【精选】长春理工大学 激光技术 习题
- 格式:ppt
- 大小:463.01 KB
- 文档页数:42
《激光原理与激光技术》习题解答参考钟先琼成都信息工程学院光电技术系2008年6月第一章一、填空题1、处于同一光子态的光子数同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。
2、自发辐射跃迁、受激吸收跃迁、受激辐射跃迁,自发辐射跃迁,受激吸收跃迁和受激辐射跃迁。
3、高的单色性、高的方向性、高的相干性、高的亮度;高的光子简并度。
3、玻色-爱因斯坦,没有。
4、选择模式和实现光的正反馈。
5、Light Amplification by Stimulated Emission of Radiation 泵浦激励热平衡集居数反转状态6、吸收7、难二、判断题1、×2、×3、√4、×5、×6、×7、×8、×9、√ 10、√三、名词解释1、处于同一光子态内的光子数,与之等效的含义还有:同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。
2、若21f f =时,满足:12n n >;21f f ≠时,满足:12112>f n f n ,此时称为满足集居数反转状态,是实现光放大的条件。
3、测不准关系表明:微观粒子的坐标和动量不能同时确定,在三维运动情况下,测不准关系为3h P P P z y x z y x ≈∆∆∆∆∆∆,故在六维相空间中,一个光子态占有的相空间体积为3h P P P z y x z y x ≈∆∆∆∆∆∆,上述相空间体积元称为相格。
第二章一、填空题1、几何偏折损耗、衍射损耗、腔镜反射不完全引起的损耗、材料非激活吸收、散射、腔内插入物引起的损耗。
几何偏折损耗、衍射损耗,选择,腔镜反射不完全引起的损耗、材料非激活吸收、散射、腔内插入物引起的损耗,非选择2、平均单程损耗因子、光子在腔内的平均寿命、无源腔的Q值3、稳定腔、非稳腔、临界腔。
非稳腔,非稳腔。
临界、临界、临界。
对称共焦。
激光原理及技术部分习题解答(陈鹤鸣)第一章4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ∆应当是多少?解:相干长度C cL υ=∆,υ∆是光源频带宽度853*10/3*101C c m s Hz L kmυ∆===225108(/)632.8*3*10 6.328*103*10/c cc c nm Hz c m sλλυυυυλλλυλ-=⇒∆=∆=∆∆⇒=∆== 第二章4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=?解:Tk E E b e n 1212n --=其中12**E E ch E c h -=∆=λνλh ch ==∆*E(1)(2)010*425.12148300*10*38.11010*3*10*63.612236834≈====-------e ee n n Tk chb λ(3)K n n k c h b 36238341210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α (2)010010100003660I .e I e I e I I .z ====-⨯-α即经过厚度为0.1m 时光能通过36.6%10.解:m/..ln .G e .e I I G.Gz6550314013122020===⇒=⨯第三章2. CO2激光器的腔长L=100cm, 反射镜直径D=1.5cm, 两镜的光强反射系数120.985,0.8r r = = 求由衍射损耗及输出损耗引起的,,R Q τδ 解:(1)输出损耗由腔镜反射不完全引起。
第二章习题课1。
试利用往返矩阵证明对称共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证明:设从镜M 1→M 2→M 1,初始坐标为⎪⎪⎭⎫ ⎝⎛θ00r ,往返一次后坐标变为⎪⎪⎭⎫ ⎝⎛θ11r =T ⎪⎪⎭⎫ ⎝⎛θ00r ,往返两次后坐标变为⎪⎪⎭⎫⎝⎛θ22r =T •T ⎪⎪⎭⎫ ⎝⎛θ00r而对称共焦腔,R 1=R 2=L则A=1-2R L 2=-1B=2L ⎪⎪⎭⎫⎝⎛-2R L1=0 C=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+121R L 21R 2R 2=0D=—⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--211R L 21R L 21R L 2=—1 所以,T=⎪⎪⎭⎫⎝⎛--1001故,⎪⎪⎭⎫ ⎝⎛θ22r =⎪⎪⎭⎫ ⎝⎛--1001⎪⎪⎭⎫ ⎝⎛--1001⎪⎪⎭⎫⎝⎛θ00r =⎪⎪⎭⎫⎝⎛θ00r 即,两次往返后自行闭合。
2.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔的稳定性条件为0〈g 1•g 2<1,其中g 1=1-1R L ,g 2=1-2R L(a 对平凹腔:R 2=∞,则g 2=1,0〈1—1R L〈1,即0〈L<R 1 (b)对双凹腔:0<g 1•g 2<1,0〈⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-21R L 1R L 1〈1 L R >1,L R >2或L R <1L R <2且L R R >+21(c )对凹凸腔:R 1=1R ,R 2=—2R ,0〈⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-21R L 1R L 1<1,L R >1且LR R <-||213.激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0。
5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。
解:由图可见有工作物质时光的单程传播有效腔长减小为无工作物质时的⎪⎭⎫ ⎝⎛--=n 11L L L C e 由0<⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+2111e e L L 〈1,得2m L 1m e << 则17m.2L 17m .1c <<4。
激光原理第二章习题答案1.估算2CO 气体在室温(300K)下的多普勒线宽D ν∆和碰撞线宽系数α。
并讨论在什么气压范围内从非均匀加宽过渡到均匀加宽。
解:2CO 气体在室温(300K)下的多普勒线宽D ν∆为11822770693103007.16107.161010.61044 0.05310HzD T M νν---⨯⎛⎫⎛⎫∆=⨯=⨯⨯⨯ ⎪ ⎪⨯⎝⎭⎝⎭=⨯ 2CO 气体的碰撞线宽系数α为实验测得,其值为49KHz/Pa α≈2CO 气体的碰撞线宽与气压p 的关系近似为L p να∆=当L D νν∆=∆时,其气压为930.053101081.6Pa 4910Dp να∆⨯===⨯所以,当气压小于1081.6Pa 的时候以多普勒加宽为主,当气压高于1081.6Pa 的时候,变为以均匀加宽为主。
2.考虑某二能级工作物质,2E 能级自发辐射寿命为s τ,无辐射跃迁寿命为τ。
假定在t=0时刻能级2E 上的原子数密度为2(0)n ,工作物质的体积为V ,自发辐射光的频率为ν,求:(1)自发辐射光功率随时间t 的变化规律;(2)能级2E 上的原子在其衰减过程中发出的自发辐射光子数;(3)自发辐射光子数与初始时刻能级2E 上的粒子数之比2η,2η称为量子产额。
解:(1) 在现在的情况下有可以解得:11()22()(0)s tn t n eττ-+=可以看出,t 时刻单位时间内由于自发辐射而减小的能级之上的粒子数密度为2/s n τ,这就是t 时刻自发辐射的光子数密度,所以t 时刻自发辐射的光功率为:222()()s dn t n ndt ττ=-+(2) 在t dt →时间内自发辐射的光子数为:所以(3) 量子产额为:3.根据红宝石的跃迁几率数据:71513132312121310.510,310,0.310,,0.S s A s A s S S ---=⨯=⨯=⨯=估算13W 等于多少时红宝石对694.3nm λ=的光是透明的。
1 为了使氦氖激光器的相干长度达到1KM ,它的单色性0λλ∆应为多少?解答:设相干时间为τ,则相干长度为光速与相干时间的乘积,即c L c ⋅=τ根据相干时间和谱线宽度的关系 cL c ==∆τν1又因为γνλλ∆=∆,00λνc=,nm 8.6320=λ由以上各关系及数据可以得到如下形式: 单色性=ννλλ∆=∆=cL 0λ=101210328.61018.632-⨯=⨯nmnm 8 一质地均匀的材料对光的吸收系数为101.0-mm ,光通过10cm 长的该材料后,出射光强为入射光强的百分之几?如果一束光通过长度为1M 地均匀激励的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。
解答:设进入材料前的光强为0I ,经过z 距离后的光强为()z I ,根据损耗系数()()z I dz z dI 1⨯-=α的定义,可以得到: ()()z I z I α-=ex p 0则出射光强与入射光强的百分比为:()()()%8.36%100%100ex p %10010001.001=⨯=⨯-=⨯=⨯--mm mm z e z I z I k α 根据小信号增益系数的概念:()()z I dz z dI g 1⨯=,在小信号增益的情况下, 上式可通过积分得到()()()()14000000001093.610002ln lnln exp exp --⨯====⇒=⇒=⇒=mm z I z I g I z I z g I z I z g z g I z I1.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:由于是共焦腔,有12R R L ==往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
激光原理与激光技术习题答案习题一(1)为使氦氖激光器的相干长度达到1m ,它的单色性∆λ/λ应为多大?解: 10101032861000106328--⨯=⨯=λ=λλ∆=.L R c(2) λ=5000Å的光子单色性∆λ/λ=10—7,求此光子的位置不确定量∆x解: λ=h p λ∆λ=∆2h p h p x =∆∆ m R p h x 5101050007102=⨯=λ=λ∆λ=∆=∆--(3)CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0。
985,r 2=0.8。
求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、∆νc (设n=1)解: 衍射损耗: 1880107501106102262.).(.a L =⨯⨯⨯=λ=δ-- s ..c L c 881075110318801-⨯=⨯⨯=δ=τ 686810113107511061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q cMHz .Hz ...c c 19101910751143212168=⨯=⨯⨯⨯=πτ=ν∆- 输出损耗: 1190809850502121.)..ln(.r r ln =⨯⨯-=-=δ s ..c L c 881078210311901-⨯=⨯⨯=δ=τ 686810964107821061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q c MHz .Hz ...c c 75107510782143212168=⨯=⨯⨯⨯=πτ=ν∆-(4)有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,一个半反,半反镜反射系数r=0.99,求在1500MHz 的范围内所包含的纵模个数,及每个纵模的线宽(不考虑其它损耗)解: MHz Hz .L c q 150105112103288=⨯=⨯⨯==ν∆ 11]11501500[]1[=+=+ν∆ν∆=∆q q005.0201.02===T δ s c L c 781067.6103005.01-⨯=⨯⨯==δτ MHz cc 24.01067.614.321217=⨯⨯⨯==-πτν∆(5) 某固体激光器的腔长为45cm ,介质长30cm ,折射率n=1.5,设此腔总的单程损耗率0。
激光原理及技术部分习题解答(陈鹤鸣)第一章4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ∆应当是多少?解:相干长度C cL υ=∆,υ∆是光源频带宽度853*10/3*101C c m s Hz L kmυ∆===225108(/)632.8*3*10 6.328*103*10/c cc c nm Hz c m sλλυυυυλλλυλ-=⇒∆=∆=∆∆⇒=∆== 第二章4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=?解:Tk E E b e n 1212n --=其中12**E E ch E c h -=∆=λνλh ch ==∆*E(1)(2)10*425.12148300*10*38.11010*3*10*63.612236834≈====-------eeenn T kchbλ(3)K nnkchb36238341210*26.6)1.0(ln*10*10*8.3110*3*10*63.6ln*T=-=-=---λ9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mmα(2) 01011003660I.eIeIeII.z====-⨯-α即经过厚度为0.1m时光能通过36.6%10.解:m/..ln .G e .e I I G.Gz6550314013122020===⇒=⨯第三章2. CO2激光器的腔长L=100cm, 反射镜直径D=1.5cm, 两镜的光强反射系数120.985,0.8r r = = 求由衍射损耗及输出损耗引起的,,R Q τδ 解:(1)输出损耗由腔镜反射不完全引起。