当前位置:文档之家› 沈明杰 2111207124渗透汽化膜分离技术介绍及其应用

沈明杰 2111207124渗透汽化膜分离技术介绍及其应用

沈明杰 2111207124渗透汽化膜分离技术介绍及其应用
沈明杰 2111207124渗透汽化膜分离技术介绍及其应用

渗透汽化膜分离技术介绍及其应用

沈明杰

(浙江工业大学药学院,浙江杭州310014)

摘要:膜分离技术是现代化工领域的高新技术,它在解决人类面临的能源、资源、环境等一些重大问题的新技术方面,获得了极为迅速的发展。渗透汽化膜分离技术作为一种新型的膜分离技术,应用于液体混合物的分离,其突出的优点是能够以低能耗,实现蒸馏、萃取、吸附等传统方法难于完成的分离任务。

关键字:膜分离;渗透汽化;应用

渗透汽化(Pervaporation,简称PV)是以混合物中组分蒸汽压差为推动力,依靠各组分在膜中的溶解与扩散速率不同的性质来实现混合物分离的过程。渗透汽化装置包括预热器、膜分离器、冷凝器和真空泵等四个主要设备。料液进入渗透汽化膜分离器后,在膜两侧蒸汽压差的驱动下,扩散快的组分较多透过膜进入膜后侧,经冷凝后达到分离目的。

一、渗透汽化膜分离技术的基本原理

渗透汽化是利用致密高聚物膜按液体混合物中组分的溶解扩散性能不同,来实现其分离的一种膜分离过程,有机混合物原料液经加热器加热到一定温度后,在常压下送入膜分离器与膜接触,在膜的下游侧,用抽真空或载气吹扫的方法维持低压。这样,渗透物组分在膜两侧的蒸汽分压差(或化学位梯度)的作用下透过膜,并在膜的下游侧汽化,被冷凝成液体而除去。不能透过膜的截留物流出膜分离器。因此,渗透汽化过程是依靠不同组分在特定聚合物膜中溶解扩散能力不同,透过速率不同,从而实现不同组分分离的目的。

二、渗透汽化膜分离技术的过程特点

渗透汽化与反渗透、超滤及气体分离等膜分离技术的最大区别在于物料透过膜时将发生相变。因此必须在操作过程中不断加入至少相当于透过物气化吸收的热量,才能维持一定的操作温度。它具有以下特点:

1.分离系数大。针对不同物质的性质,选用适当的膜材料与制膜方法可以制得分

离系数很大的膜,通常可达几十、几百、几千、甚至更高。因此只用单极膜就可达到很高的分离效果。

2.渗透汽化膜分离虽以组分的蒸汽压差为推动力,但其分离作用不受组分汽-液平衡的限制,而主要受组分在膜内渗透速率的控制。各组分分子结构和极性等的不同,均可成为其分离依据。因此,渗透汽化膜分离适合于用精馏方法难以分离的近沸物和恒沸物的分离。

3.过程中不用引入其它试剂,产品不会受到污染。

4.过程简单,附加的处理过程少,操作也比较方便。

5.过程中透过物有相变,但因透过物量一般较少,汽化与随后的冷凝所需能耗不大。

6.渗透通量小,一般小于1000g/m2?h,而选择性高的膜,其通量往往只有100g/m2?h 左右,甚至更低。

7.膜后侧需要抽真空,但通常采用冷凝加抽真空法,需要由真空泵抽出的主要是漏入系统的惰性气体,抽气量不大。

三、渗透汽化适用的分离过程

1.具有一定挥发性的物质的分离(应用渗透汽化法进行分离的先决条件)。

2.从混合液中分离出少量物质。

3.其它分离方法难以分离的物质,比如精馏难以分离的近沸物的分离。

4.恒沸物的分离,当恒沸液中一种组分的含量较小时,可以直接用渗透汽化法得到纯产品。

5.在有水生成的化学反应(如酯化、酰化、脱水环合等)中,与反应过程结合。利用其分离系数高,单极分离效果好的特点,选择性的移走反应产物,促进化学反应的进行,可有效提高反应转化率。

四、影响渗透汽化过程的因素

1.分离膜材料和结构以及被分离组分的性质

这是影响渗透汽化分离效果的最基本的因素。对于一定的料液和分离要求而言,最重要的问题是要选择一种适宜的膜材料和膜的结构。对于同一种物料体系,如果它的组成不同,分离要求不同,也往往需要采用不同的膜。例如有机物/水体系,有机物中少量水的除去,应采用优先透水的PVA/PAN复合膜,而水中少量有机物的除去,则应采用

优先透有机物的有机硅复合膜。

2.分离所需的的温度

温度影响混合液组分在膜中的溶解度与扩散系数,所以它影响渗透汽化的渗透通量与分离系数。温度升高,聚合物链节的活动度增加,渗透物分子的活动度也增加,因此渗透物分子在聚合物膜中的扩散系数随温度的升高而增大。在多数情况下都可以用Arrhenius关系式表示。因为渗透系数等于扩散系数和溶解度系数的乘积,而扩散系数及溶解度系数随温度的变化都能满足Arrhenius关系,所以温度对渗透通量的影响可以由Arrhenius关系来表征。由此还可以计算处表观渗透活化能。温度对分离系数的影响较为复杂,无一定规律可循。多数情况下,分离系数随着温度的上升而有所下降,即非优先渗透组分随着温度的上升,膜的渗透通量相对于优先渗透组分上升较快。

3.分离组分的料液组成

料液组成的变化直接影响组分在膜面上的溶解度,而组分在膜内的扩散系数与其浓度有关,所以渗透汽化分离性能与料液组成有密切的关系。因为在膜内组分与聚合物以及组分间的相互作用力的影响,使得另一组分的存在对组分的扩散产生复杂的伴生效应,所以不能根据纯组分的渗透性能简单的按一般的理想情况(即组分的渗透通量与组分的组成成正比)来预测溶液渗透汽化的分离结果,必须通过实验确定。很多实验指出,实际渗透通量比按理想情况的估算值大,分离系数比理想估算值小,但也有文献报道,实际渗透通量比理想估算值效小。通常,随着料液中优先渗透组分浓度的提高,总渗透通量增大,但组成对分离系数的影响往往出现比较复杂的情况。

4.渗透膜膜两侧压力的影响

膜两侧压力的影响主要体现为对渗透汽化推动力的影响。料液侧压力增加对料液的蒸汽压影响不大,对料液在膜中的溶解度影响不大,所以对渗透汽化的分离性能影响不大。但是提高料液压力却有一系列不利的因素,所以一般料液侧只保持为克服料液流过膜组件的阻力所必需的压头。但对易挥发液体,为了提高料液温度,可以适当提高压力。渗透汽化过程受上游侧压力的影响不大,只有当上游侧压力超过1MPa时才有明显的影响。所以,上游侧通常维持常压。下游侧压力的变化对分离过程有明显的影响。通常,随着下游侧压力的增加渗透通量下降,而料液中易挥发组分在渗透物中的浓度增加,即当优先渗透组分为易挥发组分时,分离系数上升;当优先渗透组分为难挥发组分时,分离系数下降。

5.浓差极化及温度梯度的影响

在渗透汽化过程中,由于传质速率较低,浓差极化较小,所以它的影响可以忽略不计。在料液蒸发过程中,膜内将产生温差。

6.渗透膜厚度的影响

随着膜厚度的影响,传质阻力加大,因此渗透通量将降低。但渗透通量的数值与膜厚度的数值并不是正好成反比。在实际渗透过程中,膜厚度增加一倍,渗透通量降低不到50%。这是因为膜的一部分处于干区,其厚度的增加不影响传质;只有增加处于溶胀区的膜的厚度才会增加传质阻力,因而引起渗透通量下降。分离系数与膜厚度无关。这是因为整个膜厚度改变时,起分离作用的活性致密层保持不变的缘故。

五、渗透汽化的应用

(一)、有机溶剂脱水

目前有机物水溶液的分离主要采用精馏、萃取和吸附等方法。这些方法都有自身的特点与局限性,在某些情况下使用会出现种种问题,采用渗透汽化有可能克服这些问题,取得很好的效果。适用于渗透汽化法进行有机物脱水的具体对象很多,主要有以下两方面的应用。

1.恒沸物的分离

恒沸物分离是渗透汽化最能发挥其优势的领域。用渗透汽化进行恒沸液的分离可以分为两种情况。一种是用渗透汽化法分离,直接制得产品,主要用于含水量较少得恒沸液。例如工业乙醇脱水制备无水乙醇。另一种情况是使用渗透汽化法将恒沸液分离为两个偏离恒沸组成的产物,然后再用一般精馏或其他方法进行分离,这种方法可称为恒沸液的分割。

2.非恒沸液的分离

可以把有机物与水的混合物分为互溶与部分互溶二类。一般说,对于部分互溶体系,水在有机物种的溶解度小,化学位高,与互溶体系比较,在水含量相同的条件下,渗透汽化的推动力大,水的渗透通量高。所以,有机物中水的溶解度愈小,则该有机物脱水后其中的含量可以更小。通常用渗透汽化法脱水,根据有机物脱水中水的溶解度的大小,其中水含量可降至几十到几百mg/L。对于水在其中溶解度很小的有机物,水含量可降至几个mg/L,但需要很低的压力、较大的真空泵和较大的膜面积。使用渗透汽化脱水的经济性与原料中的水含量有关,一般说料液中水含量在0.1%~10%时,采用渗透汽化比

较经济,水含量高,采用精馏或萃取可能比较经济,而含水量很低时,可能吸附更具有竞争力。使用渗透汽化脱水的经济性还与水和有机物的沸点高低有关。如果有机物的沸点比水低,相对说用渗透汽化比用精馏更有利。因为用粗馏法分离有机物中少量水时,大量低沸点的有机物需从精馏塔顶蒸出,而渗透汽化过程中是把少量沸点较高的水直接从有机物中分离出来。

(二)、水中有机物的脱除

用渗透汽化法脱除水中有机物的技术开发比较晚一些。到目前为止,对各种有机物的除去,包括醇、酸、酯、芳香族化合物、氯化碳氢化合物等已经进行了广泛研究,试验过各种材料,其中最常用的膜材料是硅橡胶。用渗透汽化法脱除水中有机物的经济性与水中有机物的含量和有机物本身的情况有关。一般说,与其他各种分离与处理方法比较,水中有机物含量在0.1%~5%之间时用渗透汽化法比较好。浓度更高时,目前常用的蒸馏、蒸汽汽提等方法可能在经济上更有利。有机物浓度过低,渗透汽化的推动力小,渗透通量小,膜面积大,膜组件的投资大。此时,一般把它作为废液处理,采用吸附或生物处理法可能在经济上更合理。用渗透汽化法从水中分离有机物主要可以分为以下四种类型:(1)从发酵液中提取有机物(2)酒类饮料中除去乙醇(3)废水处理和污染的地下水处理(4)溶剂回收。

(三)、有机/有机混合物的分离

由于分离过程的条件比较苛刻,这是目前渗透汽化技术应用开发最少的领域。如果膜和组件的稳定性得以解决,它将成为21世纪重要的膜应用技术。

用渗透汽化法进行有机物混合液分离主要是近沸物与恒沸物的分离。因为对于这些体系采用常用的精馏法,需要庞大的设备,很大的能耗,或者需要应用外加的恒沸剂或萃取剂,过程复杂,且易致产品与环境污染。如果近沸物与恒沸液中二种组分的含量相差较大时,应用渗透汽化,采用优先透过少量组分的膜,一级分离即可达到较完全的分离效果,这时渗透汽化具有明显的竞争力。当恒沸物中二组分的含量接近时,采用渗透汽化与精馏的联合过程是很经济的。对于近沸物,当二组分含量相当时,要将二组分完全分开,必须采用有回流的多级操作,这时应用渗透汽化通常是不经济的。因为渗透汽化通量小,多级操作所需膜面积大,透过物需在低压和较低温度下多次冷凝,冷凝系统投资与操作费用大。所以这种情况下只有在膜分离系数和渗透通量都很大时,渗透汽化才可能有竞争力。迄今已研究的有重要工业意义的体系主要有以下几类:⑴醇/醚混合物的

分离⑵芳烃与脂肪烃的分离⑶同分异构物的分离⑷环己酮、环己醇与环己烷的分离⑸脂肪烃/脂肪烃的分离(指烯烃/烷烃,正烷烃与异烷烃以及卤代烃混合物等的分离)。六、渗透汽化分离的总结与展望

渗透汽化分离是一种正在发展中的新技术,要使其在工业上广泛应用,在膜与膜组件的研制等方面还需进行大量的研究与开发工作。首先是高效膜的研制,要针对分离物系的物理化学特性,采用适当的膜材料与制膜方法,制取渗透系数高、渗透通量大的膜。膜的耐热与耐溶剂的稳定性是另一个重要的研究目标,提高膜的耐热性,使其能在较高的温度下操作是提高膜的渗透通量的重要途径,也是渗透汽化用膜的一个主要研究方向。降低膜的造价,对于渗透汽化的实际应用具有重要意义。目前渗透汽化主要使用不锈钢制的板框式膜组件,造价高,投资大。这是影响渗透汽化推广使用的一个不利因素。改进板框结构,采用廉价的材料和开发紧凑、高效的卷式与中空纤维式膜组件,降低膜组件的造价,将促进渗透汽化过程的工业应用。

渗透汽化的突出优点是分离系数高和不受汽—液平衡的限制,因而它在用精馏方法难以分离的恒沸物与近沸物的分离中将具有广阔的应用前景。就分离对象而言,用渗透汽化法分离有机混合液将是很有发展前途的方面。渗透汽化的缺点是渗透通量小和渗透物在低压下冷凝,因而它一般适用于从混合液中分离出少量物质,不宜采用多级操作。所以它通常要与其他分离过程联合使用才能获得最好的经济效果。

参考文献

[1]夏德万,张强等.渗透汽化膜分离研究的新进展.北京理工大学.高分子通报.2007.9.9

[2]杨凯,陈建林等.渗透汽化膜分离技术在环保中的应用.南京大学.环境科学与技术.2004.9.第27卷,第五期.

[3]张佩琴,蔡邦肖.渗透汽化在醇水分离中的作用.浙江工商大学.净水技术.2006年4月,第25卷.

[4]辛伟,罗运军等.渗透汽化膜的性能.高分子材料科学与工程.2008年,第二期.

[5]李继定,展侠等.渗透汽化和汽体渗透膜技术应用及其浮浅思考.膜科学与技术.,2011年,第三期.

[6]蒋晓钧,曾一鸣等.PTMSP与PMP膜渗透汽化分离性能的研究比较.功能高分子学报.2001年,第二期.

[7]叶宏,李继定等.渗透汽化芳烃/烷烃分离膜材料.化学进展.2008年,第2-3期.

[8]韩光鲁,张琪等.PVA-g-PAAm/α-Al_2O_3渗透汽化复合膜的制备和表征.精细化工.2001年,第一期.

[9]李秀辉,于海波.渗透汽化膜处理VOCs废水研究进展.化学工程师.2010年第12期.

[10]洪厚胜,陈龙祥,由涛,张庆文.渗透汽化复合膜.化学进展.2009年,第十期.

[11]孔瑛,卢福伟,吕宏凌,杨金荣.新型有机分离体系渗透汽化膜材料.现代化工.2009年第六期.

渗透汽化技术

渗透汽化技术(PV)的应用 杨丽琴、阴秋萍 摘要:综述了渗透汽化膜传递理论研究的现状,叙述了渗透汽化膜分离技术的基本原理及传质过程的机理,叙述了渗透汽化过程的进展,叙述了渗透汽化分离水中微量有机物及其在化工生产上的应用进行了介绍. 关键词:渗透汽化;传递理论;原理;膜组件;脱水膜;应用 1 引言 渗透汽化(pervaporation,简称PV)是一种新型膜分离技术。该技术用于液体混合物的分离,其突出的优点是能够以低的能耗实现蒸馏、萃取、吸收等传统方法难以完成的分离任务。它特别适用于蒸馏法难以分离或不能分离的近沸点、恒沸点混合物以及同分异构体的分离;对有机溶剂及混合溶剂中微量水的脱除及废水中少量有机污染物的分离具有明显的技术上和经济上的优势;还可以同生物及化学反应耦合,将反应生成物不断脱除,使反应转化率明显提高。所以,渗透汽化技术在石油化工、医药、食品、环保等工业领域中具有广阔的应用前景及市场。它是目前处于开发期和发展期的技术,国际学术界的专家们称之为21世纪最有前途的高技术之一。 2 渗透汽化膜分离技术 2. 1 基本原理 渗透汽化是利用致密高聚物膜对液体混合物中组分的溶解扩散性能的不同实现组分分离的一种膜过程(如图1-1所示)。液体混合物原料经加热器加热到一定温度后,在常压下送入膜分离器与膜接触,在膜的下游侧用抽真空或载气吹扫的方法维持低压。渗透物组分在膜两侧的蒸汽分压差(或化学位梯度)的作用下透过膜,并在膜的下游侧汽化,被冷凝成液体而除去。不能透过膜的截留物流出膜分离器。 2. 2 PV膜过程的特点 (1) PV最突出的特点是分离系数大,单级即可达到很高的分离效果; (2) PV分离过程不受组分汽.液平衡的限制,适用于精馏等传统方法难以分离的近沸物和恒沸物的分离;

渗透汽化膜分离技术

蒸汽渗透膜分离技术 清华大学膜技术工程研究中心北京清源洁华膜技术有限公司 2015年10月

1. ,概要 北京清源洁华膜技术有限公司成立于2013年,公司以清华大学膜技术工程研究中心渗透汽化膜等专利技术为基础,从事渗透汽化、汽体渗透、透醇膜、超滤膜、纳滤膜等的研发生产。 北京清源洁华膜技术有限公司主要发起人全部毕业于清华大学,分别具有几十年的膜性能研发生产、化工工艺开发设计、化工设备加工制造、化工装置及企业生产管理经验,对国家环境保护工作的紧迫性及膜分离技术的先进性共同认知促成大家走到了一起。 汽体渗透和渗透汽化膜分离技术是近二十年来发展起来的一种高新技术,依据溶解扩散分离原理,依靠有机汽体和空气各组分在膜中的溶解与扩散速度不同的性质来实现分离的新型膜分离技术,以混合物中组分分压差为分离推动力,有机汽体透过膜、空气不能透过膜。该技术具有高效、低能耗、操作安全等优点,与传统油汽回收技术相比,具有明显的技术上和经济上的优势。 北京清源洁华膜技术有限公司作为清华大学膜技术工程中心生产、实验基地,拥有三项国家发明专利,分别是:一种渗透汽化优先透醇沸石填充硅橡胶复合膜的制备方法(专利号:ZL 2008 1 0105405.6;专利有效期:2008年4月30日至2028年4月29日)、一种渗透汽化汽油脱硫用互穿网络膜的制备方法(专利号:ZL 2010 1 0282031.2;专利有效期:2010年9月14日至2030年9月13日)、二氮杂萘聚醚砜酮类聚合物平板超滤膜及其制备方法(专利证书号:ZL 2007 1 0177247.0;专利有效期:2007年11月13日至2027年11月12日)。 2.项目背景 清华大学膜技术工程研究中心深知国际竞争的残酷性和中国人拥有该先进技术自主产权的重要性,是国内最早开展渗透汽化和汽体渗透膜技术研究单位。在国家的支持下,本研究中心先后承担了国家自然科学基金“七五”重大项目“膜分离与分离膜”、“八五”重点项目“新型膜分离过程的应用基础研究”、“九五”国家重点科技攻关“渗透汽化透水膜及其过程关键技术开发”研究以及国家“十五”“863”项目“渗透汽化膜材料及其应用”研究,取得了醇、酯、酮脱水等16项小试研究成果和苯脱水、碳六油脱水两项工业中试研究成果,建立了年生产能力10万平方米的渗透汽化膜生产线,在广东、山东、江苏、浙江、四川等地相继建成了30

反渗透膜分离设备的技术优势

反渗透膜分离设备的技术优势 2020年8月27日

为保证我国经济的可持续发展,缓解当代水资源短缺,大力发展海水淡化技术产业来解决淡水资源问题已迫在眉睫。传统的方法具有很多劣势。而膜分离具有高效节能、选择性好、无相态和化学变化及可以在常温下操作等优点,是继蒸馏法后的又一项重要技术。主要包括反渗透膜法、电渗析法和纳滤膜法。这里主要介绍目前使用广泛的反渗透膜法。 反渗透膜分离设备法是一种高效节能技术,它是利用选择性半透膜,孔径为0.1—1nm,通常运行切割的分子量<500,能截留盐或小分子量有机物,使水通过。较之传统的蒸馏法,具有起动产水迅速、尺寸紧凑、重量轻、全电力操作能耗少、性能稳定、不用防结垢化学剂,操作过程中,无需相变、无需热液等优点。更加节能,工程造价和运行成本持续降低,其发展速度远远快于蒸馏法。但其缺点是操作压力大,膜组件易受到污染,进料液浓度有限制以及浓缩液的二次污染等问题。 德兰梅勒反渗透膜分离技术,简称RO技术。反渗透技术是近几年来才在我国发展起来的一项现代高新技术。按各种物料的不同渗透压,对某种溶液使用大于渗透压的反渗透方法,达到对溶液进行分离提取、纯化和浓缩的目的。反渗透设备技术是当今节能、效率高的膜分离技术。 德兰梅勒利用膜分离技术为生物制药、食品饮料、发酵行业、农产品深加工、植物提取、石油石化、环保水处理、空气除尘、化工等行业提供分离、纯化、浓缩的综合解决方案,满足不同客户的高度差

异化需求。帮助客户进行生产工艺的上下游技术整合与创新,帮助企业节省投资、降低运行费用、减少单位消耗、提供产品质量、清洁生产环境,助力企业产业升级。

正渗透膜分离技术

正渗透膜分离技术 研究背景 随着世界人口数量的迅速增长和矿物燃料的急剧消耗,水资源和能源已成为地球上两种至关重要的资源。水资源匮乏和能源危机困扰着全球许多不同的团体。据报导,世界上至少十二亿的人缺乏洁净安全的饮用水,有二十六亿的人缺少足够多的环境卫生设备。 膜技术是近几十年迅速发展起来的高效分离技术,因其节能、高效、经济、简单方便、无二次污染等一系列优点,在水处理中已被广泛地用于苦咸水淡化、海水淡化、工业给水处理、纯水及超纯水制备、废水处理、污水回用等。作为一种低能耗、低污染的绿色技术,新型的膜分离技术,正渗透(Forward osmosis,FO),在供水和产能方面拥有着巨大的潜能,甚至在食品加工行业、医药行业也有很好的应用前景,正逐渐成为人们关注和研究的热点。 膜分离技术 作为一种广泛应用的分离技术,膜处理的分离原理主要是在常温下使溶质和溶剂通过半渗透膜,达到分离、浓缩和纯化的目的,在这个过程中,驱动力一般为压力驱动或电位驱动。该技术的特点有以下几个方面: (1)膜分离过程在常温下进行分离。 (2)膜分离过程无相变化。 (3)膜分离技术的适用范围较广。 (4)膜分离效率高,分离效果好。 (5)膜分离技术采用装置简单,操作方便。 通常来说,膜分离技术,能够对不同的微粒、分子、离子进行有效的分离,膜材料亦丰富为醋酸纤维素(CA)、聚丙烯腈(PAN)、聚酰胺(PA)、聚砜(PS)、聚丙烯(PP)、聚偏氟乙烯(PVDF)、陶瓷膜等。 常见水处理膜分离技术主要有以下几类: (1)微滤(MF):由0.01~0.2 MPa的外加压力作为驱动力。膜的微孔直径处于微米范围,可截留粒径为0.1~10μm的悬浮物颗粒、纤维等。 (2)超滤(UF):超滤以0.1~1.0 MPa左右的压力差为推动力。分离膜的孔径在 0.0015~0.02μm之间。 (3)反渗透(RO):以1~70MPa左右的压力差为推动力。 (4)纳滤(NF):由0.5~1.5MPa的外加压力作为驱动力。 正渗透 在正渗透中,用于分离的驱动力主要为FO膜两侧的汲取液和原料液之间的渗透压差,使水从原料液(较低渗透压)一侧自发传递到汲取液(较高渗透压)。不同于传统的靠压力驱动的膜分离技术,比如微滤、超滤、纳滤与反渗透等,正渗透由于运行的原理不同,因此有着独有的优势,例如施加较低或不施加压力,导致更低的能耗,降低运行成本;正渗透的分离能力强,对污染物有着较高的截留率;正渗透污染几乎为可逆污染,因而清洗效率高;正渗透的膜装置组成简单,操作容易等。在众多领域内,正渗透近几十年来均有着广泛的应用,特别的,在一些重要领域如海

渗透汽化膜分离项目简介

膜法有机气体回收项目 XXX技术工程中心 2015年11月

1. ,概要 北京清源洁华膜技术有限公司(以下简称清源洁华)成立于2013年,公司以清华大学膜技术工程研究中心渗透汽化膜等专利技术为基础,从事渗透汽化、汽体渗透、透醇膜、超滤膜、纳滤膜等的研发生产。 清源洁华主要发起人全部毕业于清华大学,分别具有几十年的膜性能研发生产、化工工艺开发设计、化工设备加工制造、化工装置及企业生产管理经验,对国家环境保护工作的紧迫性及膜分离技术的先进性共同认知促成大家走到了一起。 汽体渗透和渗透汽化膜分离技术是近二十年来发展起来的一种高新技术,依据溶解扩散分离原理,依靠有机汽体和空气各组分在膜中的溶解与扩散速度不同的性质来实现分离的新型膜分离技术。其中膜法有机气体回收是以混合物中组分分压差为分离推动力,有机汽体透过膜、空气不能透过膜。该技术具有高效、低能耗、操作安全等优点,与传统油汽回收技术相比,具有明显的技术上和经济上的优势。 清源洁华作为清华大学膜技术工程中心生产、实验基地,拥有三项国家发明专利,分别是:一种渗透汽化优先透醇沸石填充硅橡胶复合膜的制备方法;一种渗透汽化汽油脱硫用互穿网络膜的制备方法;二氮杂萘聚醚砜酮类聚合物平板超滤膜及其制备方法等。 2.项目背景 清华大学膜技术工程研究中心深知国际竞争的残酷性和中国人拥有该先进技术自主产权的重要性,是国内最早开展渗透汽化和汽体渗透膜技术研究单位。在国家的支持下,本研究中心先后承担了国家自然科学基金“七五”重大项目“膜分离与分离膜”、“八五”重点项目“新型膜分离过程的应用基础研究”、“九五”国家重点科技攻关“渗透汽化透水膜及其过程关键技术开发”研究以及国家“十五”“863”项目“渗透汽化膜材料及其应用”研究,取得了醇、酯、酮脱水等16项小试研究成果和苯脱水、碳六油脱水两项工业中试研究成果。在渗透汽化膜制备、膜组件设计、膜工艺等方面申请专利10多项,形成了完整的具有我国自主知识产权的专有技术,代表着我国渗透汽化和汽体渗透膜技术的先进水平。

纳滤反渗透膜分离实验上课讲义

纳滤反渗透膜分离实 验

化工原理实验报告学院:专业:班级:

三、实验装置 本实验装置均为科研用膜,透过液通量和最大工作压力均低于工业现场实际使用情况,实验中不可将膜组件在超压状态下工作。主要工艺参数如表1-1 膜组件膜材料膜面积/m2最大工作压力/Mpa 纳滤(NF)芳香聚纤胺0.4 0.7 反渗透(RO) 芳香聚纤胺0.4 0.7 表1-1膜分离装置主要工艺参数 反渗透可分离分子量为100级别的离子,学生实验常取0.5%浓度的硫酸钠水溶液为料液,浓度分析采用电导率仪,即分别取各样品测取电导率值,然后比较相对数值即可(也可根据实验前做得的浓度-电导率值标准曲线获取浓度值)。 图1-1膜分离流程示意图 1-料液灌;2-低压泵;3-高压泵;4-预过滤器;5-预过滤液灌;6-配液灌;7-清液灌; 8-浓液灌;9-清液流量计;10-浓液流量计;11-膜组件;12-压力表;13-排水阀

图1 电导率与溶液浓度关系曲线 电导率与溶液浓度模型:C= 0.6253k - 0.0195 式中k为电导率,单位ms/cm;C为溶液浓度,单位×10-3g/cm3。 ① 原料液浓度C0=0.6253*6.07-0.0195=3.776071*10-3(g/cm3)=0.026584561 kmol/m3 透过液浓度C P=0.6253*0.13-0.0195=0.061789*10-3(g/cm3)=0.000435011 kmol/m3 浓缩液浓度C R=0.6253*6.99-0.0195= 4.351347*10-3(g/cm3)= 0.030634659 kmol/m3 ② 原料液浓度C0=0.6253*5.95-0.0195= 3.701035*10-3(g/cm3) =0.026056287 kmol/m3 透过液浓度C P=0.6253*0.07-0.0195=0.024271*10-3(g/cm3) =0.000170874 kmol/m3 浓缩液浓度C R=0.6253*7.26-0.0195= 4.520178*10-3(g/cm3) =0.031823275 kmol/m3 (2)膜组件性能表征: 利用公式:

正渗透技术处理水和废水

正渗透技术处理水和废水 1 引言 膜分离技术由于出水水质高、设备简单易操作、能耗相对较低、适应性强等特点,在水处理领域获得越来越多的关注.目前应用于水处理领域的几种膜分离技术.其中微滤(microfiltration,MF)、超滤(ultrafiltration,UF)、纳滤(nanofiltration,NF)和反渗透(reverse osmosis,RO)由机械压力驱动传质过程,是水和废水处理的常规技术.其他膜技术,如温度差驱动的膜蒸馏技术(membrane distillation,MD),电场驱动的电渗析技术(electro-dialysis,ED),一些由化学反应驱动的膜吸收技术(membrane absorption,MA)等也成为水处理领域的新型技术.正渗透(forward osmosis,FO)是一种由渗透压(浓度差)驱动的新型膜技术.可用于海水脱盐、废水处理等方面. FO膜是一种渗透膜.名义孔径在1 nm以下,用于截留溶解性离子和盐类等物质,与RO 相当.但与RO相比,FO无需外加机械压力,具有低压操作、低膜污染、高截留的优点,近年来在水处理领域受到较多关注. 2 FO原理(Basic principle of FO) FO膜是一种选择性渗透膜,膜的一侧是低渗透压的待处理水,另一侧是高渗透压的汲取液,水分子透过FO膜从低渗透压侧扩散到高渗透压侧,从而实现水与杂质的分离(图 1).该过程的驱动力是膜两侧溶液的渗透压差,不需外界提供压力. 图 1 FO工艺的原理示意图 2.1 FO应用与运行效果 2.1.1 海水(浓盐水)脱盐 FO已被用于含盐废水、含盐地下水、盐湖水和海水的脱盐.大多数为实验室规模的小试研究,汲取液采用难挥发性(NaCl,Na2SO4,MgSO4等)或挥发性(NH3/CO2和NH4HCO3)盐溶液.其中Zhao等进行的盐湖水脱盐,回收率达到70%.McGinnis等采用中试规模的FO处理高盐水(TDS>70,000 ppm),回收率达到60%,与蒸发浓缩技术相当,出水水质达标(美国宾州

渗透汽化论文(渗透汽化膜分离技术的进展及应用)

渗透汽化膜分离技术的进展及应用 摘要: 综述了渗透汽化膜传递理论研究的现状, 分析了各种模型的特点, 并就渗透汽化膜传递理论的研究方向提出了建议。叙述了渗透汽化过程的新进展,并着重介绍了它在石化中的四方面应用,即(1) 有机溶剂及混合溶剂的脱水;(2) 废水处理及溶剂回收;(3) 有机混合物的分离;(4) 化学反应过程中溶剂的脱水。 关键词:渗透汽化;传递理论;模型;膜组件;脱水膜 前言 渗透汽化(Pervaporation, 简称PV ) 是用于液体混合物分离的一种新型膜技术。自80年代以来, 渗透汽化技术得到了很大的发展, 目前世界范围内有100 多套工业装置。然而, 渗透汽化膜分离的机理由于涉及到渗透物和膜的结构和性质, 渗透物组分之间、渗透物与膜之间复杂的相互作用, 涉及到化学、化工、材料、非晶态物理、统计学等学科的交叉, 研究工作的难度较大, 认识也不够深入。也提出了几种描述渗透汽化膜传递机理的模型, 其中主要有溶解扩散膜型和孔流模型[1]。膜技术作为一种高新技术,近30 多年来获得了极为迅速的发展,已在石油化工、海运、冶金、电子、轻工、纺织、食品、医疗卫生、生化制药、环保、航天等领域内广泛应用,形成了独立的新兴技术产业。据专家断言:“今后,谁掌握了膜技术,谁就掌握了石油化工技术的未来”。 1 渗透汽化过程传递机理 1.1溶解扩散模型 溶解扩散模型认为PV 传质过程分为三步: 渗透物小分子在进料侧膜面溶解(吸 附) ; 在活度梯度的作用下扩散过膜; 在透过侧膜面解吸(汽化)。 在PV 的典型操作条件下, 第三步速度很快, 对整个传质过程影响不大。而第一步的溶解过程和第二步的扩散过程不仅取决于高聚物膜的性质和状态, 还和渗透物分子的性质、渗透物分子之间及渗透物分子和高聚物材料之间的相互作用密切相关。因而溶解扩散模型最终归结到对第一步和第二步, 即渗透物小分子在膜中的溶解过程和扩散过程的描述。一般研究者都认为PV 过程的溶解过程达到了平衡[2]。对于这种考虑, 可以通过Henry 定律(对渗透物小分子和膜材料之间无相互作用力的理想情形) 或双方吸收模型(对渗透物小分子和膜材料之间存在较弱相互作用力的情形)或Flory-Huggins 模型(对渗透物小分子和膜材料之间存在较强相互作用力的情形) 计算得到渗透物小分子在膜表面的溶解度。近年来,Doong 等考虑到组分在膜中混合焓变、自由体积焓变、相互作用焓变和弹性焓变对总溶解焓变的影响, 提出了一个更为复杂的计算进料侧膜面组份活度的方法。 但实验发现, PV 过程的溶解过程并非总能达到平衡, 而是取决于溶解速度和扩散速度的相对大小[3]。余立新等通过实验发现了非平衡溶解过程的存在, 并提出了非平衡溶解扩散

正渗透的应用和技术优势---窦蒙蒙.

正渗透的应用和技术优势 姓名:班级:学号: 16121229 指导教师:于海琴 正渗透的应用和技术优势 摘要:作为一种新型膜处理技术,正渗透技术自20世纪50年代建立以来,在环保、能源、海水淡化等领域受到越来越广泛的关注;其经历了从实验室研究,中试实验,到少量的商业化应用,技术日臻完善。正渗透技术是利用自然渗透压差为驱动力的一种净水技术,为水资源和环境问题提供了低能耗、高效率的解决方法。该文介绍了正渗透的技术优势,以及正渗透在海水淡化、废水处理、污水回用、能源开发以及食品加工等领域的应用。 关键词:正渗透、技术优势、海水淡化、废水处理 I 1.引言

正渗透(Forward osmosis, FO)是近年来发展起来的一种浓度驱动的新型膜分离技术,它是依靠选择性渗透膜两侧的渗透压差为驱动力自发实现水传递的膜分离过程,是目前世界膜分离领域研究的热点之一。 1.1正渗透技术的原理和技术特点 1.1.1正渗透技术的原理 正渗透是浓度驱动型的膜过程,它依靠选择性渗透膜两侧的渗透压差为驱动力来自发的实现水在膜中的传递。也就是指水从较高的水化学势(或较低渗透压)一侧区域通过选择透过性膜流向较低水化学势(或较高渗透压)一侧区域的过程。在具有选择透过性膜的两侧分别放置两种具有不同渗透压的溶液,一种为具有较低渗透压的原料液(feed solution,FS),另一种为具有较高渗透压的汲取液(draw solution,DS)。正渗透正是依靠正渗透膜两侧的汲取液(draw solution,DS)和原料液(feed solution,FS)间的自然渗透压差,使水分子自发地从低渗透压侧(FS侧)传输到高渗透压侧(DS侧)而污染物被截留的膜分离过程,具体如图1所示。 图1.正渗透过程示意图 不同于传统膜分离过程,正渗透利用低水化学势的DS从高水化学势的FS吸取纯水,无需投入额外的驱动压力,因而其能耗低[1]。 1.1.2正渗透技术的技术特点 正渗透不同于压力驱动膜分离过程,它不需要额外的水力压力作为驱动力,而依靠汲取液与原料液的渗透压差自发实现膜分离。这一过程的实现需要几个必要条件:(1)可允许水通过而截留其他溶质分子或离子的选择性渗透膜及膜组件;(2)提供驱动力的汲取液;(3)对稀释后的汲取液再浓缩途径[2]。 早期关于正渗透过程研究均采用反渗透复合膜,发现膜通量普遍较低,主要原因是复合膜材料的多孔支撑层产生了内浓差极化现象,大大降低了渗透过程的效率。20 世纪90 年代,Osmotek 公司(Hydration Technologies Inc.(HTI)公司前身)开发了一种支撑型高强度正渗透膜,已被应用于多种领域,是目前最好的商

渗透汽化技术简介及在水处理中的应用

渗透汽化技术简介及在水处理中的应用 渗透汽化(pervaporation,即 permeation vaporation,简称 PV),最先由Kober于20世纪初提出,是近年来发展比较迅速的一种膜技术,它是利用膜对液体混合物中各组分的溶解性不同及各组分在膜中的扩散速度不同从而得以达到分离目的。原则上适用于一切液体混合物的分离,具有一次性分离度高、设备简单、无污染、低能耗等优点,尤其是对于共沸或近沸的混合体系的分离、纯化具有特别的优势,是最有希望取代精馅过程的膜分离技术。 我国在1984年前后开始对渗透汽化过程进行研究,主要工作集中在优先透水膜的研制与醇水溶液的脱水。近年来主要开展优先透有机物膜、水中有机物脱除、有机物一有机物分离以及渗透汽化与反应耦合集中过程的研究。 一、渗透汽化的主要形式 按照形成膜两侧蒸汽压差的方法,渗透汽化主要有以下几种形式。 (1)减压渗透汽化 膜透过侧用真空泵抽真空,以造成膜两侧组分的蒸汽压差。在实验室中若不需收集透过侧物料,用该法最方便。 (2)加热渗透汽化 通过料液加热和透过侧冷凝的方法,形成膜两侧组分的蒸汽压差。一般冷凝和加热费用远小于真空泵的费用,且操作也比较简单,但传质动力比第一类小。 (3)吹扫渗透汽化 用载气吹扫膜的透过侧,以带走透过组分,吹扫气需经冷却冷凝,以回收透过组分,载气循环使用。

(4)冷凝渗透汽化 当透过组分与水不互溶时,可用低压水蒸气作为吹扫载气,冷凝后水与透过组分分层后,水经蒸发器蒸发重新使用。渗透汽化与反渗透、超滤及气体分离等膜分离技术的最大区别在于物料透过膜时将产生相变。因此在操作过程中必须不断加入至少相当于盘过物汽化潜热的热量,才能维持一定的操作温度。 二、渗透汽化的特点 (1)分离系数大。针对不同物系的性质,选用适当的膜材料与制膜方法可以制得分离系数很大的膜,一般可达几十、几百、几千,甚至更高。因此只用单极即可达到很高的分离效果。 (2)渗透汽化虽以组分的蒸汽压差为推动力,但其分离作用不受组分汽一液平衡的限制,而主要受组分在膜内渗透速率控制。各组分分子结构和极性等的不同,均可成为其分离依据。因此,渗透汽化适合于用精馅方法难以分离的近沸物和恒沸物的分离。 (3)渗透汽化过程中不引入其他试剂,产品不会受到污染。 (4)过程简单,附加的处理过程少,操作比较方便。 (5)过程中透过物有相变,但因透过物量一般较少,汽化与随后的冷凝所需 能量不大。 (6)渗透通量小,一般小于1000g/(m2 - h),而选择性高的膜,其通量只有100g/(m2?h)左右,甚至更低。 (7)膜后侧需抽真空,但通常釆用冷凝加抽真空法,需要由真空泵抽出的主要是漏入系统的惰性气体,抽气量不大。 三、渗透汽化适用的分离过程 (1)具有一定挥发性的物质的分离,这是应用渗透汽化法进行分离的先决条件。 (2)从混合液中分离出少量物质,例如,有机物中少量水的脱除,可以充

渗透汽化膜应用

有机汽体渗透分离膜 技术及工业应用 北京清源洁华膜技术有限公司 2015年9月

北京清源洁华膜技术有限公司座落在北京市平谷区兴谷开发区,是平谷区重点工业企业和北京市高新技术企业。公司以清华大学膜技术工程研究中心渗透汽化膜等专利技术为基础,从事渗透汽化、汽体渗透、透醇膜、超滤膜、纳滤膜等的研发生产。 北京清源洁华膜技术有限公司主要发起人全部毕业于清华大学,分别具有几十年的膜性能研发生产、化工工艺开发设计、化工设备加工制造、化工装置及企业生产管理经验,对国家环境保护工作的紧迫性及膜分离技术的先进性共同认知促成大家走到了一起。 膜分离技术被认为是21世纪最有发展前途的新技术之一,其中气体膜分离技术由于Prism 中空纤维氮氢分离器的问世,取得了空前的发展。气体膜分离技术与传统的吸附冷冻、冷凝分离相比,具有节能、高效、操作简单、使用方便、不产生二次污染并可回收有机溶剂的优点,已广泛用于空气分离富氧、富氮技术、天然气中脱碳、合成氨中的一氧化碳和氢气的比例调节等领域。 北京清源洁华膜技术有限公司作为清华大学膜技术工程中心生产、实验基地,拥有三项国家发明专利,分别是:一种渗透汽化优先透醇沸石填充硅橡胶复合膜的制备方法(专利号:ZL 2008 1 0105405.6;专利有效期:2008年4月30日至2028年4

月29日)、一种渗透汽化汽油脱硫用互穿网络膜的制备方法(专利号:ZL 2010 1 0282031.2;专利有效期:2010年9月14日至2030年9月13日)、二氮杂萘聚醚砜酮类聚合物平板超滤膜及其制备方法(专利证书号:ZL 2007 1 0177247.0;专利有效期:2007年11月13日至2027年11月12日)。 有机蒸汽膜法回收技术是上世纪八十年代兴起的新型膜分离技术,是气体分离膜应用的一个分支,依据溶解扩散分离原理,依靠有机汽体和空气各组分在膜中的溶解与扩散速度不同的性质来实现分离的新型膜分离技术,以混合物中组分分压差为分离推动力,有机汽体透过膜、空气不能透过膜。在化学、石化工业和医药工业中从废气中分离和回收有机蒸汽,炼油领域中分离有机蒸汽等应用越来越广泛。 有机蒸汽膜分离原理示意图: 用烷烃与空气混合气为介质测试有机蒸汽分离膜,分离膜对不同分子量的烃选择分离性能不同:

水处理中正渗透膜分离技术的应用

水处理中正渗透膜分离技术的应用 摘要:渗透(osmosis)是一种仅依靠渗透压驱动的分离过程,基于渗透现象发展起来的正渗透膜分离技术,目前该技术在国际都得到了广泛的应用。本文章综述了水处理中正渗透膜分离技术应用过程的基本原理、应用现状以及水处理正渗透膜分离技术的应用领域,并对未来水处理中正渗透膜分离技术的应用方向提出了展望。希望在未来其技术能得到更加广泛的应用与发展。 关键词:正渗透应用水处理膜分离技术 一、前言 20世纪60年代起,对膜分离技术从实验室研究已经进入到了工业行业的实际应用,直至现在,它已应用到水处理,食品加工,制药工程,医学以及能源等不同的领域。正渗透(Forward osmosis,FO)是一种不需外加压力做驱动力,而仅依靠渗透压驱动的膜分离过程。正渗透膜分离技术与外加压力驱动的膜分离技术最大的区别就是正渗透膜分离技术不需要外加压力或在较低的外加压力下运行,并且膜污染情况相对较轻,在持续长时间运行后无需清洗。水处理中正渗透膜分离技术目前在国际上诸如美国、新加坡、欧洲等国家和地区已得到大量研究和应用。 二、水处理中正渗透膜分离技术的基本原理 正渗透是浓度驱动型的膜过程,它依靠选择性渗透膜两侧的渗透压差为驱动力来自发的实现水在膜中的传递。也就是指水从较高水化学势(或较低渗透压)一侧区域通过选择透过性膜流向较低水化学势(或较高渗透压)—侧区域的过程。在具有选择透过性膜的两侧分别放置两种具有不同渗透压的溶液,一种为具有较低渗透压的原料液(Feed solution),另一种为具有较高渗透压的驱动液(Draw solution),正渗透正是应用了膜两侧溶液的渗透压差作为驱动力,才使得水能自发地从原料液一侧透过选择透过性膜到达驱动液—侧。当对渗透压高的一侧溶液施加一个小于渗透压差的外加压力的时候,水仍然会从原料液压一侧流向驱动液—侧,这种过程叫做压力阻尼渗透(Pressure-retarded osmosis,PRO)。压力阻尼渗透的驱动力仍然是渗透压,因此它也是一种正渗透过程。水处理中正渗透膜分离技术应用正是基于这种原理。 三、水处理正渗透膜分离技术应用现状 正渗透膜过程,具有三低优势,即低压操作,低能耗和低污染,在水处理领域已得到了一定的应用。但是国内并不多见其应用报道,所以说应用不是很多,尽管如此,这一技术仍然具有很大的应用价值和光明的应用前景。如果要大范围普及正渗透膜分离技术,仍需做很多努力。包括了我国对正渗透膜分离技术研究不多,特别是在水处理应用上缺乏经验参数,这需要进行大量的实验,从而积累经验;目前所拥有的正渗透膜性能太低,品种不全、不优;缺少既经济又高效的汲取液体系和汲取液再浓缩途径。 鉴于水处理正渗透膜分离技术仍存在比较多的问题,在今后的研究和应用方面应该从这些方面的着手突破,极大推动正渗透技术在水处理中的广泛应用,以促进新一代水处理工艺的高效发展。总之,对水处理正渗透膜分离技术的研究,都应该围绕如何提高正渗透过程的水回收率、如何提高正渗透过程中的分离效率、以及如何降低正渗透过程的运行成本等方面进行。 四、水处理中正渗透膜分离技术应用领域

反渗透膜分离技术在城市污水处理中的应用

反渗透膜分离技术在城市污 水处理中的应用 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

摘要 国内外反渗透膜技术的发展概况,然后详细论述了反渗透膜分离技术。通过介绍反渗透的基本原理、反渗透装置型式、基本流程,以美国和日本采用反渗透处理生活污水为例,探讨了反渗透膜分离技术在城市污水处理中的应用情况,最后就其发展方向作出了初步地归纳和展望。 关键词:城市污水处理,膜分离技术,反渗透膜,实际应用,前景展望

引言 近来,物理化学处理技术、光照射技术及膜过滤技术已形成三大水处理技术。在这些技术中引人注目的是膜分离法污水处理技术[1]。膜分离是通过膜对混合物中各组分的选择渗透作用的差异,以外界能量或化学位差为推动力对双组分或多组分混合物的气体或液体进行分离、分级、提纯和富集的方法。而反渗透膜分离技术作为当今世界水处理先进的技术,具有清洁、高效、无污染等优点,已在海水淡化、城市给水处理、纯水和超纯水制备、城市污水处理及利用、工业废水处理、放射性废水处理等方面得到广泛的应用。 膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、萃取、沉淀、混凝和离子交换树脂等)相比较,过程中大多无相变化,可以在常温下操作,具有能耗低、效率高、工艺简单、投资小等特点。膜分离技术应用到污水处理领域,形成了新的污水处理方法,它包含微滤(MF)、超滤(UF)、渗析(D)、电渗析(ED)、纳滤(NF)、和反渗透(RO)等,本文仅对反渗透(RO)膜法对城市污水处理技术进行探讨。

一、反渗透膜发展概况 膜广泛的存在于自然界中,特别是生物体内。人类对于膜现象的研究源于1748年,但是人类对它的认识和研究则较晚。1748年,Abbe Nollet观察到水可以通过覆盖在装有酒精溶液瓶口的猪膀肌进入瓶中时,发现了渗透现象。然而认识到膜的功能并用于为人类服务,却经历了200多年的漫长过程。人们对膜进行科学研究则是近几十年来的事。其发展的历史大致为;30年代微孔过滤;40年代透析;50年代电渗析;60年代反渗透;70年代超滤和液膜;80年代气体分离;90年代渗透汽化[2]。 在国外,其发展概况为:1953年美国的Reid 提出从海水和苦盐水中获得廉价的淡水的反渗透研究方案,1960年美国的Sourirajan 和Leob 教授研制出新的不对称膜,从此RO作为经济的淡化技术进入了实用和装置的研究阶段。20世纪70年代初期开始用RO法处理电镀污水,首先用于镀镍污水的回收处理,此后又应用于处理镀铬、镀铜、镀锌等漂洗水以及混合电镀污水。1965年英国首先发表了用半透膜处理电泳涂料污水的专利。此后美国P.P.G公司提出用UF和RO的组合技术处理电泳涂料污水,并且实现了工业化。1972-1975年J J .Porter 等人用动态膜进行染色污水处理和再利用实验。1983年L.Tinghuis等人发表了用RO法处理染料溶液的研究结果。30年来,反渗透(RO)技术先后在含油、脱脂废水、纤维工业废水、造纸工业废水、放射性废水等工业水处理、苦咸水淡化、纯水和高纯水制备、医药工业和特殊的化工过程和高层建筑废水等各类污水处理中得到了广泛的应用。尤其是近几年,一些新型的膜法污水处理技术逐一问世,如膜蒸馏、液膜、膜生化反应器、控制释放膜、膜分相、膜萃取等[3]。 在我国,膜技术的发展是从1958年离子交换膜研究开始的。1958年开始进行离子交换膜的研究,并对电渗析法淡化海水展开了试验研究;1965年开始对反渗透膜进行探索,1966年上海化工厂聚乙烯异相离子交换膜正式投产,为电渗析工业应用奠定了基础。1967年海水淡化会战对我国膜科学技术的进步起了积极的推动作用。1970年代相继对电渗析、反渗透、超滤和微滤膜及组件进行研究开发,1980年代进入推广应用阶段。1980年代中期我国气体分离膜的研究取得长足进步,1985年中国科学院

渗透汽化膜分离法脱除汽油中有机硫化物的应用

渗透汽化膜分离法在脱除汽油中有机硫化物的应用 王雪1013207077 化学工艺13级博 渗透汽化技术又称渗透蒸发(Pervaporation,简称PV)技术作为一项新兴膜分离技术,以其高效、经济、安全、清洁等优点,在石油化工、医药、食品、环保等领域广泛应用,成为目前膜分离研究领域的热点之一。该技术用于液体混合物的分离,其突出的优点是能够以低的能耗实现蒸馏、萃取、吸附等传统方法难于完成的分离任务。它特别适用于蒸馏法难以分离或不能分离的近沸点、恒沸点混合物及同分异构体的分离;对有机溶剂及混合溶剂中微量水的脱除及废水中少量有机污染物的分离具有明显的技术和经济优势。 一、基本原理 渗透汽化是利用膜对液体混合物中各组分的溶解扩散性能的不同,实现组分分离的一种膜过程,见图1(a)。在渗透汽化过程中,料液侧(膜上游侧)通过加热提高待分离组分的分压,膜下游侧通常与真空泵相连,维持很低的组分分压,在膜两侧组分分压差的推动下,各组分选择性地通过膜表面进行扩散,并在膜下游侧汽化,最后通过冷凝的方式移出1。有机溶剂脱水渗透汽化分离的原理见图1(b)。 图1(a)Schematic diagram of pervaporation process2 图1 (b)有机溶剂脱水渗透汽化分离的原理

二、渗透汽化膜 1.有机膜 渗透汽化的主要作用元件是渗透汽化膜,膜的性能对渗透汽化过程有决定性的影响。渗透汽化膜按照功能可分为亲水膜、亲有机物膜和有机物分离膜3种。亲水膜又称为优先透水膜,其活性分离层又含有一定亲水性基团的高分子材料制成,具有一定的亲水性。目前应用最广泛的亲水性商品膜是GFT膜,其分离层是聚乙烯醇。在全球商业化的渗透汽化装置中,约90%的GFT膜都是由德国预案GFT公司及其相关单位开发的。目前已有相关学者开始研究亲水性膜在火箭燃料肼、不对称二甲肼和甲肼脱水过程中的应用3456。亲有机物膜又称优先透有机物膜,通常由低极性、地比表面积和溶解度参数小的聚合物(如聚乙烯、聚丙烯、有机硅聚合物、含氟聚合物、纤维素衍生物和聚苯醚等材料)制成。尽管亲有机物膜在渗透汽化膜分离过程中具有非常高的潜在应用价值,且世界范围内对该膜已有广泛研究,但目前能实现工业化应用的还很少。有机物分离膜可适用的分离体系多且性质差异大,膜材料的选择没有普遍规律,必须针对分离体系的物理化学性质进行选择和设计,主要有芳烃-烷烃分离膜、醇-醚分离膜以及同分异构体分离膜。 2.无机膜 相对于有机膜,无机膜具有优良的热稳定性、化学稳定性、机械稳定性、耐酸碱、微生物侵蚀和耐氧化性等优点。这些优点使无机膜的发展备受科技界的重视,具有非常广阔的应用前景7。无机膜按材料可分为陶瓷膜、合金膜、高分子金属配合物膜、分子筛膜和玻璃膜等。多孔无机膜的制备方法主要有:固态粒子烧结法、溶胶-凝胶(Sol-Gel)法、阳极氧化法、薄膜沉积法、分相法和水热合成法等。已经商品化的多孔膜主要是超滤和微滤膜,其制备方法以粒子烧结法和Sol-Gel法为主。粒子烧结法制备的膜孔径范围一般在0.1~10μm,适应于微孔过滤。目前已开发的商品化微滤膜主要有氧化铝膜、氧化钛膜和氧化锆膜。 Sol-Gel技术可以制备超滤范围的小孔径膜,目前采用该技术制备的已经商品化的超滤膜有氧化铝膜、氧化钛膜、氧化硅膜和氧化锆膜8。近年来,有关Sol-Gel 技术的研究主要集中在制备孔径小于2 nm的纳滤膜和气体分离膜。分子筛膜作为无机膜的一种,具有良好的热稳定性、化学稳定性和分离选择性。通过调节硅铝比可以调节分子筛膜的亲疏水性,如高硅铝比的MFI分子筛膜具有很强的疏水性,而低硅铝比的A分子筛膜具有很强的亲水性。另外,分子筛本身具有催化活性,通过分子筛膜可以从分子水平上实现分离和催化一体化;同时由于分子筛的孔径尺寸一定,所以在催化反应中具有择形性。这些优越性使得分子筛膜具有良好的应用前景。分子筛膜的种类很多,根据不同的应用目的选择不同的制备方法,其制备方法主要有原位水热合成法910、二次生长法1112131415、嵌入法1617和

正渗透水处理技术概要

正渗透水处理关键技术研究进展 [摘要]正渗透是一种新型的膜分离技术,其分离的驱动力来源于原料液和汲取液之间自然存在的渗透压差,近年来正渗透技术已在国际上得到广泛关注。简述了基于此技术的正渗透水处理过程的基本原理,指出了这种新型水处理过程的关键技术——正渗透膜和汲取液,根据各自的技术特点对其进行分类概述,并从实验室基础研究和技术的商业化进程两方面介绍了这两项关键技术取得的最新研究进展。从水通量角度对不同体系进行了简单比较,分析了各材料和方法的优缺点,并对它们的应用前景进行了展望。 [关键词]正渗透;水处理;汲取液;海水淡化 [中图分类号] TQ028.8 [文献标识码] A [文章编号] 1005-829X(2012)05-0005-05 Advance in the key techniques of forward osmosis water treatment Zhang Qian1,Shi Qiang2,Ruan Guoling1,Chu Xizhang1 Abstract: Forward osmosis(FO) is a kind of new membrane separation technique. Its driving force comes from the naturally existing osmotic pressure difference between feed solution and draw solution. Forward osmosis (FO) technology has become increasingly attractive internationally,in recent years. The basic principles of the FO water treatment are introduced and the key techniques of the new type of water treatment process-FO membrane and draw solution -are pointed out. According to their own technical characteristics,the key techniques are classified and summarized. The newest research progress in the key techniques is introduced from the aspects of fundamental research in labs and the schedule of technique commercialization. Different systems are compared simply from the angle of water flux. The advantages

渗透蒸馏、渗透汽化、分子蒸馏的异同

渗透蒸馏、渗透汽化、分子蒸馏的异同 渗透蒸馏,又称为等温膜蒸馏,是基于渗透与蒸馏概念而开发的一种渗透过程与蒸馏过程耦合的新型膜分离技术,它具有一般膜分离技术投资省、能耗低的优点,同时又能在常温常压下使被处理物料实现高倍浓缩,克服常规分离技术所引起的被处理物料的热损失与机械损失,特别适合处理热敏性物料及对剪应力敏感性物料,从而使渗透蒸馏在食品、医药及生化领域展示出广阔的应用前景。 分子蒸馏亦称短程蒸馏,其应用能解决大量常规蒸馏技术所不能解决的问题。分子蒸馏是一种特殊的液—液分离技术,依据分子运动平均自由程的差别,能使液体在远低于其沸点的温度下将其分离,特别适用于高沸点、热敏性及易氧化物质的分离。分子蒸馏进行时,液体混合物被加热,能量足够的分子逸出液面,轻分子的平均自由程大,重分子的平均自由程较小,若在离液面小于轻分子平均自由程而大于重分子平均自由程处设置一冷凝面,轻分子达到冷凝面后被冷凝,从而使其不断逸出;重分子达不到冷凝面,很快趋于动态平衡,这样就将混合物分离了。分子蒸馏技术的主要特点是其操作是在远低于沸点温度和很低的压强下进行操作的。 渗透汽化是以混合物中组分蒸汽压差为推动力,依靠各组分在膜中的溶解与扩散速率不同的性质来实现混合物分离的过程。渗透汽化装置包括预热器、膜分离器、冷凝器和真空泵等四个主要设备。料液进入渗透汽化膜分离器后,在膜两侧蒸汽压差的驱动下,扩散快的组分较多透过膜进入膜后侧,经冷凝后达到分离目的。 从诞生时间上说,渗透蒸馏、渗透汽化、分子蒸馏这三种技术均是新型的蒸馏分离技术,其中的分子蒸馏技术甚至是一项较新的尚未广泛应用于工业化生产的分离技术。其基本原理都是将沸点不同的液体气化从而达到液-液分离的目的,并利用了表面化学的原理,利用膜分离技术,增大了蒸馏分离的效率和分离出物质的纯度,节约了能源,提高了生产效率。 但是,这三种蒸馏技术也是有其独特特点和适用范围的。 一、渗透蒸馏过程及其特点 渗透蒸馏是指被处理物料中易挥发性组分选择性的透过疏水性的膜,在膜的另一侧被脱除剂吸收的膜分离操作,在通常情况下,被处理物料与脱除剂均为水溶液,渗透蒸馏过程能够 顺利进行是由于被处理物料中的易挥发组分在疏水膜的两侧存在渗透活度差,被处理液中的易挥发组分在疏水膜两侧的渗透活度相等,即蒸汽压力差不再存在时,则渗透蒸馏过程将停止进行。渗透蒸馏包括三个连续的过程:被处理物料中易挥发组分的汽化;易挥发组分选择的通过疏水性膜;透过疏水性膜的易挥发性组分被脱除剂所吸收。渗透蒸馏除了一般膜分离技术所具有的投资省、能耗低的特点以外,还具有优良的导热性能、适宜高倍浓缩及良好的选择性等。 二、分子蒸馏技术的特点: 分子蒸馏技术作为一种与国际同步的高新分离技术,具有其它分离技术无法比拟的优点: 1、操作温度低(远低于沸点)、真空度高(空载≤1Pa)、受热时间短(以秒计)、分离效率高等,特别适宜于高沸点、热敏性、易氧化物质的分离; 2、可有效地脱除低分子物质(脱臭)、重分子物质(脱色)及脱除混合物中杂质; 3、其分离过程为物理分离过程,可很好地保护被分离物质不被污染,特别是可保持天然提取物的原来品质; 4 、分离程度高,高于传统蒸馏及普通的薄膜蒸发器。 三、渗透汽化过程特点。 渗透汽化与反渗透、超滤及气体分离等膜分离技术的最大区别在于物料透过膜时将产生

相关主题
文本预览
相关文档 最新文档