物体平衡的临界与极值问题
- 格式:ppt
- 大小:2.10 MB
- 文档页数:9
平衡中的临界和极值问题所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.至于是“出现”还是“不出现”,需视具体问题而定。
极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。
临界问题往往是和极值问题联系在一起的。
平衡物体的临界状态是指物体所处的平衡状态将要被破坏但尚未被破坏的状态。
求解平衡的临界问题一般用极限法。
极限分析法是一种预测和处理临界问题的有效方法,它是指:通过恰当选择某个变化的物理量将其推向极端(“极大”、“极小”、“极右”或“极左”等),从而把比较隐蔽的临界现象(或“各种可能性”)暴露出来,使问题明朗化,以便非常简捷地得出结论。
在平衡中最常见的临界问题有以下两类: 一、以弹力为情景1. 两接触物体脱离与不脱离的临界条件是:相互作用力为零。
2. 绳子断与持续的临界条件是:作用力达到最大值;绳子由弯到直(或由直变弯)的临界条件是:绳子的拉力等于零。
例1:如图所示,物体的质量为2kg ,两根轻绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成θ=60°的拉力F ,若要使两绳都能伸直,求拉力F 的大小范围。
解:作出A 受力图如图所示,由平衡条件有:F .cos θ-F 2-F 1cos θ=0, F sin θ+F 1sin θ-mg =0要使两绳都能绷直,则有:F 10,02≥≥F 由以上各式可解得F 的取值范围为:N F N 33403320≤≤变式训练1:两根长度不一的细线a 和b ,一根连在天花板上,另一端打结连在一起,如图,已知a 、b 的抗断张力(拉断时最小拉力)分别为70N ,80N.它们与天花板的夹角分别为37°、53°, 现在结点O 处加一个竖直向下的拉力F ,(sin37°=cos53°=0.6, cos37°=sin53°=0.8) 求: (1)当增大拉力F 时,哪根细绳先断?(2)要使细线不被拉断,拉力F 不得超过多少?变式训练2两根长度相等的轻绳,下端悬挂一质量为m 的物体,上端分别固定在水平天花板上的M 、N 点,M 、N 两点间的距离为s ,如图所示,已知两绳所能承受的最大拉力均为T ,则每根绳的长度不得短于__ ____.例2:如图所示,半径为R ,重为G 的均匀球靠竖直墙放置,左下方有厚为h 的木块,若不计摩擦,用至少多大的水平推力F 推木块才能使球离开地面。
处于平衡状态中的极值问题和临界问题预备知识:1、极值问题:平衡物体的极值问题,一般指在力的变化过程中的最大值和最小值问题。
解决临界问题的方法:是解析法,即根据物体的平衡条件列出方程,在解方程时,采用数学知识求极值或者根据临界条件求极值。
另外图解法也是常用的一种方法,即根据物体的平衡条件作出力的矢量图,画出平等四边形或者矢量三角形进行动态分析,确定最大值或最小值。
2、临界问题:由某种物理现象变化灰另一种物理现象或由某种物理状态变化为另一种物理状态时,发生转折的状态叫临界状态,往往利用“恰好出现”或“恰好不出现”的语句来表述。
解决这类问题的基本方法是假设推理法,即先假设某种情况成立,然后再根据平衡条件及有关知识进行论证、求解。
例1(两物体刚好发生相对滑动模型)(单选)如图所示,在水平板左端有一固定挡板,挡板上连接一轻质弹簧,紧贴弹簧放一质量为m 的滑块,此时弹簧处于自然长度。
已知滑块与板的动摩擦因数及最大静摩擦因数均为3,现将板的右端缓慢抬起使板与水平面间的夹角为θ,最后直到竖直,此过程中弹簧的弹力大小F 随夹角θ的变化关系可能是图中的哪一个?分析:这是临界问题—两物体刚好发生相对滑动的模型。
由关键词“缓慢”,可知滑块处于动态平衡。
在板的右端缓慢抬起的过程中,可知在夹角θ较小时,滑块与板相对静止;夹角θ较大时,滑块相对板滑动。
进而分析可知,板与水平面的夹角存在一临界值α,此时滑块所受的摩擦力恰为最大静摩擦力。
易知,板与水平面的夹角小于临界角时,滑块所受的摩擦力为静摩擦力;大于临界角时,摩擦力为滑动力,从而问题得解。
解析:设板与水平面的夹角为α时,滑块相对于板刚要滑动。
则由sin cos mg mg αμα=得:tan αμ==,030α= 则θ在0030 的范围内,弹簧处于原长,弹力F =0。
当板与水平面的夹角大于α时,滑块相对板缓慢滑动,由平衡条件得:()()()()()sin sin cos sin cos sin cos cos (sin cos sin cos )sin sec sin cos cos F mg mg mg mg mg mg mg βθμθθμθθθβθββθθββθβββθβθβ⎛⎫=-=-=- ⎪⎝⎭=-=-=-=-=- (注意:其中tan βμ=)小结:解决这类问题的关键是寻找临界条件。
第7课时:动态物体 平衡的临界状态和极值问题一、动态平衡二、平衡的临界状态所谓的临界状态是指一种物理现象转变为另一种物理现象,或者从一个物理过程转入到另一个物理过程的转折状态。
我们也可以将其理解为“恰好出现”或者“恰好不出现”某种现象的状态。
而平衡物体的临界状态是指物体所处的平衡状态将要变化的状态。
3.如图所示,小球质量为m=2kg ,用两根轻绳AB ,AC 系好后,将绳固定在竖直墙上,在小球上加一个与水平方向夹角为60°的力F ,使小球平衡时,两绳均伸直,则力F 的大小应满足什么条件?8.如图所示放在光滑斜面上的小球,一端系于固定的O 点,现用外力缓慢将斜面在水平桌面上向左推移,使小球上升(最高点足够高),在斜面运动过程中,绳对球的拉力将( ) A 先增大后减小 B 先减小后增大C 直接增大D 一直减小9.如图所示,用与竖直方向成θ角(θ<45°)的倾斜轻绳a和水平轻绳b共力为1T .现保持小球在原位置不动,使绳b在原竖直同固定一个小球,这时绳b的拉的拉力变为2T ;再转过θ角固定,绳b的拉力为3T ,平面内逆时转过θ角固定,绳b则( )A .1T =3T >2TB .1T <2T <3TC .1T =3T <2TD .绳a的拉力减小三、平衡的极值问题所谓极值问题是指研究平衡问题中某物理量变化情况时出现的最大值或者最小值。
研究物理极值问题和临界问题的基本观点有二:1、物理分析:通过对物理过程分析,抓住临界或者极值条件进行求解;2、数学讨论:通过对物理问题的分析,依据物理规律列出物理量之间的函数关系,用数学方法求极值。
这种方法一定要依据物理理论对解的合理性以及物理意义进行讨论或者说明。
研究临界问题的基本方法:一般采用先假设一种情况的存在,然后再根据平衡条件以及有关知识列方程求解。
研究平衡物体的极值问题有两种方法:1、解析法:根据物体的平衡条件列方程,在解方程时采用数学知识求极值。
专题13平衡中的临界和极值问题授课提示:对应学生用书20页1.如图所示,一工人手持砖夹提着一块砖匀速前进,手对砖夹竖直方向的拉力大小为F .已知砖夹的质量为m ,重力加速度为g ,砖夹与砖块之间的滑动摩擦因数为μ,最大静摩擦力等于滑动摩擦力.若砖块不滑动,则砖夹与砖块一侧间的压力的最小值是()A .F 2μB .F μC .F -mg 2μD .F -mg μ答案:C解析:工人手持砖夹提着一块砖匀速前进,砖夹处于平衡状态,在竖直方向满足F =mg +2f ,砖夹与砖之间恰好达到最大静摩擦力f =μN ,联立解得,砖夹与砖块一侧间的压力的最小值为N =F -mg 2μ,C 正确. 2.(多选)如图所示,质量为m 的小球固定在一轻杆的一端,轻杆另一端通过光滑铰链固定于O 点.现给小球施加一拉力F ,使小球与轻杆在竖直平面内绕O 点缓慢转动,转动过程中拉力F 与轻杆的夹角始终为θ=60°.则从小球刚好离开地面至轻杆转过90°的过程中()A .拉力F 有最大值,为233mg B .拉力F 有最小值,为233mg C .轻杆对小球的弹力F N 先增大后减小 D .轻杆对小球的弹力F N 先减小后增大答案:AC解析:选取小球运动过程某一状态,对其受力分析,作出支持力与拉力的合成图,如图所示,由题意知,α+β=120°在力的三角形中应用正弦定理得mg sin 60° =F sin β =F N sin α,从小球刚好离开地面至轻杆转过90°的过程中,β从90°减小到0,sin β逐渐减小,拉力F 逐渐减小,因此当β=90°时,F 最大,此时F =233mg ,α从30°增加到120°,sin α先增大后减小,弹力F N 先增大后减小,当α=90°时,F N 最大.综上所述,A 、C 正确,B 、D 错误.3.[2024·海南省白沙学校期末考试]如图所示,物体的质量为2kg ,两根轻细绳AB 和AC 的一端固定于竖直墙上,另一端系于物体上(∠BAC =θ=60°),在物体上另施加一个方向与水平线也成θ角的拉力F ,若要使绳都能伸直,下列F 中不可能的是(取g =10m/s 2)()A .43 NB .83 NC .103 ND .123 N答案:A解析:由平衡条件有,水平方向有T B cos θ+T C =F cos θ,竖直方向有T B sin θ+F sin θ=mg ,整理有T B =mg sin θ -F ,T C =2F cos θ-mg cos θsin θ.若要使绳都能伸直,则T B 和T C 均大于零,所以应该有mg 2sin θ <F <mg sin θ ,解得2033 N<F <4033N ,本题选不可能的,故选A. 4.[2024·山东省青岛市第一中学校考阶段练习](多选)质量为M的木楔倾角θ为37°,在水平面上保持静止.当将一质量为m的木块放在木楔斜面上时,它正好匀速下滑.如图所示,当用与木楔斜面成α角的力F拉木块,木块匀速上升(已知木楔在整个过程中始终静止).可取sin37°=0.6.下列说法正确的有()A.物块与斜面间的动摩擦因数为0.75B.当α=37°时F有最小值C.当α=30°时F有最小值D.F的最小值为0.96mg答案:ABD解析:物块匀速下滑时,有mg sin37°=μmg cos37°,解得μ=0.75,A正确;物块匀速上升时,有F cosα=mg sinθ+μ(mg cosθ-F sinα),整理得F=mg sin 2θcos (θ-α),当α=θ=37°时F 有最小值,最小值为F=0.96mg,B、D正确,C错误.5.[2024·江苏省无锡期中考试]如图所示,倾角θ=37°的质量为m=10kg的粗糙斜面体A,置于粗糙水平面上,A与地面间的动摩擦因数足够大,质量m2=1kg的B物体经平行于斜面的不可伸长的轻质细线跨光滑定滑轮悬挂质量为m3的物块C.已知A、B间的动摩擦因数为0.5,视最大静摩擦力等于滑动摩擦力,g取10m/s2,求:(1)若不悬挂物块C时,通过计算,判断B是否会自行下滑;(2)欲使B能静止在斜面A上,C的质量范围;(3)若m3=0.5kg时,地面对A的摩擦力的大小.答案:(1)会自行下滑(2)0.2kg≤m3≤1kg(3)4N解析:(1)若不悬挂物块C时,通过受力分析可知,重力沿斜面向下方向分力为G x=m2g sinθ=6N重力沿垂直斜面向上方向分力为G y=m2g cosθ=8NA、B间的动摩擦因数为0.5,则摩擦力大小为f=μF N=μG y=4N 明显G x>f可得B会自行下滑;(2)当悬挂物块C时,通过受力分析如图当摩擦力沿斜面向上时拉力T有最小值为T min=G x-f=2N解得质量m3min=0.2kg当摩擦力沿斜面向下时拉力T有最大值为T min=G x+f=10N解得质量m3max=1kg得C的质量范围为0.2kg≤m3≤1kg(3)当m3=0.5kg时,拉力T大小为T=m3g=5N地面对A的摩擦力f=T cosθ=4N。
平衡中的临界和极值
【原创版】
目录
1.临界平衡状态的定义
2.压杆的临界力
3.提高压杆稳定性的方法
4.总结
正文
一、临界平衡状态的定义
临界平衡状态是指杆件从稳定平衡向不稳定平衡转化的极限状态。
在这个状态下,杆件的稳定性已经达到了极限,再稍有扰动就会失去平衡。
这种状态在物理学中被称为临界状态,对应的力称为临界力或临界载荷,用 Fcr 表示。
二、压杆的临界力
压杆是指在轴向压力作用下,两端固定且杆件截面呈圆形的杆。
当压杆所承受的轴向压力达到临界力时,压杆将处于临界平衡状态。
此时,压杆的稳定性已经非常差,任何微小的扰动都可能导致压杆失去平衡。
三、提高压杆稳定性的方法
为了提高压杆的稳定性,可以采取以下几种方法:
1.增加压杆的截面面积:通过增加压杆的截面面积,可以增大压杆的抗弯能力,从而提高其稳定性。
2.改变压杆的材料:选用高强度、高刚度的材料可以提高压杆的稳定性。
3.调整压杆的长度:缩短压杆的长度可以减小其弯曲变形,从而提高
稳定性。
4.添加支撑:在压杆的适当位置添加支撑,可以减小压杆的弯曲变形,提高稳定性。
四、总结
临界平衡状态是杆件从稳定平衡向不稳定平衡转化的极限状态。
在临界状态下,杆件的稳定性已经达到了极限,再稍有扰动就会失去平衡。
物理临界和极值问题总结
物理临界和极值问题是物理学中常见的一类问题,涉及到系统在特定条件下达到某种临界状态或取得极值的情况。
下面是对这两类问题的总结:
1. 物理临界问题:
- 物理临界指系统在某些参数达到临界值时出现突变或重要性质发生显著改变的情况。
- 临界问题常见于相变、相平衡和相变点等领域。
- 典型的物理临界问题包括:磁场的临界温度、压力、电流等;化学反应速率的临界浓度;相变时的临界温度和压力等。
2. 极值问题:
- 极值问题涉及到通过调整系统的参数找到使目标函数取得最大值或最小值的条件。
- 极值问题在物理学中广泛应用于优化、动力学和力学等领域。
- 典型的极值问题包括:能量最小原理和哈密顿原理,用于求解经典力学问题;费马原理,用于求解光路最短问题;鞍点问题,用于求解多元函数的极值等。
无论是物理临界还是极值问题,通常需要使用数学工具进行分析和求解。
对于物理临界问题,常用的方法包括热力学、统计物理和相变理论等;而对于极值问题,则常用的方法包括微积分、变分法和最优化等。
总结起来,物理临界和极值问题是物理学中重要的一类问题,涉及到系统在特定条件下达到临界状态或取得最值的情况。
这些问题需要使用数学工具进行分析和求解,以揭示系统的性质和寻找最优解。