教师资格证物理之平衡中的“临界、极值”问题
- 格式:doc
- 大小:92.00 KB
- 文档页数:3
一. 教学内容:平衡问题中的临界与极值问题归纳二. 学习目标:1、掌握共点力作用下的物体平衡条件的应用问题的分析方法。
2、掌握平衡问题中临界与极值问题的特征。
3、熟练掌握典型的临界与极值问题的常用处理方法和技巧。
考点地位:共点力作用下的物体平衡问题中的极值与临界问题是处理平衡问题的难点所在,这部分内容重点体现与数学知识的融合,体现了高考大纲中所要求的运用数学方法分析物理问题的能力,同时这部分内容在高考中常与库仑力、安培力等相互结合,难度较大。
三. 重难点解析:1. 共点力作用下物体平衡的条件在共点力作用下物体平衡的条件是:物体所受的合力为零。
即(矢量式)。
用正交分解法解决有关在共点力作用下的物体平衡问题时,平衡条件可叙述为:用平衡条件的正交表达形式解题具有三大优点:其一,将矢量运算转变为代数运算,使难度降低。
其二,将求合力的复杂的解斜三角形问题,转变为正交分解后的直角三角形问题,使运算简便易行。
其三,当所求平衡问题中需求两个未知力时,这种表达形式可列出两个方程,使得求解十分方便。
2. 力的平衡作用在物体上所有力的合力为零,这种情形叫做力的平衡。
(1)当物体只受两个力作用而平衡时,这两个力大小一定相等,方向一定相反,且作用在同一直线上。
这两个力叫做一对平衡力。
(2)当物体受到三个力的作用而平衡时,这三个力必在同一平面内,且三个力的作用线或作用线的延长线相交于一点,这就是三力汇交原理。
3. 一对平衡力与一对作用力和反作用力的区别(1)平衡力作用于同一物体上。
作用力和反作用力分别作用在两个物体上。
(2)作用力与反作用力性质相同。
平衡力的性质不一定相同。
例如静止在水平桌面上的物体,重力与桌面的支持力是一对平衡力;支持力是弹力,与重力的性质不同。
(3)作用力与反作用力同时产生、同时变化、同时消失,平衡力中的某一力变化或消失时,其他力不一定变化或消失。
例如抽去桌面时,物体所受的支持力消失,但物体的重力仍然保持不变。
平衡中的临界和极值
【原创版】
目录
1.临界平衡状态的定义
2.压杆的临界力
3.提高压杆稳定性的方法
4.总结
正文
一、临界平衡状态的定义
临界平衡状态是指杆件从稳定平衡向不稳定平衡转化的极限状态。
在这个状态下,杆件的稳定性已经达到了极限,再稍有扰动就会失去平衡。
这种状态在物理学中被称为临界状态,对应的力称为临界力或临界载荷,用 Fcr 表示。
二、压杆的临界力
压杆是指在轴向压力作用下,两端固定且杆件截面呈圆形的杆。
当压杆所承受的轴向压力达到临界力时,压杆将处于临界平衡状态。
此时,压杆的稳定性已经非常差,任何微小的扰动都可能导致压杆失去平衡。
三、提高压杆稳定性的方法
为了提高压杆的稳定性,可以采取以下几种方法:
1.增加压杆的截面面积:通过增加压杆的截面面积,可以增大压杆的抗弯能力,从而提高其稳定性。
2.改变压杆的材料:选用高强度、高刚度的材料可以提高压杆的稳定性。
3.调整压杆的长度:缩短压杆的长度可以减小其弯曲变形,从而提高
稳定性。
4.添加支撑:在压杆的适当位置添加支撑,可以减小压杆的弯曲变形,提高稳定性。
四、总结
临界平衡状态是杆件从稳定平衡向不稳定平衡转化的极限状态。
在临界状态下,杆件的稳定性已经达到了极限,再稍有扰动就会失去平衡。
专题平衡状态中的临界极值问题一、相关基础知识:1、处于静止或匀速直线运动状态的物体所受合外力一定零。
反之,物体所受合外力为零,则一定处于静止或匀速直线运动状态,将这样的状态,称为平衡状态。
2、正确的对物体进行受力分析。
3、运用平行四边形定则或三角形定则按照解题的需要进行力的合成或分解;受多个力的情况下,正确运用正交分解。
4、临界状态是指物体从一种状态变为另一种状态的临界点。
二、典型习题1、质量为m的物体,物体与水平面间的动摩擦因数为μ,最大静摩擦力为F m。
则至少用多大的水平力才能拉动物体?物体被拉动后,需多大的才能维持物体做匀速运动?2、悬挂物体的轻质线能承受最大拉力是物体重力的2倍,用一水平力F将物体拉离原来的位置,细线与竖直方向的夹角β的最大值为多少?3、如图所示,轻质细线下拴一质量为m的小球,在力F作用下,保持细线与竖直方向夹角β不变,当力F与水平方向的夹角为θ多大时,力F最小?最小力为多少?4、质量为m的小物块,与半圆弧面间的动摩擦因数为μ=34,小物块的边长远小于圆弧半径。
最大静摩擦力等于滑动摩擦力。
要使小物块静止于圆弧面上,物块与圆心O 的连线与竖直方向的夹角θ最大为:5、(多选)如图所示,三根承受最大拉力相同的轻质细线OA、OB、OC系于同一点O,悬挂一质量为m的物体。
已知α<β<θ。
现逐渐增大物体的质量,则下列说法正确的是:A.可能OA先断B.可能OB先断C.可能OC先断D.可能OB、OC同时先断6、如图所示,一倾角为α粗糙斜面固定在地面上,斜面顶端装有光滑定滑轮,一细绳跨过滑轮,其一端悬挂质量为m物块,另一端与斜面上的质量为M物体相连,已知M与斜面间的动摩擦因数为μ<tanα,最大静摩擦力等于滑动摩擦力。
要使系统于静止状态,求m的取值范围。
7、如图所示,物体的质量为2kg,两根轻绳AB、AC的一端连接于竖直墙上,另一端系于物体上,两绳都拉直时,AB与水平方向成的角度θ=60O,AC与墙垂直。
平衡中的临界和极值在生活中,平衡是一个重要的概念。
无论是身体的平衡还是心灵的平衡,我们都需要在各个方面寻找一个稳定的状态。
然而,有时候平衡并不仅仅是指两个方向的均衡,而是涉及到临界与极值的问题。
临界是指我们在寻找平衡时,达到不可忽略的边界状态。
这种状态可能会引起突破或者转折,有时甚至可能导致平衡的破裂。
而极值则是指某一方向上的最大或最小值,是达到理想平衡状态的极限。
平衡中的临界与极值是一个复杂而微妙的主题,不同的领域和情境下有着不同的定义和解释。
在物理学中,临界点是指物质在一定条件下由一种状态转变为另一种状态的边界点。
当水温降低到0摄氏度时,水会从液态变为固态,这个临界点就是冰点。
而极值则可以用来描述物质的特性,比如熔点和沸点。
在生物学中,平衡中的临界与极值也有着重要的意义。
人体的各种生理指标,如体温、血压、血糖等,在一定范围内的波动是正常的,但一旦超出了临界值,就可能导致疾病的发生。
高血压和低血糖都会对身体健康产生重大影响。
此时,我们需要通过药物治疗或生活方式的改变来恢复平衡。
在心理学和哲学中,平衡中的临界与极值是更为抽象而深刻的概念。
心理学家卡尔·荣格提出的个体心理理论中,他认为个人必须在自我和集体无意识之间寻求平衡。
个体心理是我们日常意识所能察觉到的内容,而集体无意识则包含了我们的本能、冲动和潜意识。
荣格认为,只有当个体心理与集体无意识达到平衡时,我们才能达到身心的和谐。
在生活中,平衡中的临界与极值也经常存在。
我们在工作和生活之间寻求平衡时,常常会遇到工作压力和生活满足之间的临界点。
有时候我们会为了工作进入超负荷的状态,但如果长时间处于极限状态,可能会导致身心俱疲。
另放松和休息过多也可能导致懒惰和效率下降。
我们需要在工作和生活之间找到一个合适的平衡点,既能保持高效的工作状态,又能享受生活的乐趣。
与平衡中的临界和极值有关的还有人际关系。
在人际关系中,我们常常需要在个人的利益和集体的利益之间寻求平衡。
力的平衡问题中的临界和极值问题例8:如图所示,绳子AO 的最大承受力为150N ,绳子BO 的最大承受力为100N ,绳子OC 强度足够大.要使绳子不断,悬挂重物的重力最多为( )A .100N B.150N C.D.200N例9:物体的质量为2 kg,两根轻细绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成θ角的拉力F,相关几何关系如图所示,θ=60°,若要使绳都能伸直,求拉力F 的大小范围。
(g 取10 m/s 2)课后针对性训练:1、如右图所示,物体B 靠在竖直墙面上,在竖直轻弹簧的作用下,A 、B 保持静止,则物体A 、B 受力的个数分别为( )A .3,3B .4,3C .4,4D .4,52、如图所示,一个质量为m 的滑块静止置于倾角为30°的粗糙斜面上,一根轻弹簧一端固定在竖直墙上的P 点,另一端系在滑块上,弹簧与竖直方向的夹角为30°.则( )A .滑块可能受到三个力作用B .弹簧一定处于压缩状态C .斜面对滑块的支持力大小可能为零D .斜面对滑块的摩擦力大小可能等于mg3、如图所示,在水平力F 的作用下,木块A 、B 保持静止。
若木块A 与B 的接触面是水平的,且F≠0。
则关于木块B 的受力个数可能是( )。
A.3个或4个B.3个或5个C.4个或5个D.4个或6个4、如图1-3所示,一光滑的半圆形碗固定在水平面上,质量为m1的小球用轻绳跨过光滑碗连接质量分别为m2和m3的物体,平衡时小球恰好与碗之间没有弹力作用,两绳与水平方向夹角分别为60°、30°。
则m1、m2、m3的比值为 ( )A .1:2:3B .2::1C .2:1:1D .2:1:5、两个相同的可视为质点的小球A 和B ,质量均为m ,用长度相同的两根细线把A 、B 两球悬挂在水平天花板上的同一点O ,并用长度相同的细线连接A 、B 两个小球,然后,用一水平方向的力F 作用在小球A 上,此时三根线均处于伸直状态,且OB 细线恰好处于竖直方向如图所示.如果两小球均处于静止状态,则力F 的大小为( )A .0B .mg C.3mg 3 D.3mg6、如图所示,轻质光滑滑轮两侧用细绳连着两个物体A 与B ,物体B 放在水平面上,A 、B 均静止.已知A 和B 的质量分别为m A 、m B ,绳与水平方向的夹角为θ,则 ( )A .物体B 受到的摩擦力可能为0B .物体B 受到的摩擦力为m A g cos θC .物体B 对地面的压力可能为0D .物体B 对地面的压力为m B g-m A g sin θ7、如图所示,质量分别为m 1、m 2的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(m 1在地面,m 2在空中),力F 与水平方向成θ角.则m 1所受支持力F N 和摩擦力Ff 正确的是( )A .F N =m 1g +m 2g -F sin θB .F N =m 1g +m 2g -F cos θC .Ff =F cos θD .Ff =F sin θ8、如图所示,完全相同的A 、B 两球,质量均为m ,用两根等长的细线悬挂在O 点,两球之间夹着一根劲度系数为k 的轻弹簧,静止不动时,弹簧处于水平方向,两根细线之间的夹角为θ,则弹簧的长度被压缩了( )A.mg tan θk B .2mg tan θk C.mg tan θ2kD.2mg tan θ2k 9、如图所示,位于水平桌面上的物块P ,由跨过定滑轮的轻绳与物块Q 相连,从滑轮到P 和到Q 的两段绳都是水平的。
在各地的教师招聘考试中,高中物理力学都是重中之重,今天想和大家分享的是做题中的一个重点:平衡中的“临界、极值”问题。
临界问题:当某个物理量变化时,会引起其他几个物理量的变化,从而使物体的平衡“恰好出现”或“恰好不出现”,即处于临界状态,在问题的描述中常用“刚好”“刚能”“恰好”等字眼。
极值问题:平衡问题的极值,一般指在力的变化过程中的最大值和最小值。
下面首先看一些经典例题。
【例1】如图所示,三根相同的绳的末端连接于O点,A、B端固定,C端受一水平力F,当F逐渐增大时(O点位置保持不变),最先断的绳是( )
A.OA
B.OB
C.OC
D.三绳同时断
【答案】A。
解析:对结点O受力分析,受三根绳的拉力,水平和竖直两绳拉力的合力与OA绳的拉力等大反向,由平行四边形定则可知,三根绳中OA绳的拉力最大,在水平拉力逐渐增大的过程中,OA绳先断,选项A正确。
【例2】如图所示,三根长度均为L的轻绳分别连接于C、D两点,A、B 两端被悬挂在水平天花板上,相距2L,现在C点上悬挂一个质量为m的重物,为使CD绳保持水平,在D点上可施加力的最小值为( )
【答案】C。
解析:由题图可知,为使CD绳水平,各绳均应绷紧,由几何关系可知,AC绳与水平方向的夹角为60°;结点C受力平衡,受力分析如下图所示:
【方法总结】
(1)临界与极值问题解题流程
①对物体初始状态受力分析,明确所受各力的变化特点;
②由关键词判断可能出现的现象或状态变化;
③据初始状态与可能发生的变化间的联系,判断出现变化的临界条件或可能存在的极值条件;
④选择合适的方法求解。
(2)解决临界与极值问题的常用方法
①解析法:利用物体受力平衡写出未知量与已知量的关系表达式,根据已知量的变化情况来确定未知量的变化情况,利用临界条件确定未知量的临界值。
②图解法:根据已知量的变化情况,画出平行四边形的边角变化,确定未知量大小、方向的变化,确定未知量的临界值。
【变式训练】
1.(多选)某学习小组为了体验最大静摩擦力与滑动摩擦力的临界状态,设计了如图所示的装置,一位同学坐在长直木板一端,另一端不动,让长直木板由水平位置缓慢向上转动(即木板与地面的夹角θ变大),则选项图中表示该同学受到支持力FN、合外力F合、重力沿斜面方向的分力G1、摩擦力Ff随角度θ的变化关系正确的是( )。