第5讲 动态平衡问题和平衡中的临界极值问题
- 格式:pptx
- 大小:759.94 KB
- 文档页数:22
第5讲专题提升:动态平衡及平衡中的临界、极值问题基础对点练题组一力学中的动态平衡问题1.(2023黑龙江哈尔滨三中二模)如图所示,用OA、OB两根轻绳将花盆悬于两竖直墙之间。
开始时OB绳处于水平状态。
现保持O点位置不变,只通过改变OB绳长使绳右端由B点缓慢上移至B'点,此时OB'与OA之间的夹角θ<90°。
设此过程中OA、OB绳的拉力分别为F OA、F OB,下列说法正确的是()A.F OB先增大后减小B.F OB先减小后增大C.F OA先增大后减小D.F OA先减小后增大2.(多选)如图所示,一根粗糙的水平横杆上套有A、B两个轻环,系在两环上的等长细绳系住的书本处于静止状态,现将两环距离变小后书本仍处于静止状态,则()A.杆对A环的支持力不变B.B环对杆的摩擦力变小C.杆对A环的力不变D.与B环相连的细绳对书本的拉力变大3.如图所示,水平面上固定一光滑半球,球心O的正上方固定一个小滑轮,绳上系一小球,小球静置于半球面上的A点时,绳绕过定滑轮,另一端的拉力为F T。
现缓慢地将小球从B点释放到A点,则此过程中,小球对半球面的压力F N以及细线拉力F T的大小变化情况,以下说法正确的是()A.F T变小;F N不变B.F T变小;F N变小C.F T变大;F N不变D.F T 变大;F N 变大题组二 平衡中的临界、极值问题 4.课堂上,老师准备了“”形光滑木板和三个完全相同、外表面光滑的匀质圆柱形积木,要将三个积木按如图所示(截面图)方式堆放在木板上,则木板与水平面夹角θ的最大值为( )A.30°B.45°C.60°D.90°5.如图所示,重力都为G 的两个小球A 和B 用三段轻绳连接后悬挂在O 点上,O 、B 间轻绳的长度是2l ,A 、B 间轻绳的长度是l 。
将一个拉力F 作用到小球B 上,使三段轻绳都伸直,同时O 、A 间和A 、B 间的两段轻绳分别处于竖直和水平方向上,则拉力F 的最小值为( )A.12G B.√33GC.GD.2√33G 6.(2024安徽合肥模拟)如图所示,某校门口水平地面上有一质量为150 kg 的石墩,石墩与水平地面间的动摩擦因数为√33,工作人员用轻绳按图示方式缓慢移动石墩,此时两轻绳平行,重力加速度g 取10m/s 2。
动态平衡问题专题——临界、极值问题平衡物体的临界问题:某种物理现象变化为另一种物理现象的转折状态叫做临界状态。
临界状态也可理解为“恰好出现”或“恰恰不出现”某种现象的状态。
平衡物体的临界状态是指物体所处的平衡状态将要被破坏而尚未破坏的状态。
涉及临界状态的问题叫做临界问题,解答临界问题的基本思维方法是假设推理法。
平衡物体的极值问题:受几个力作用而处于平衡状态的物体,当其中某个力的大小或方向按某种形式发生改变时,为了维持物体的平衡,必引起其它某些力的变化,在变化过程中可能会出现极大值或极小值的问题。
研究平衡物体的极值问题常用解析法和图解法。
1跨过定滑轮的轻绳两端,分别系着物体A和B,物体A放在倾角为θ的斜面上,如图。
已知物体A的质量为m,物体A与斜面间的动摩擦因数为μ(μ<tanθ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量取值范围。
解析:先选物体B为研究对象,它受到重力m B g和拉力F T的作用,根据平衡条件有:F T=m B g ①再选物体A为研究对象,它受到重力mg、斜面支持力F N、轻绳拉力F T和斜面的摩擦力作用,假设物体A处于将要上滑的临界状态,则物体A受的静摩擦力最大,且方向沿斜面向下,这时A的受力情况如图乙所示,根据平衡条件有:F N-mg cosθ=0 ②F T-F fm-mg sinθ=0 ③由摩擦力公式知:F fm=μF N ④联立①②③④四式解得m B=m(sinθ+μcosθ).再假设物体A处于将要下滑的临界状态,则物体A受的静摩擦力最大,且方向沿斜面向上,根据平衡条件有:F N-mg cosθ=0 ⑤F T+F fm-mg sinθ=0 ⑥第1页联立①⑤⑥④四式解得m B=m(sinθ-μcosθ).故,物体B的质量的取值范围是:m(sinθ-μcosθ)≤m B ≤m(sinθ+μcosθ).2如图,不计重力的细绳AB与竖直墙夹角为60º,轻杆BC与竖直墙夹角为30º,杆可绕C自由转动,若细绳承受的最大拉力为200N,轻杆能承受的最大压力为300N,则在B点最多能挂多重的物体?解析:将物体对B点的拉力F进行分解,显然F=G假设绳与轻杆均被不拉断.当细绳承受的拉力F1最大时,轻杆所受的压力当轻杆承受的压力F2最大时,细绳所受的拉力由此可以当物体的重力逐渐增加时,轻杆承受的压力先达到最大.此时物体的重力达到最大.3半圆形支架BAD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐渐移至竖直的位置C的过程中,OA绳和OB绳所受的力大小如何变化?第2页第3页解析:OB绳的B 端沿半圆支架从水平位置逐渐移至竖直的位置C 的过程中,物体始终处于平衡状态,找出不变的物理量,画出平行四边形进行分析.对结点O 受力分析如图:结点O 始终处于平衡状态,所以OB 绳和OA 绳上的拉力的合力大小保持不变,方向始终是竖直向上的.所以OA 绳受力大小变化情况:逐渐变小;OB 绳受力大小变化情况是:先变小后变大4如图,一倾角为θ的固定斜面上有一块可绕其下端转动的挡板P ,今在挡板与斜面间夹一个重为G 的光滑球,试分析挡板P 由图示位置逆时针转到水平位置的过程中,球对挡板的压力如何变化?解析:受力分析如图,将F 1与F 2合成,其合力与重力等大反向如图:挡板转动时,挡板给球的弹力F 1与斜面给球的弹力F 2合力大小方向不变,其中F 2的方向不变,作辅助图如上,挡板转动过程中,F 1第4页的方向变化如图中a 、b 、c 的规律变化,为满足平行四边形定则,其大小变化规律为先变小后变大,其中挡板与斜面垂直时为最小.与此对应,F 2的大小为一直减小.根据牛顿第三定律,球对挡板的压力是先减小后增加,对斜面的压力是不断减小。
第5讲 动态平衡问题和平衡中的临界极值问题A 组 基础巩固1.(多选)(2018首师大附中月考)如图所示,用轻绳OA 把球挂在光滑的竖直墙壁上,O 点为轻绳的固定点,B 点为球与墙壁的接触点。
现保持固定点O 不动,将轻绳OA 加长,使轻绳与墙壁的夹角变小,则球静止后与轻绳OA 加长之前相比( )A.轻绳对球的拉力变小B.球对墙壁的压力变小C.墙壁对球的支持力不变D.球所受的合力变大答案 AB 对球进行受力分析,如图所示:因球在两种情况下均处于静止状态,则球所受合力不变,为零。
因球所受合力为零,故有T=,F=mg tan θ。
当将轻绳OA 加长,使绳与墙壁的夹角θ变小时,cos θ增大,tan mg cos θθ减小,则T 减小,F 减小,由牛顿第三定律可知,球对墙壁的压力变小,故选A 、B 。
2.质量为m 的物体用轻绳AB 悬挂于天花板上。
用水平向左的力F 缓慢拉动绳的中点O,如图所示。
用T 表示绳OA 段拉力的大小,在O 点向左移动的过程中( )A.F 逐渐变大,T 逐渐变大B.F 逐渐变大,T 逐渐变小C.F 逐渐变小,T 逐渐变大D.F 逐渐变小,T 逐渐变小答案 A 由题意知,系统处于动态平衡状态,分析O点的受力情况,其中T'=G恒定不变,F 方向不变,T大小方向均改变,在O点向左移动的过程中,θ角逐渐变大,由动态矢量三角形可知F、T均逐渐变大,故A项正确。
3.(2017海淀期中)如图所示,用三根不可伸长的轻质细绳OA、OB、OC共同悬挂一重物使其静止,其中OA与竖直方向的夹角为30°,OB沿水平方向,A端、B端固定。
若分别用F A、F B、F C表示OA、OB、OC三根绳上的拉力大小,则下列判断中正确的是( )A.F A>F B>F CB.F A<F B<F CC.F A>F C>F BD.F C>F A>F B答案 C 对三根绳子的结点进行受力分析如图所示,F A与F B合成的合力与F C等大反向,由力的三角形各边关系得F A>F C>F B。
基础知识一、动态平衡问题的处理技巧1.动态平衡:是指平衡问题中的一部分是变力,是动态力,力的大小和方向均要发生变化,所以叫动态平衡,这是力平衡问题中的一类难题.2.基本思路:化“动”为“静”,“静”中求“动”.3.基本方法:图解法和解析法.4.处理动态平衡问题的一般思路(1)平行四边形定则是基本方法,但也要根据实际情况采用不同的方法,若出现直角三角形,常用三角函数表示合力与分力的关系.(2)图解法的适用情况图解法分析物体动态平衡问题时,一般物体只受三个力作用,且其中一个力大小、方向均不变,另一个力的方向不变,第三个力大小、方向均变化.(3)用力的矢量三角形分析力的最小值问题的规律:①若已知F合的方向、大小及一个分力F1的方向,则另一分力F2的最小值的条件为F1⊥F2;②若已知F合的方向及一个分力F1的大小、方向,则另一分力F2的最小值的条件为F2⊥F合.二、平衡中的临界与极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述.常见的临界状态有:(1)两接触物体脱离与不脱离的临界条件是相互作用力为0(主要体现为两物体间的弹力为0).(2)绳子断与不断的临界条件为绳中的张力达到最大值;绳子绷紧与松驰的临界条件为绳中的张力为0.(3)存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件为静摩擦力达到最大.研究的基本思维方法:假设推理法.2.极值问题平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题.一般用图解法或解析法进行分析.3.解决极值问题和临界问题的方法(1)图解法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.(2)数学解法:通过对问题的分析,依据物体的平衡条件写出物理量之间的函数关系(或画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值).一、典型例题(一)三力1、合力分力一个合力与两个分力:若合力不变,随着夹角的变大分力变大,随着夹角的变小分力变小;若分力不变,随着夹角的变大合力变小,随着夹角的变小合力变大;若两个分力的大小相等,则合力的方向在两个分力的角分线上。
§2.6 动态平衡、平衡中的临界和极值问题【考点自清】一、平衡物体的动态问题(1)动态平衡:指通过控制某些物理量使物体的状态发生缓慢变化。
在这个过程中物体始终处于一系列平衡状态中。
(2)动态平衡特征:一般为三力作用,其中一个力的大小和方向均不变化,一个力的大小变化而方向不变,另一个力的大小和方向均变化。
(3)平衡物体动态问题分析方法:解动态问题的关键是抓住不变量,依据不变的量来确定其他量的变化规律,常用的分析方法有解析法和图解法。
晶品质心_新浪博客解析法的基本程序是:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变物理量与自变物理量的一般函数关系式,然后根据自变量的变化情况及变化区间确定应变物理量的变化情况。
图解法的基本程序是:对研究对象的状态变化过程中的若干状态进行受力分析,依据某一参量的变化(一般为某一角),在同一图中作出物体在若干状态下的平衡力图(力的平形四边形或三角形),再由动态的力的平行四边形或三角形的边的长度变化及角度变化确定某些力的大小及方向的变化情况。
二、物体平衡中的临界和极值问题1、临界问题:(1)平衡物体的临界状态:物体的平衡状态将要变化的状态。
物理系统由于某些原因而发生突变(从一种物理现象转变为另一种物理现象,或从一种物理过程转入到另一物理过程的状态)时所处的状态,叫临界状态。
临界状态也可理解为“恰好出现”和“恰好不出现”某种现象的状态。
(2)临界条件:涉及物体临界状态的问题,解决时一定要注意“恰好出现”或“恰好不出现”等临界条件。
晶品质心_新浪博客平衡物体的临界问题的求解方法一般是采用假设推理法,即先假设怎样,然后再根据平衡条件及有关知识列方程求解。
解决这类问题关键是要注意“恰好出现”或“恰好不出现”。
2、极值问题:极值是指平衡问题中某些物理量变化时出现最大值或最小值。
平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题。
【重点精析】一、动态分析问题【例1】如图所示,轻绳的两端分别系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上。
突破5平衡中的临界与极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述.常见的临界状态有:(1)两接触物体脱离与不脱离的临界条件是相互作用力为0(主要体现为两物体间的弹力为0);(2)绳子断与不断的临界条件为绳中张力达到最大值;绳子绷紧与松弛的临界条件为绳中张力为0;(3)存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件为静摩擦力达到最大。
突破临界问题的三种方法(1)【解析】法根据物体的平衡条件列方程,在解方程时采用数学知识求极值。
通常用到的数学知识有二次函数求极值、讨论分式求极值、三角函数求极值以及几何法求极值等。
(2)图解法根据平衡条件作出力的矢量图,如只受三个力,则这三个力构成封闭矢量三角形,然后根据矢量图进行动态分析,确定最大值和最小值。
(3)极限法极限法是一种处理临界问题的有效方法,它是指通过恰当选取某个变化的物理量将问题推向极端(“极大”、“极小”、“极右”、“极左”等),从而把比较隐蔽的临界现象暴露出来,使问题明朗化,便于分析求解。
2.极值问题平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题.一般用图解法或【解析】法进行分析.处理极值问题的两种基本方法(1)【解析】法:根据物体的平衡条件列方程,通过数学知识求极值的方法.此法思维严谨,但有时运算量比较大,相对来说较复杂,而且还要依据物理情境进行合理的分析讨论.学%科网(2)图解法:根据物体的平衡条件作出力的矢量三角形,然后由图进行动态分析,确定极值的方法.此法简便、直观.【典例1】倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5。
现给A施加一水平力F,如图所示。
设最大静摩擦力与滑动摩擦力相等(sin 37°=0.6,cos 37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值不可能是()A.3B.2C.1D.0.5【答案】 A【典例2】如图所示,一球A夹在竖直墙与三角劈B的斜面之间,三角形劈的重力为G,劈的底部与水平地面间的动摩擦因数为μ,劈的斜面与竖直墙面是光滑的,问欲使三角劈静止不动,球的重力不能超过多大?(设劈的最大静摩擦力等于滑动摩擦力)【答案】:球的重力不得超过G【跟踪短训】1. 将两个质量均为m的小球a、b用细线相连后,再用细线悬挂于O点,如图所示。