能亢进症、单纯性甲状腺肿、糖尿病) 8、神经系统(脑出血、脑梗死、蛛网膜下腔出血、急性硬膜外血肿) 9、运动系统(四肢长管状骨骨折、大关节脱位)

10、风湿免疫性疾病(系统性红斑狼疮、类风湿关节炎) 11、儿科疾病(小儿肺炎、小儿腹泻、营养性维生素D缺乏性佝偻病、小儿常见发疹性疾病) 12、传染病(病毒性肝炎、细菌性痢疾、流行性脑脊髓炎、艾滋病) 13、其他(软组织急性化脓性感染、急性乳腺炎、乳腺癌、一氧化碳中毒、有机磷杀虫药中毒) 病例分析 1、病例分析与医疗查房相似,每份病例分析题均提供病例摘要,应试者根据摘要内容进行分析、判断(诊断和鉴别诊断)、提出诊治意见(进一步诊治方法)。 2、要得出正确答案,首先要有基本的医学知识和实践经验,但要在15分钟内用书面方式作出回答,还需要有一定的技能,即应用正确的临床思维方法,按以下步骤,做出初步诊断和鉴别,提出诊治方案。 一、初步诊断及诊断依据 1、初步诊断最难也是最关键的一项。 循序阅读、思考分析。注意病例的四个部分: (1)主诉:是浓缩的病历(性别、年龄和主要临床表现及时间)读完主诉应对病人患的是哪一类疾病有初步的了解和一个大致的范围。(2)病史:对主诉的进一步描述和说明使可疑诊断范围缩小。(3)查体:是有重点进行的,(右上腹痛伴发热、黄疸,体检:巩膜黄染、右上腹压痛,Murrphy征阳性)。 (4)辅助检查:是诊断和鉴别的客观指标。

叶酸代谢与基因组稳定性

叶酸代谢与基因组稳定性 王晓会124120035 12生A 摘要:叶酸是人体DNA合成、氨基酸之间相互转化、血红白肾上腺索、胆碱、肌酸合成所必需的物质。叶酸为体内DNA合成、修复及甲基化所必需的微营养素,其缺乏可诱发DNA其代谢涉及DNA 合成及甲基化等重要生化过程,对维持人类遗传稳定性意义重大。 关键词:叶酸;人类基因组;稳定性 许多国内外实验室营养基因组学的研究发现,若干微量营养素能影响人类基因组的稳定性,这些微量营养素表现了对基因组的保护或损伤作用对基因组的健康有维护效应。 叶酸简介:叶酸(folic acid,FA)又称蝶酰谷氨酸,由喋啶核、对氨苯甲酸及谷氨酸三部分组成,是一种水溶性B族维生素。FA作为一类重要的微营养物质,对保持染色体正常染色体构像和DNA正常甲基化起到重要作用。FA具有众多的衍生化合物,包括蝶酰单谷氨酸、蝶酰多聚谷氨酸以及携带或不携带甲基的各种形式,所有这些FA的衍生分子统称folate(FL)植物或食品中的FL都以多聚蝶酰谷氨酸形式存在,被摄人体内后,大部分被还原为5.甲基四氢叶酸(5-methyltetrahydrofolate,5-methylTHF),5-methylTHF是进入血液的主要FL。5-methylTHF进入细胞后通过一碳单位的若干传递过程,最后转变为四氢叶酸(tetrahydrofolate,,IHF)。 叶酸的代谢过程:叶酸主要涉及DNA合成和DNA甲基化两个重要的生物化学过程,一方面涉及尿嘧啶脱氧核苷酸(dUTP)到胸腺嘧啶脱氧核苷酸(dTTP)的合成。另一方面,通过同型半胱氨酸(HC)

合成甲硫氨酸(Met)、S-腺苷甲硫氨酸(SMA)的生化过程进而影响DNA甲基化。当叶酸缺乏时会导致dTTP合成受阻,dUTP积累并掺入DNA,可在继后的DNA修复和修复过程中诱发基因突变、DNA单双链断裂、染色体的断裂及等位基因稳定性下降事件;叶酸缺乏也可导致SAM合成受阻,降低整体DNA甲基化程度,甚至改变细胞中的特异性甲基化模式,从而改变基因表达方式,DNA甲基化水平的降低还可能导致着丝粒异染色质凝聚水平下降,从而在有丝分裂过程中引起某些染色体分离异常,形成非整倍体[1]。 FL进入叶酸循环后,所参与的一碳单位传递转移包括几个关键步骤:首先,一碳单位在2种不同氧化态(甲酸氧化态和甲醛氧化态)的4个位点进入叶酸循环(见图1):携带甲酸氧化态一碳单位的FL通过5.formylTHF(5.甲酰四氢叶酸)、10.formyl,IHF(10一甲酰四氢叶酸)、5-formiminoTHF(5.亚胺甲基四氢叶酸)3个部位进入叶酸循环;携带甲醛氧化态一碳单位的FL通过5,10.methylene,IHF(亚甲基四氢叶酸,5,10一MnTHF)进入叶酸循环。携带一碳单位的FL进入叶酸循环以后,随即参与分子内一碳单位的传递与转换。5-formylTHF 及10一fomylTHF被转化为5,10.methenyl THF,后者随即被还原为5,10.MnTHF。亚甲基四氢叶酸还原酶将5,10。MnTHF还原为5一methylTHF,后者经甲硫氨酸合成酶催化转变为THF,以接受下一个碳单位[2]。

研究细菌基因组结构的意义

细菌基因组的结构和功能 细菌和病毒一样同属原核生物,因而细菌基因组的结构特点在许多方面与病毒的基因组特点相似,而在另一些方面又有其独特的结构和功能。本节首先介绍细菌染色体基因组的一般结构特点,然后再具体介绍大肠杆菌染色体基因组 的结构和功能。 1细菌染色体基因组结构的一般特点 (1)细菌的染色体基因组通常仅由一条环状双链 DNA分子组成细菌的染色体相对聚集在一起,形成一 个较为致密的区域,称为类核(nucleoid)。类核无 核膜与胞浆分开,类核的中央部分由RNA和支架蛋白 组成,外围是双链闭环的DNA超螺旋。染色体DNA通 常与细胞膜相连,连接点的数量随细菌生长状况和不同的生活周期而异。在DNA链上与DNA 复制、转录有关的信号区域与细胞膜优先结合,如大肠杆菌染色体DNA的复制起点(OriC)、复制终点(TerC)等。细胞膜在这里的作用可能是对染色体起固定作用,另外,在细胞分裂时将复制后的染色体均匀地分配到两个子代细菌中去。有关类核结构的详细情况目前尚不清楚。 (2)具有操纵子结构(有关操纵子结构详见基因表达的调控一章)其中的结构基因为多顺反子,即数个功能相关的结构基因串联在一起,受同一个调节区的调节。数个操纵子还可以由一个共同的调节基因(regulatorygene)即调节子(regulon)所调控。 (3)在大多数情况下,结构基因在细菌染色体基因组中都是单拷贝但是编码rRNA的基因rrn往往是多拷贝的,这样可能有利于核糖体的快速组装,便于在急需蛋白质合成时细胞可以在短时间内有大量核糖体生成。 (4)和病毒的基因组相似,不编码的DNA部份所占 比例比真核细胞基因组少得多。 (5)具有编码同工酶的同基因(isogene)例如,在 大肠杆菌基因组中有两个编码分支酸(chorismicacid) 变位酶的基因,两个编码乙酰乳酸(acetolactate)合成 酶的基因。 (6)和病毒基因组不同的是,在细菌基因组中编码 顺序一般不会重叠,即不会出现基因重叠现象。 (7)在DNA分子中具有各种功能的识别区域如复制 起始区OriC,复制终止区TerC,转录启动区和终止区等。 这些区域往往具有特殊的顺序,并且含有反向重复顺序。

6-基因组不稳定性

分子机制研究套路(六) 基因组不稳定性 课题:A肿瘤的微卫星不稳定与染色体不稳定研究 1.概念介绍: 微卫星(microsatellite,MS)是由1-6个核普酸组成,具有高度多态性的简单串联重复序列,广泛分布于整个基因组DNA序列中,复制过程中易于发生改变,人类基因组中最常见的微卫星序列是胞嘧啶和腺嘌呤的二聚体(CA),尽管微卫星序列在个体之间存在广泛的多态性,但在个体内部保持一定的稳定性,而且能在后代中保持遗传的稳定,因此微卫星序列是重要的遗传标志,可以作为遗传学研究的标志。微卫星不稳定性(MSI)是这些简单重复序列的改变,MSI只有在许多细胞都发生同样的改变才能被检测出,是肿瘤细胞克隆性增殖的一个指标。错配修复功能下降会引起DNA复制错误增加,导致MSI,目前研究表明MSI是错配修复基因失活的一个重要表型。MSI检测的方法较多,常用的检测方法有变性凝胶电泳、基因扫描、变性高效液相色谱分析等方法。基因扫描法将微卫星位点的PCR引物在一端进行荧光标记,然后扩增该微卫星位点,将PCR扩增产物在荧光毛细管中进行电泳,以基因扫描进行分析得出不同条带的碱基数,从而确定其大小,该方法的敏感性较高,可以高通量检测微卫星位点。 染色体是细胞遗传的物质基础,分子细胞遗传学研究表明大多数肿瘤细胞特别是实体瘤细胞在发生发展的过程中都存在染色体片段的非随机异常,表现为染色体数目或结构的改变,这些改变与原癌基因的扩增和抑癌基因的缺失密切相关。染色体不稳定(CIN)包括整条染色体的获得或缺失(非整倍体)、杂合性缺失、染色体易位、重排、基因扩增导致的染色体均染区、双微体等。 细胞核中DNA含量直接反映细胞核酸代谢水平和生长增殖活性,正常细胞核DNA的含量

高中生物《DNA分子的结构》教案

高中生物《DNA分子的结构》教案 一、教学目标 【知识与技能】 概述DNA分子结构的主要特点。 【过程与方法】 在建构DNA双螺旋结构模型的过程中,提高分析能力和动手能力。 【情感态度与价值观】 认同人类对遗传物质的认识是不断深化、不断完善的过程。 二、教学重难点 【重点】 DNA分子结构的主要特点。 【难点】 DNA双螺旋结构模型的建构过程。 三、教学过程 (一)导入新课 首先回忆上一节课的内容(DNA是主要的遗传物质),之后设疑:DNA是遗传物质,那DNA分子必然携带着大量的遗传信息。现在大家来当科学家,在了解了DNA分子的功能以后,大家想要进一步了解什么(DNA分子时如何携带遗传信息的DNA分子的遗传功能是如何实现的)要解决这些问题首先要了解什么从而导入新课。 (二)新课讲授 1.师:DNA分子的组成单位是什么请用课前准备好的材料展现出来。

学生分组展示脱氧核苷酸的结构: 2.师:我们知道了DNA是脱氧核苷酸长链,请同学们试着把自己制作的四个脱氧核苷酸连成长链,请几个同学说明脱氧核苷酸之间是如何连接的、四个核苷酸是怎样排序的 学生分组用实物进行展示,并用语言描述。 教师点评,并强调相邻的脱氧核苷酸之间的磷酸和脱氧核糖形成新的化学键,形成磷酸和脱氧核糖交替连接的长链。 3.师:不同组的同学展示的脱氧核苷酸链的碱基排列顺序不同,请问碱基排列顺序不通过的DNA分子时同一个DNA分子吗组成DNA的碱基(脱氧核苷酸)排列顺序的千变万化有什么意义 (碱基排列顺序不同,DNA分子也不同,每个DNA分子具有其独特的碱基排列顺序。) 4.师:脱氧核苷酸单链是无法稳定存在的,那么由这样的长链组成的DNA 分子要具有怎样的结构才能稳定存在并且遗传给后代呢请结合教材,尝试构建DNA双链结构。(备注:预设有两种情况,见下图,设置纠错环节) (情况一中的两条链无法连接在一起,科学家已否定;情况二可行,两条链之间的碱基通过化学键结合,但是碱基如何结合能稳定存在吗) [page] 5.师:1952年春天,奥地利的生物化学家査戈夫访问了剑桥大学,沃森和克里克从他那里得到了一个重要的信息:A的量等于T的量,G的量等于C 的量,这给了沃森和克里克很大的启示,同学们,你们获得了什么启发吗请组内讨论,然后修正本组的模型。 (得出下图,碱基间有固定的配对方式:一条链中的A与另一条链上的T 配对,G与C配对)

比较基因组学揭示哺乳动物基因组脆性区域产生与消亡的过程

生物医学工程与临床2011年1月第15卷第1期BME &Clin Med,January 2011,Vol.15,No.1 舒张功能的临床意义[J].中国超声医学杂志,2009,25(9):877-880.] [6]Silverberg DS,Oksenberg A.Are sleep-related breathing disor -ders important contributing factors to the production of essential hypertension[J]?Curr Hypertens Rep,2001,3(3):209-215.[7]London GM,Guerin AP.Influence of arterial pulse and reflected waves on blood pressure and cardiac function[J].Am Heart J,1999,138(3Pt 2):220-224. [8]WANG Shu-bin,LI Chun-lei,DENG You-bin,et al .Study on c -arotid intima-media thickness,stiffness and their correlations in diabetic patients[J].Chinese Journal of Ultrasound in Medicine,2005,21(2):123-125.[王淑彬,黎春雷,邓又斌,等.糖尿病患 者颈动脉内中膜复合体厚度僵硬度的变化及其相关性的研究[J].中国超声医学杂志,2005,21(2):123-125.] [9]Furumoto T,Fujii S,Saito N,et al .Relationships between brac -hial artery flow mediated dilation and carotid artery intimam - edia thickness in patients with suspected coronary artery disease[J].Jpn Heart J,2002,43(2):117-125. [10]Bots MI,Hose AW,Koudstaal PJ,et al .Common carotid intima-media thickness and risk of stroke and myocardial infarction:the Rotterdam Study[J].Stroke,1997,28(12):2442-2447.[11]LIU Yong-yi,SHEN Xiang,XU Ye,et al .Studies on ultrason -ography and Doppler velocity tracing of common carotid artery in obstructive sleep apnea hypopnea syndrome in a porcine mo -del [J].Medical Journal of Chinese People ’s Liberation Army,2007,32(6):578-580.[刘永义,沈翔,徐晔,等.阻塞性睡眠呼 吸暂停低通气综合征模型猪颈总动脉超声和多普勒流速曲线实验研究[J].解放军医学杂志,2007,32(6):578-580.] [12]Almendros I,Montserrat JM,Torres M,et al .Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea[J].Respir Res,2010,11(3):1-6. 比较基因组学揭示哺乳动物基因组脆性区域产生与消亡的过程 据Alekseyev MA 2010年11月30日[Genome Biol ,2010,11(11):R117]报道,加州大学圣地亚哥分校的一项新生物信息学研究发现哺乳动物基因组的脆性区域经历了一个产生与消亡的过程。一直以来基因组脆性区域被认为在进化过程中发挥关键性的作用。新研究发现有助于研究人员在人类基因组中鉴别脆性区域,并可通过这一信息预测未来人类基因组的进化。 地球上每个物种的基因组结构都会随进化发生改变,人类也不例外。虽然还不知道人类基因组的下一个重大改变是什么,但研究人员采用的方法将有助于确定人类基因组可能发生变化的位点。 基因组脆性区域是基因组中的不稳定区域,脆性区域断裂可启动染色体重排、基因断裂、改变基因调控,在基因组进化和新物种的产生中发挥着关键性的作用。例如人类有23对染色体,而一些猿类却有24对染色体,这是因为猿类祖先在进化过程中基因组重排使得两条染色体发生融合而形成了人类的2号染色体。 逆转脆性断裂模型 2003年Pevzner 和加州大学圣地亚哥分校的数学系教授Tesler G 发现基因存在有一些“断裂区”,从而使其相对于基因组其他 区域更容易发生重排。他们的“脆性断裂模型”反驳了当时被广泛接受的“随机断裂模型”。尽管在过去的7年里,脆性断裂模型得到了许多研究的证实,然而研究人员仍无法获得人类基因组脆性区域的精确定位。 新研究发现为脆性断裂模型提供了最新的信息,研究人员将其命名为“逆转脆性断裂模型”。新研究结果证实在进化过程中脆性区域经历了一个产生和消亡的过程,并提供了一条确定人类基因组脆性区域定位的线索。 计算:找到脆性区域 在基因组中寻找脆性区域就好像要求你观察一副打乱的牌,然后尝试确定洗牌的次数。在观察基因组时,也许可以找到断裂点,然而要确定其是否是脆性区域,就必须确定在相同的基因组位置断裂次数超过了1次。研究人员通过分析现在存在的所有基因组来计算哪些区域发生了多次基因组震动。所谓重组的概念并不是仅适用于某一个时间点的某一个基因组,而是观察到多个基因组的相关性。在这次研究中研究人员采用了比较基因组学的方法。 值得注意的是虽然脆性区域有可能为各种不同的基因组共有,但大多数这样的共有脆性区域都存在于进化接近的基因组中。这表明任何特定基因组脆性区域有可能仅出现一段有限的时间。根据新提出的逆转脆性断裂模型学说,脆性区域都会经历一段产生和消亡的过程,因而有着有限的存在期。 逆转脆性断裂模型表明基因组重排更可能发生在近期发生过重排的位点,并且这些重排位点在千万年的时间里不断发生改变。因此研究人类的近亲———猩猩和其他灵长类动物的基因组重排将为寻找人类基因组脆性区域的当前位置提供最好的线索。 现在正热切等待获得来自基因组10k 计划灵长类基因组测序结果。在未来人类基因组重排最有可能发生在最近灵长类动物中发生断裂的位点。新的逆转脆性断裂模型将不仅有助于研究人员研究所有物种,并且可在个体水平上了解基因组重排。在未来,计算机科学家们希望利用相似的工具观察反复发生在个别癌症患者细胞内的染色体重排,并以此开发出新的癌症诊断技术和治疗药物。 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ·信息动态· 27--

NSFC全部资源撰写技巧分子机制研究课题 基因组不稳定性

分子机制研究 基因组不稳定性 课题:A肿瘤的微卫星不稳定与染色体不稳定研究 1.概念介绍: 微卫星(microsatellite ,MS)是由1-6个核普酸组成,具有高度多态性的简单串联重复序列,广泛分布于整个基因组DNA序列中,复制过程中易于发生改变,人类基因组中最常见的微卫星序列是胞嘧啶和腺嘌呤的二聚体(CA),尽管微卫星序列在个体之间存在广泛的多态性,但在个体内部保持一定的稳定性,而且能在后代中保持遗传的稳定,因此微卫星序列是重要的遗传标志,可以作为遗传学研究的标志。微卫星不稳定性(MSI)是这些简单重复序列的改变,MSI只有在许多细胞都发生同样的改变才能被检测出,是肿瘤细胞克隆性增殖的一个指标。错配修复功能下降会引起DNA复制错误增加,导致MSI,目前研究表明MSI是错配修复基因失活的一个重要表型。MSI检测的方法较多,常用的检测方法有变性凝胶电泳、基因扫描、变性高效液相色谱分析等方法。基因扫描法将微卫星位点的PCR引物在一端进行荧光标记,然后扩增该微卫星位点,将PCR扩增产物在荧光毛细管中进行电泳,以基因扫描进行分析得出不同条带的碱基数,从而确定其大小,该方法的敏感性较高,可以高通量检测微卫星位点。 染色体是细胞遗传的物质基础,分子细胞遗传学研究表明大多数肿瘤细胞特别是实体瘤细胞在发生发展的过程中都存在染色体片段的非随机异常,表现为染色体数目或结构的改变,这些改变与原癌基因的扩增和抑癌基因的缺失密切相关。染色体不稳定(CIN)包括整条染色体的获得或缺失(非整倍体)、杂合性缺失、染色体易位、重排、基因扩增导致的染色体均染区、双微体等。 细胞核中DNA含量直接反映细胞核酸代谢水平和生长增殖活性,正常细胞核DNA的含量

卵巢癌术后复发 病例讨论

【一般资料】 患者女性,51岁,已婚,于2012-11-24日活动后出现发憋气短,就诊于当地县医院,行胸部CT示:左侧大量胸腔积液,叶间积液伴左肺被动性膨胀不良,右侧前内胸壁局限性突起,考虑局限性胸膜肥厚或少量包裹性积液。后就诊于当地三级综合医院,抽取胸水并行细胞学检查,查到大量腺癌细胞。妇科彩超:子宫体积增大,子宫肌瘤,右侧附件区无回声(4.6*4.5cm),囊肿可能,左附件区未见明显异常。肿瘤标记物:CA125:212.4U/ml,CA724:32.93U/ml。行PET/CT检查:1.左侧附件区软组织肿物伴稍显囊变,代谢增高,考虑恶性病变,卵巢癌可能性大;右侧附件区囊实性肿物伴壁结节,代谢增高,考虑囊腺瘤,不除外囊腺癌;2.右上肺胸膜下小结节,轻度代谢,考虑良性病变;3、左下肺索条阴影,无异常代谢,考虑良性病变;左侧胸腔积液伴引流管影;右侧剑突水平相邻肋骨局灶性代谢增高。于2012-12-18在我院妇科行剖腹探查术,术中见左卵巢菜花样组织约5.0×5.0×4.0cm,右卵巢囊肿约6×5X5cm大小,并见-2×1×1cm大小菜花样病灶,大网膜部分呈饼状。行卵巢癌细胞减灭术。术后病理:双侧卵巢中分化浆液性乳头状癌,左输卵管慢性炎;左卵巢动静脉、输卵管浆膜面可见癌,大网膜、阑尾未见癌,双侧淋巴结未见癌转移(左0/13,右0/7),子宮多发平滑肌瘤,子宫腺肌病,分泌期子宫内膜,慢性宫颈炎。腹腔冲洗液查见瘤细胞。术后行TC方案化疗共6个周期。2013-12-4复查发现左侧胸腔积液,脱落细胞学查见可疑瘤细胞,病情进展,给予GP方案化疗一周期,因消化道反应较重,改为GC方案化疗二周期,2周期后复查

回顾目前人类干细胞的基因不稳定性及未来展望

简明回顾:人类干细胞中的基因组不稳定性:目前的情况及将来的挑战 ABSTRACT 人们已经认识到,基因组的不稳定性是基于干细胞的疗法进行扩展的最重要障碍之一。最近几年,不断积累的证据表明人类干细胞在体外培养条件下经历了多种生物学变化程序,包括染色体数量和结构上的异常,点突变端粒长度的变异,以及表观遗传上的不稳定。随着这一领域向前发展,对与人类基因组可塑性有关的风险因素的认识,非常有力地支持将广泛基因组筛查作为质控平台的一部分,以证明基于干细胞产品的安全性。本文中,我们做了一次及时而广泛的回顾,回顾这一领域的现状及正在出现的趋势,最终,强调了采用新调控标准的必要性,这种调控标准可以使治疗性应用的开发途径更为安全有效。 INTRODUCTION 再生医学的广阔天地为使用干细胞和/或其子代来替代被疾病损伤的组织带来了令人兴奋的前景,这种取代要么是通过细胞整合(移植成活)到目标组织中,以及/或者是利用细胞产生可溶性信号分子的能力。干细胞可以源自多种组织,也就是可以来自胚胎组织及成体组织。首先从胚球内侧细胞团中分离出了人类胚胎干细胞(hESCs)[1],已知的是它自我更新的能力以及它的多能性,它可以产生胚胎的三个胚层(内胚层,中胚层,外胚层)能产生的所有细胞类型。hESCs为替换治疗,疾病建模,以及药物筛查带来了巨大的希望,但最近几年人们发现了相当多的关于染色体畸变的令人心烦意乱的数据,这些数据还伴有显著的伦理争议,它们妨碍了对这些细胞的研究及临床应用。2006年Takahashi与Yamanaka揭示了用异位共表达已知的转录因子将体细胞重编程为胚胎样状态的可行性[2]。这种方法避免了子宫外胚胎损伤,对获取这些被称为诱导性多能干细胞(iPSCs)的热情,一定程度上掩盖了与重编程过程相关的高突变率[3]。按现有的了解情况,hESCs和人iPSCs(hiPSCs)在基因,表观遗传,以及转录水平上有微妙的区别。不过,这种区别是意味深长的,或仅仅是,打个比方说,不同培养环境所造成的结果,这个问题还悬而未决。 此外,最近几年里,人类成体干细胞,比如造血干细胞(HSCs),间质干/基质细胞(MSCs),神经干细胞(NSCs),表皮干细胞或皮肤干细胞,在整个成年期的组织里不同的微环境中被发现,为能够支持组织的维持与再生的静止期祖细胞提供了另一种来源。这些多能干细胞中的某些类型,比如HSCs或MSCs,也可在新生组织中发现,比如胎盘或是脐带血。但是,如同在多能干细胞中的那样,不断出现的证据表明这些细胞在体外培养扩张期间,基因异常和转换表现出时间依赖性累积现象。 在这种情况下,非常值得注意的是,不考虑细胞类型,体外扩张期间的质量控制对干细胞治疗方面在临床上更安全地实施十分关键。欧洲药品管理局在其“对基于干细胞药物的反思”一文中强调了与操作步骤及多能细胞和体细胞培养有关的致癌潜能,并做了一份关于进行细胞遗传学分析以及评估参数的建议,这些评估参数包括端粒酶活性,增殖能力,以及衰老状态[4]。关于国际干细胞银行的提议要解决同样的议题[5],它设想建立一个关于标准化优良操作的全球性网络,以便干细胞的存储与分配。在这件事上,美国食品与药品管理局(FDA)的失职情况还在不断恶化,越来越多的诊所往往在没有什么控制力的司法权下进行操作,并用一些未经证明的疗法来应对无数的病理情况(见[6])。在某些例子中,缺乏健全

基因组的结构与功能习题

第二章基因组的结构与功能 (一)选择题 A 型题 1.原核生物染色体基因组是 A.线性双链DNA分子 B.环状双链DNA分子 C.线性单链DNA分子 D.线性单链RNA分子 E.环状单链DNA分子 2.真核生物染色体基因组是 A.线性双链DNA分子 B.环状双链DNA分子 C.线性单链DNA分子 D.线性单链RNA分子 E.环状单链DNA分子 3.有关原核生物结构基因的转录,叙述正确的是 A.产物多为多顺反子RNA B.产物多为单顺反子RNA C.不连续转录 d.对称转录 E.逆转录4.原核生物的基因组主要存在于 A.质粒 B.线粒体 C.类核 D.核糖体 E.高尔基体 5.下列有关原核生物的说法正确的是 A.原核生物基因组DNA虽然与蛋白结合,但不形成真正的染色体结构 B.结构基因中存在大量的内含子 C.结构基因在基因组中所占比例较小 D.原核生物有真正的细胞核 E.基因组中有大量的重复序列 6.下列有关原核生物的说法不正确的是 A.原核生物的结构基因与调控序列以操纵子的形式存在B.在操纵子中,功能上关联的结构基因串联在一起C.在一个操纵子内,几个结构基因共用一个启动子 D.操纵元件也是结构基因E.基因组中只存在一个复制起点 7.真核生物染色质中的非组蛋白是 A.碱性蛋白质B.序列特异性DNA结合蛋白C.识别特异DNA序列的信息存在于蛋白上 D.不能控制基因转录及表达E.不参与DNA分子的折叠和组装 8.真核生物染色质的基本结构单位是 A.α-螺旋B.核小体 C.质粒 D.?-片层 E.结构域 9.关于真核生物结构基因的转录,正确的说法是 A.产物多为多顺反子RNAB.产物多为单顺反子RNAC.不连续转录D.对称转录E.新生链延伸方向为3'→5' 10.外显子的特点通常是 A.不编码蛋白质B.编码蛋白质C.只被转录但不翻译D.不被转录也不被翻译E.调节基因表达11.下列有关卫星DNA说法错误的是 A.是一种高度重复序列 B.重复单位一般为2~10 bp C.重复频率可达106 D.能作为遗传标记 E.在人细胞基因组中占5%~6%以上 12.下列有关真核生物结构基因的说法不正确的是 A.结构基因大都为断裂基因 B.结构基因的转录是不连续的 C.含有大量的重复序列 D.结构基因在基因组中所占比例较小 E.产物多为单顺反子RNA 13.染色体中遗传物质的主要化学成分是 A.组蛋白 B.非组蛋白 C.DNA D.RNA E.mRNA 14.真核生物染色质中的组蛋白是 A.酸性蛋白质 B.碱性蛋白质 C.一种转录因子 D.带负电荷 E.不带电荷 15.指导合成真核生物蛋白质的序列主要是 A.高度重复序列 B.中度重复序列 C.单拷贝序列 D.卫星DNA E.反向重复序列

基因组不稳定与肿瘤

基因组不稳定与肿瘤 细胞有丝分裂时染色体分离错误导致子细胞中整条染色体非整倍体突变,或者DNA损伤引起染色体结构改变,造成的基因易位、缺失、反转、断裂等统称为基因组不稳定(genomic instability )[1-2]。染色体不稳定导致某些基因的拷贝数增加或者缺失,改变细胞的命运。 有丝分裂检控点缺陷、中心体复制或者姐妹染色单体分裂错误等是染色体非整倍体突变形成的主要原因。整条染色体的不稳定性可能导致原癌基因的拷贝数增加、肿瘤抑制基因的缺失,使得细胞更容易适应周围环境的改变,最终形成肿瘤细胞[3-7]。细胞代谢异常或者外界因素如紫外照射等造成DNA损伤,当DNA 损伤应答和修复机制受损或缺陷时,会导致某些基因的突变或失活,进而导致细胞死亡或者成为肿瘤细胞[8-9]。 事实上所有肿瘤细胞都伴随基因组不稳定,比如2/3的人类肿瘤在细胞分裂过程中获得额外的或者丢失整条染色体[1]。肿瘤中染色体分离相关基因极少发生突变,此种突变主要与原癌基因诱导的有丝分裂相关[10]。原癌基因的激活与抑癌基因的失活直接或间接的影响了有丝分裂并调控了染色体的分离。如人类肿瘤通常高表达Ras,导致中心体复制,在有丝分裂后期形成多极纺锤体,染色体错误分配形成微核或双核细胞[11]。同样CDK4、Ras下游原癌基因、B-Raf异常表达都会导致基因组不稳定[12-14]。而肿瘤抑制基因Rb和P53的突变也通过影响中心体、染色体、纺锤体等导致有丝分裂异常[15-16]。DNA损伤修复相关功能或者DNA 损伤应答机制缺陷会造成染色体结构改变。如DNA损伤应答信号通路中的激酶ATM和CHK2功能缺陷会导致DNA损伤修复的缺失[2]。

医学系列病例分析万能模板

医学系列病例分析万能模板 (一)慢性阻塞性肺疾病(新加内容) 老年人+咳、痰、喘=慢性支气管炎 桶状胸+过清音=肺气肿 老年患者+咳、痰、喘+桶状胸+过清音+肺功能=COPD 慢性呼吸系统病史+右心衰体征=肺心病 (二)肺炎 青壮年+受凉+高热+湿啰音+铁锈色样痰=大叶性肺炎 婴幼儿+咳、喘+呼吸困难体征(鼻翼扇动+三凹征)=支气管肺炎 发绀+鼻扇征(+)、三凹征(+)+两肺可闻及喘鸣音及湿罗音+呼吸快、心率快=左心衰肝大+双下肢水肿=右心衰 儿童+阵发性刺激性咳嗽+关节疼=支原体肺炎 (三)支气管哮喘(新加内容) 青少年+过敏性鼻炎+发作性喘憋+满肺哮鸣音=支气管哮喘 (四)肺癌(新加内容,助理不考) 中老年人+吸烟史+刺激性咳嗽(or痰中带血)+毛刺(边缘不整齐)=肺癌 (五)呼吸衰竭(新加内容,助理不考) 老年患者+慢性呼吸系统病史+紫绀+血气=呼吸衰竭 PaO2<60mmHgⅠ型呼衰 PaO2<60mmHg+PaCO2>50mmHgⅡ型呼衰 pH<7.35 酸中毒 pH>7.35 碱中毒 慢性呼吸系统病史+意识障碍=肺性脑病 (六)结核病、肺结核、结核性胸膜炎、结核性胸膜炎、肠结核(新加内容) 低热、盗汗、乏力、体重下降=结核中毒症状 咳嗽、咳痰、咯血+结核中毒症状+抗生素治疗不好转=肺结核 胸廓膨隆+气管偏+语颤减弱+叩浊+呼吸音减弱+心界移位+心界叩不清=胸腔积液体征结核中毒症状+胸腔积液体征=胸腔积液:结核性胸膜炎可能性大 胸腔积液+心包积液+腹腔积液=多浆膜腔积液 肺结核病史+心包炎体征=结核性心包炎可能性大 心包炎体征: 颈静脉怒张+肝颈静脉回流征阳性+肝大+心音低钝=心包积液 心尖负性搏动+心脏浊音界不大+心音低钝=缩窄性心包炎 陈旧结核病灶+膀胱刺激征+肾实质变薄并有破坏=泌尿系结核 膀胱刺激征:尿频、尿急、尿痛 (七)胸部闭合性损伤(肋骨骨折、血胸和气胸) 胸外伤+骨擦音=肋骨骨折 胸外伤+广泛皮下气肿(or握雪感)+气管偏、叩鼓、呼吸音消失+高压气体=张力性气胸 胸外伤+气管移位、叩浊、呼吸音减弱+液性暗区+肋膈角消失+弧形高密度影=胸腔积液(血胸) (八)高血压病

病毒、真核和原核生物的基因组结构特点

病毒、真核和原核生物的基因组结构特点 病毒基因组结构特点: 1.病毒基因组所含核酸类型不同 2.不同病毒基因组大小相差较大 3.病毒基因组可以是连续的也可以是不连续的 4.病毒基因组的编码序列大 5.基因可以是连续的也可以是间断的 6.病毒基因组都是单倍体和单拷贝 7.基因重叠 8.病毒基因组功能单位或转录单位 9.病毒基因组含有不规则结构基因 (1)几个结构基因的编码区无间隔 (2)结构基因本身没有翻译起始序列 (3) mRNA没有 5’端的帽结构 原核生物基因组结构特点: 1.细菌等原核生物的基因组是一条双链闭环的DNA分子 2.具有操纵子结构 3.原核基因组中只有1个复制起点 4.结构基因无重叠现象 5.基因序列是连续的,无内含子,因此转录后不需要剪切 6.编码区在基因组中所占的比例远远大于真核基因组,但又远远小于病毒基 因组。非编码区主要是一些调控序列

7.基因组中重复序列很少 8.具有编码同工酶的基因 9.细菌基因组中存在着可移动的DNA序列,包括插入序列和转座子 10.在DNA分子中具有多种功能的识别区域,如复制起始区、复制终止区、转 录启动区和终止区等。这些区域往往具有特殊的序列,并且含有反向重复序列 真核生物基因组结构特点: 1)真核基因组远远大于原核生物的基因组。 2)真核基因具有许多复制起点,每个复制子大小不一。每一种真核生物都有一定的染色体数目,除了配子为单倍体外,体细胞一般为双倍体, 即含两份同源的基因组。 3)真核基因都出一个结构基因与相关的调控区组成,转录产物的单顺反子,即一分子mRNA只能翻译成一种蛋白质。 4)真核生物基因组中含有大量重复顺序。 5)真核生物基因组内非编码的顺序(NCS)占90%以上。编码序列占5%。 6)真核基因产断列基因,即编码序列被非编码序列分隔开来,基因与基因内非编码序列为间隔DNA,基因内非编码序列为内含子,被内含子隔 开的编码序列则为外显子。 7)真核生物基因组功能相关的基因构成各种基因家族,它们可串联在一起,亦可相距很远,但即使串联在一起成族的基因也是分别转录的。 8)真核生物基因组中也存在一些可移动的遗传因素,这些DNA顺序并无明显生物学功能,似科为自己的目的而级织,故有自私DNA之称,其移 动多被RNA介导,也有被DNA介导的。

病毒、细菌基因组结构与功能

泛基因阶段 孟德尔的遗传因子阶段 摩尔根的基因阶段 顺反子阶段 操纵子阶段 现代基因阶段 DNA分子中含有特定遗传信息的核苷酸序列,是遗传物质的最小功能单位。合成有功能的蛋白质多肽链或RNA所必需的全部核酸序列(通常是DNA序列)。 一个基因应包含不仅是编码蛋白质肽链或RNA的核酸序列,还包括为保证转录所必需的调控序列、5′非翻译序列、内含子以及3′非翻译序列等所有的核酸序列(蛋白质基因和RNA基因)。 根据其是否具有转录和翻译功能可以把基因分为三类 第一类是编码蛋白质的基因,它具有转录和翻译功能,包括编码酶和结构蛋白的结构基因以及编码阻遏蛋白的调节基因 第二类是只有转录功能而没有翻译功能的基因,包括tRNA基因和rRNA基因第三类是不转录的基因,它对基因表达起调节控制作用,包括启动基因和操纵基因 是指生物体全套遗传信息,包括所有基因和基因间的区域。原核生物基因组:染色体基因组(chromosomal genome)染色体外基因组(extrachromosomal genome ) 真核生物基因组:染色体基因组(chromosomal genome)染色体外基因组

(extrachromosomal genome ) 生物体的进化程度与基因组大小之间不完全成比例的现象称为 C value paradox,又称C值悖论) 病毒基因组很小,且大小相差较大 病毒基因组可以由DNA组成,或由RNA组成 多数RNA病毒的基因组是由连续的RNA链组成 基因重叠 基因组的大部分可编码蛋白质,只有非常小的一部份不编码蛋白质 形成多顺反子结构 病毒基因组都是单倍体(逆转录病毒除外) 噬菌体(细菌病毒)的基因是连续的,而真核细胞病毒的基因是不连续的 1981年,美国首先发现获得性免疫缺陷征(acquired immunodeficiency syndrome,AIDS),其病原体是一种能破坏人免疫系统的逆转录病毒1986年,命名为:人类免疫缺陷病毒(human immunodeficiency virus,HIV) HIV特异性地侵犯并损耗T细胞而造成机体免疫缺陷 HIV如何感染免疫细胞并复制 捆绑――当HIV病毒的gp120蛋白捆绑到T-helper细胞的CD4蛋白时,HIV 病毒附着到机体的免疫细胞上。滤过性病毒核进入到T-helper细胞内 部,并且病毒体的隔膜融合进细胞壁; 逆转录――滤过性病毒酶,即逆转录酶,将病毒的RNA转化为DNA; 集成――新产生的DNA被病毒整合酶运送到细胞核中,并嵌入到细胞的DNA。HIV病毒被称之为前病毒;

高中生物DNA的结构和复制知识点归纳

高中生物DNA的结构和复制知识点归纳 名词: 1、DNA的碱基互补配对原则:A与T配对,G与C配对。 2、DNA复制:是指以亲代DNA分子为模板来合成子代DNA的过程。DNA的复制实质上是遗传信息的复制。 3、解旋:在ATP供能、解旋酶的作用下,DNA分子两条多脱氧核苷酸链配对的碱基从氢键处断裂,于是部分双螺旋链解旋为二条平行双链,解开的两条单链叫母链(模板链)。 4、DNA的半保留复制:在子代双链中,有一条是亲代原有的链,另一条则是新合成的。 5、人类基因组是指人体DNA分子所携带的全部遗传信息。人类基因组计划就是分析测定人类基因组的核苷酸序列。 语句: 1、DNA的化学结构: ① DNA是高分子化合物:组成它的基本元素是C、H、O、N、P等。 ②组成DNA的基本单位——脱氧核苷酸。每个脱氧核苷酸由三部分组成:一个脱氧核糖、一个含氮碱基和一个磷酸 ③构成DNA的脱氧核苷酸有四种。DNA在水解酶的作用下,可以得到四种不同的核苷酸,即腺嘌呤(A)脱氧核苷酸;鸟嘌呤(G)脱氧核苷酸;胞嘧啶(C)脱氧核苷酸;胸腺嘧啶(T)脱氧核苷酸;组成四种脱氧核苷酸的脱氧核糖和磷酸都是一样的,所不相同的是四种含氮碱基:ATGC。 ④DNA是由四种不同的脱氧核苷酸为单位,聚合而成的脱氧核苷酸链。 2、DNA的双螺旋结构:DNA的双螺旋结构,脱氧核糖与磷酸相间排列在外侧,形成两条主链(反向平行),构成DNA的基本骨架。两条主链之间的横档是碱基对,排列在内侧。相对应的两个碱基通过氢键连结形成碱基对,DNA一条链上的碱基排列顺序确定了,根据碱基互补配对原则,另一条链的碱基排列顺序也就确定了。 3、DNA的特性: ①稳定性:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DNA分子的稳定性。 ②多样性:DNA中的碱基对的排列顺序是千变万化的。碱基对的排列方式:4n(n为碱基对的数目) ③特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。 4、碱基互补配对原则在碱基含量计算中的应用: ①在双链DNA分子中,不互补的两碱基含量之和是相等的,占整个分子碱基总量的50%。 ②在双链DNA分子中,一条链中的嘌呤之和与嘧啶之和的比值与其互补链中相应的比值互

相关主题
文本预览
相关文档 最新文档