渗透汽化技术
- 格式:doc
- 大小:86.41 KB
- 文档页数:6
渗透气化分离技术渗透气化分离技术是一种利用膜分离原理进行气体分离的技术。
它通过将气体分子通过膜的渗透和气体分子的化学反应来实现气体分离。
渗透气化分离技术具有高效、节能、环保等优点,因此在工业生产和环境保护等领域得到了广泛应用。
渗透气化分离技术的原理是利用膜的渗透性和选择性来实现气体分离。
膜的渗透性是指气体分子在膜上的渗透速率,而选择性是指膜对不同气体分子的选择性。
渗透气化分离技术的膜材料通常是聚合物、无机材料和复合材料等。
这些材料具有不同的渗透性和选择性,可以根据不同的气体分子进行选择。
渗透气化分离技术的应用非常广泛,主要包括以下几个方面:1. 工业生产领域。
渗透气化分离技术可以用于气体分离、纯化和回收等方面。
例如,可以将二氧化碳从天然气中分离出来,用于石油化工和食品工业等领域。
2. 环境保护领域。
渗透气化分离技术可以用于废气处理和污水处理等方面。
例如,可以将废气中的有害气体分离出来,减少对环境的污染。
3. 医疗领域。
渗透气化分离技术可以用于呼吸机和人工肺等医疗设备中。
例如,可以将氧气和二氧化碳分离出来,提高呼吸机的效率和安全性。
渗透气化分离技术具有高效、节能、环保等优点,但也存在一些问题。
例如,膜的选择性和稳定性需要进一步提高,膜的制备成本较高,膜的寿命较短等。
因此,需要进一步研究和发展渗透气化分离技术,提高其应用效果和经济效益。
总之,渗透气化分离技术是一种非常重要的气体分离技术,具有广泛的应用前景。
随着科技的不断进步和发展,相信渗透气化分离技术将会得到更广泛的应用和推广。
渗透汽化概述渗透汽化是一种将液体转化为气体的过程。
在物理学中,渗透汽化是液体通过半透膜向气相传导的现象。
在化学工程中,渗透汽化是一项用于分离混合物成分的操作。
本文将介绍渗透汽化的原理、应用领域和常见工艺。
原理渗透汽化的原理基于膜的渗透性能。
膜通常由聚合物或陶瓷材料制成,具有特定的孔隙结构和选择性。
当液体通过膜时,分子会依靠其大小和亲疏水性被膜孔隙所选择性地渗透。
相对较小的分子能够通过膜孔隙,而较大的分子则被阻拦。
渗透汽化的过程可以分为两个阶段:吸附和解吸。
首先,液体通过膜孔隙吸附到膜表面上。
然后,在施加适当的温度和压力条件下,液体分子会解吸并转化为气体。
应用领域渗透汽化已在许多领域得到广泛应用。
脱盐脱盐是渗透汽化的一个主要应用领域。
海水淡化是解决淡水短缺问题的关键技术之一。
通过将海水通过渗透汽化膜进行处理,可以去除其中的盐分和杂质,得到可用于农业灌溉、工业生产和居民生活的淡水。
废水处理渗透汽化也可以用于废水处理。
通过将废水通过渗透汽化膜进行处理,可以分离出其中的有机物、溶解性固体和重金属离子等污染物。
这种方法不仅能够减少水污染物的排放,还能够回收其中的可再利用资源,如有机物和水。
药物和酒精浓缩渗透汽化还可以用于药物和酒精的浓缩。
通过选择性渗透汽化,可以将溶液中的溶剂分离出来,使药物或酒精的浓度升高。
这种方法比传统的浓缩方法更加节能、环保。
气体分离除了液体分离外,渗透汽化还可以应用于气体的分离。
通过选择性渗透汽化膜,可以将混合气体中的特定成分分离出来。
这种方法在石油化工、天然气处理和空气分离等领域具有广泛的应用。
常见工艺渗透汽化的工艺通常包括以下几个步骤:1.前处理:液体进料通常需要经过预处理,去除其中的杂质和固体颗粒,以防堵塞膜的孔隙结构。
2.进料供应:液体需要以适当的速度和压力供应到渗透汽化设备中。
3.温度和压力控制:通过控制进料液体的温度和压力,使液体分子能够在膜孔隙中吸附和解吸。
4.液体和气体分离:通过将液体和气体分离,可以得到纯净的气体产品。
&第十章渗透汽化第一节概述一、渗透汽化的发展概况早在1917年Kober在他发表的一篇论文中第一个使用了渗透汽化(Pervaporation)这个词。
该文介绍了水从蛋白质-甲苯溶液通过火棉胶器壁的选择渗透作用。
但长期以来,由于未找到渗透通量高和选择性好的渗透蒸发膜材料,渗透蒸发过程一直没有得到应用。
直到上世纪50年代以后,对渗透汽化的研究才较广泛展开。
其中Binning等人对渗透蒸发过程进行了较系统的学术研究,发现了渗透蒸发过程潜在的工业应用价值,并于60年代在渗透汽化膜、组件和装置制造上申请了专利。
70年代后期至80年代初,随着对能源危机问题的日益重视,渗透汽化的优点又重新引起学术界和技术界的兴趣,德国GFT公司在欧洲首先建立了乙醇脱水制高纯酒精的渗透蒸发装置。
到90年代初已有100多套渗透蒸发装置相继投入应用。
除了用于乙醇、异丙醇脱水外,还用于丙酮、乙二醇、乙酸等溶剂的脱水。
我国在1984年前后开始对渗透汽化过程进行研究,主要工作集中在优先透水膜的研制与醇水溶液的脱水。
近年来主要开展优先透有机物膜、水中有机物脱除、有机物-有机物分离以及渗透汽化与反应耦合的集中过程的研究。
二、渗透汽化的分类渗透汽化是以混合物中组分蒸汽压差为推动力,依靠各组分在膜中的溶解与扩散速率不同的性质来实现混合物分离的过程。
渗透汽化装置包括预热器、膜分离器、冷凝器和真空泵等四个主要设备。
料液进入渗透汽化膜分离器后,在膜两侧蒸汽压差的驱动下,扩散快的组分较多透过膜进入膜后侧,经冷凝后达到分离目的。
按照形成膜两侧蒸汽压差的方法,渗透汽化主要有以下几种形式:1.减压渗透汽化:膜透过侧用真空泵抽真空,以造成膜两侧组分的蒸汽压差。
在实验室中若不需收集透过侧物料,用该法最方便。
2.加热渗透汽化:通过料液加热和透过侧冷凝的方法,形成膜两侧组分的蒸汽压差。
一般冷凝和加热费用远小于真空泵的费用,且操作也比较简单,但传质动力比第一类小。
渗透汽化与蒸汽渗透技术辨析渗透汽化技术(pervaporation, PV)是一种新兴的膜分离过程,利用组分在膜内的溶解速度和扩散速度的不同,在液体混合物中组分蒸汽分压差的推动下实现分离。
该技术已在有机物脱水领域实现了工业化应用,并且对于痕量水或有机物的移除过程具有良好的应用前景。
图1 渗透汽化过程示意图渗透汽化技术最早由Kober于1917年在研究水通过火棉胶器壁从蛋白质/甲苯溶液中选择渗透时提出。
20世纪60年代,渗透汽化技术的研究取得了较大的发展。
我国于20世纪80年代初开始对渗透汽化技术进行研究。
渗透汽化技术的分离原理普遍认为是溶解扩散原理,其机理如图2所示。
图2 溶解扩散示意图蒸汽渗透技术(Vapor permeation,简称VP)是上世纪80年代末由Uragami 等首次提出,其分离原理、设备流程以及所用的膜与PV技术较为相似,容易让初学者对二者产生混淆。
因此,本文主要介绍两种技术的本质区别。
蒸汽渗透技术的原理示意图如图3所示。
图3 蒸汽渗透过程原理示意图从操作上,VP技术是以蒸汽进料,这是与PV技术本质上的不同,而且正是如此,二者在应用过程中所表现出的优势与缺点也有显著的区别。
对于PV过程,由于液相与膜直接接触,因此料液对于膜的影响不容忽视1. 料液容易在膜表面或膜内累积,从而造成污染,使膜的通量和分离因子大幅下降;2. 对于一些粘度较大体系的分离过程,待分离物质首先传递到膜表面再透过致密膜到达膜的另一侧,其中,该组分在液相的扩散速率较慢,从而导致物质在膜表面处的浓度低于主体浓度,使通量和分离因子较理论值下降较大,即浓差极化现象,其本质是组分在液相中的扩散系数较小引起的;3. 对于一些强酸强碱等苛刻条件下的分离过程,膜的结构容易被破坏从而导致PV过程难以进行。
此外,PV过程更多与化学反应或生物过程耦合使用,由于膜器的内部流道狭窄,需要采用外置式设备以扩大膜的分离通量。
若将PV技术与生物过程耦合,则为设备的消毒带来较大困难,实际生产过程中易引入杂菌。
2024年渗透汽化膜市场规模分析渗透汽化膜是一种重要的膜分离技术,常用于海水淡化、废水处理和化工行业等领域。
本文将对全球渗透汽化膜市场的规模进行分析。
1. 市场概述渗透汽化膜技术是一种将溶液分离成纯净水和浓缩溶液的膜分离过程。
相比传统的热蒸馏方法,渗透汽化膜具有能耗低、操作简便等优势,因此在市场上得到了广泛的应用。
2. 市场规模根据市场研究数据,全球渗透汽化膜市场在过去几年保持着快速增长的趋势。
据预测,到2025年,全球渗透汽化膜市场的规模将达到X亿美元。
3. 市场驱动因素渗透汽化膜市场的增长受到多个因素的驱动。
首先,全球水资源的短缺问题促使各国加大对水资源的开发和利用,渗透汽化膜技术作为一种高效的水处理方法,得到了广泛的应用。
其次,化工行业和制药行业的发展也推动了渗透汽化膜市场的增长,这些行业对水质的要求较高,需要使用渗透汽化膜进行处理。
4. 市场分析根据产品类型,渗透汽化膜市场主要分为反渗透膜和纳滤膜两大类。
其中,反渗透膜在市场中占据较大的份额,在海水淡化、废水处理等领域得到了广泛应用。
根据应用领域,渗透汽化膜市场可以细分为海水淡化、废水处理、食品饮料、制药和生物技术等多个领域。
其中,海水淡化领域是渗透汽化膜市场的主要应用领域之一,随着全球淡水资源的短缺,海水淡化技术将会得到更广泛的应用。
5. 市场前景随着全球水资源的日益紧张和工业发展的推动,渗透汽化膜市场的前景十分广阔。
预计未来几年将会有更多的投资进入该市场,并推动技术的进步和产品的创新。
同时,渗透汽化膜技术也将在更多领域得到应用。
6. 结论综上所述,全球渗透汽化膜市场在未来将呈现出较大的增长潜力。
市场规模将持续扩大,并在水处理、化工和制药等领域发挥重要作用。
企业应抓住机遇,加大研发投入,提高产品质量和创新能力,以满足市场需求。
渗透汽化膜工作原理
渗透汽化膜是一种介于反渗透和微滤之间的膜分离技术,具有选择性高、能耗低、易于操作等特点,能除去水中的离子、细菌和生物大分子,在食品加工领域得到了广泛的应用。
其基本工作原理是:当半透膜两侧溶液中的溶质分子在半透膜两侧都存在时,溶液中的部分溶剂分子可以穿过半透膜而在膜内扩散。
当溶质分子通过半透膜时,一部分溶剂分子会扩散到溶质内,并溶解在溶质内,称为扩散作用。
而渗透液中的部分溶剂分子会穿过半透膜而到达半透膜外,称为渗透作用。
当半透膜两侧的溶液中有某种溶质存在时,半透膜将这个溶质吸收到溶液中,称为扩散作用。
由于渗透和扩散作用的存在,在渗透汽化过程中,使水中的离子、分子、小分子和生物大分子通过半透膜向另一端扩散。
因此渗透汽化可去除水中的有机物、色素、微生物和细菌等。
同时利用渗透汽化可分离出大量的可溶性盐和溶解性糖。
对盐浓度较高或较低的溶液来说,渗透汽化能分离出大量盐。
在一定的压力下,水分子能够透过半透膜而进入溶液中。
—— 1 —1 —。
膜分离技术之渗透汽化渗透气化法是一种用来分离液体混合物的膜分离方法。
渗透气化(pervaporation即permeation-Vaporation)是膜分离技术中较年轻的一种, 是继气体膜分离后又一新的化工操作单元。
被认为是可以代替“ 精馏”最有希望的一种方法, 尤其对共沸物系和近沸物系等难分物系的分离, 显示特有的优越性。
渗透气化法根据溶质间透过的相互作用决定溶质的渗透速度,根据相似相溶的原理,疏水性较大的溶质易溶于疏水膜,因此渗透速度高,在透过一侧得到浓缩。
渗透气化过程中溶质发生相变,透过侧溶质以气体状态存在,因此消除了渗透压的作用,从而使渗透气在较低的压力下进行,适于高浓度混合物的分离。
渗透气法利用溶质之间膜透过性的差别,特别适用于共沸物和挥发度相相差较小的双组分溶液的分离。
例如,利用渗透气化法溶缩乙醇。
因此,渗透气化又称膜蒸渗透气化又称膜蒸馏。
渗透汽化可经济地用于较宽的领域, 但浓度范围有一定限制, 如料液中要脱除者在100ppm以下, 用活性炭吸附可能较便宜;同样, 若大于5%~10%,则精馏, 吹除等法可能仍较渗透汽化为便宜, 而中间区域100ppm~5%之间,渗透汽化法较有优势, 可有不少重要的用途。
当前渗透气化主要有三方面应用,即溶剂脱水, 水的纯化以及有机物一有机物的分离。
现已大规模工业应用的只有乙醇脱水和异丙醇脱水, 由于乙醇一水, 异丙醇一水都有共沸物, 难以普通精馏分离, 用此方法比传统方法—萃取精馏等大量节约能量, 很受重视。
其它方面的应用正在不断开发, 特别是有机物/有机物的分离列为膜分离中重要研究课题的第一项, 也是因为它能代替或部分代替精馏。
精馏为重要的操作单元, 但也是高能耗操作单元, 据美国能源部统计报导,美国化学工业和石油炼制工业中的28%能耗为精馏所用, 认为如果用渗透汽化技术, 只要能节约10%就非常可观了。
根据上述当前应用的主要方面, 渗透汽化技术未来的应用潜在势头可观。
渗透气化分离技术概述渗透气化分离技术是一种用于分离气体混合物的先进技术。
它利用渗透膜的选择性通透性,将气体混合物中的不同成分分离出来。
在渗透过程中,高浓度组分会渗透透过膜而被分离出来,而低浓度组分则通过膜的另一侧排出。
工作原理渗透气化分离技术的工作原理基于气体分子在膜上的渗透活动。
渗透膜通常是由聚合物或陶瓷材料制成,并具有特定的孔径和渗透性能。
当气体混合物进入渗透装置时,其中的成分会受到膜的作用而产生渗透。
具有较高渗透性的组分将通过膜透过,而较低渗透性的组分则无法透过膜。
应用领域渗透气化分离技术在许多领域都有广泛的应用。
以下是一些常见的应用领域:1. 气体分离渗透气化分离技术被广泛用于分离气体混合物中的不同成分。
例如,在空气中分离出氧气和氮气,或者从天然气中分离出甲烷和乙烷等。
2. 气体纯化渗透气化分离技术可以用于气体纯化,去除气体混合物中的杂质和污染物。
例如,在工业生产过程中,通过渗透气化分离技术可以从废气中去除有害物质,达到净化空气的效果。
3. 气体浓缩渗透气化分离技术还可以用于气体浓缩,提高气体的浓度。
例如,在氢气生产中,可以使用渗透气化分离技术将氢气从其他气体中分离出来,提高氢气的纯度和浓度。
4. 能源生产渗透气化分离技术在能源生产中也有重要应用。
例如,在煤气化过程中,可以使用渗透气化分离技术分离出含有高浓度氢气的气体,作为燃料电池或其他能源设备的供应。
渗透气化分离技术的优势渗透气化分离技术相对于传统的分离方法具有以下几个优势:1.高效性:渗透气化分离技术可以在常温下进行,无需高温或高压条件,从而提高了分离效率和能源利用效率。
2.选择性:渗透膜可以根据不同气体分子的大小、极性和渗透性等特性进行设计,以实现对特定组分的选择性渗透和分离。
3.连续性:渗透气化分离技术可以实现连续操作,适用于大规模生产和工业化应用。
4.环保性:相比传统的化学吸附和蒸馏方法,渗透气化分离技术无需使用大量化学试剂,减少了环境污染和废弃物处理的成本。
渗透汽化膜渗透汽化膜是一种新型的分离膜技术,主要用于分离溶液中的溶质和溶剂。
该技术基于渗透原理,通过对溶液进行增压处理,使其在膜表面形成薄膜,当薄膜中的溶质与溶剂达到平衡时,溶质就能通过膜表面释放出来,实现分离和浓缩效果。
渗透汽化膜的主要特点是可以分离高粘度、高含固体、高含有机物的液体,同时能够节能、环保、成本低廉。
在工业中应用广泛,主要用于污水处理、化工、食品加工等领域。
以下介绍该技术的原理、应用、优势以及发展趋势。
渗透汽化膜技术的原理渗透汽化膜技术基于渗透原理,通过利用膜的微小孔隙来实现分离和浓缩效果。
当溶液在膜表面形成薄膜时,溶质分子将随着溶剂分子一同被压入膜孔隙中,并在膜内部和膜表面之间形成浓度差。
由于渗透膜孔隙的限制作用,溶质分子难以穿过孔隙,而溶剂分子可以通过膜的微孔,渗透到膜孔的另一侧。
随着不断的溶剂通量,膜表面的浓度差增大,最终形成浓缩液和淡化液的两个区域。
在渗透汽化膜中,通过对淡化液进行脱压处理,使其从膜孔中释放出来,实现溶液中溶质分离的效果。
渗透汽化膜技术的应用渗透汽化膜技术在工业中应用广泛,主要应用于以下领域:1. 污水处理。
渗透汽化膜可以用于处理含有色素、脂肪、蛋白质等高浓度有机物的污水,具有高效、低能耗、易于操作、占地面积小等优点。
2. 化工。
渗透汽化膜可以用于处理液态化工原料和产品中的杂质,如有机溶剂、酸碱性废水等,具有高效、低能耗、占地面积小等优势。
3. 食品加工。
渗透汽化膜可以用于提取高浓度果汁、浓缩牛奶等,具有节能、环保、操作简便、成本低等优点。
渗透汽化膜技术的优势渗透汽化膜技术相比传统分离技术,具有以下优点:1. 高效。
渗透汽化膜的分离效率高,可以分离高浓度、高粘度、高含固体等液体,同时可以快速、高效地进行浓缩和分离。
2. 节能。
渗透汽化膜技术所需的能量较低,且可以回收部分能量,能够降低生产成本。
3. 环保。
渗透汽化膜技术对环境的影响较小,可以有效地减少有害废物排放量,符合现代化企业环保要求。
渗透汽化技术(PV)的应用杨丽琴、阴秋萍摘要:综述了渗透汽化膜传递理论研究的现状,叙述了渗透汽化膜分离技术的基本原理及传质过程的机理,叙述了渗透汽化过程的进展,叙述了渗透汽化分离水中微量有机物及其在化工生产上的应用进行了介绍. 关键词:渗透汽化;传递理论;原理;膜组件;脱水膜;应用1 引言渗透汽化(pervaporation,简称PV)是一种新型膜分离技术。
该技术用于液体混合物的分离,其突出的优点是能够以低的能耗实现蒸馏、萃取、吸收等传统方法难以完成的分离任务。
它特别适用于蒸馏法难以分离或不能分离的近沸点、恒沸点混合物以及同分异构体的分离;对有机溶剂及混合溶剂中微量水的脱除及废水中少量有机污染物的分离具有明显的技术上和经济上的优势;还可以同生物及化学反应耦合,将反应生成物不断脱除,使反应转化率明显提高。
所以,渗透汽化技术在石油化工、医药、食品、环保等工业领域中具有广阔的应用前景及市场。
它是目前处于开发期和发展期的技术,国际学术界的专家们称之为21世纪最有前途的高技术之一。
2 渗透汽化膜分离技术2. 1 基本原理渗透汽化是利用致密高聚物膜对液体混合物中组分的溶解扩散性能的不同实现组分分离的一种膜过程(如图1-1所示)。
液体混合物原料经加热器加热到一定温度后,在常压下送入膜分离器与膜接触,在膜的下游侧用抽真空或载气吹扫的方法维持低压。
渗透物组分在膜两侧的蒸汽分压差(或化学位梯度)的作用下透过膜,并在膜的下游侧汽化,被冷凝成液体而除去。
不能透过膜的截留物流出膜分离器。
2. 2 PV膜过程的特点(1) PV最突出的特点是分离系数大,单级即可达到很高的分离效果;(2) PV分离过程不受组分汽.液平衡的限制,适用于精馏等传统方法难以分离的近沸物和恒沸物的分离;(3) PV过程中透过物虽有相变,但因透过量较少,汽化与随后的冷凝所需能量不大;(4) 便于放大及与其它过程耦合或集成;(5) 能耗低,一般比恒沸精馏法节能1/2~1/3。
2.3 渗透汽化过程传递机理PV是同时包括传质和传热的复杂过程,对于其传递过程机理的描述有多种模型,许多研究者提出了很多理论和数学模型,如不可逆热力学模型(Non-EquilibriumThermoDynamic Model)、微孔模型(Fmely·PommModel)、优先吸附一毛细管流模型(PreferentialSorption-CapillaryFlowModel)、溶解—扩散模型(Solmion-DiffusionModel)等,其中以溶解-扩散模型来描述PV传质过程的最为普遍。
一般认为PV全过程分为三步,其示意图如图1-2所示。
(1) 液体混合物在膜表面的选择性吸附,此过程与分离组分和膜材料的热力学性质有关,是热力学过程;(2) 溶解于膜内的组分在膜内的扩散,涉及到速率问题,是动力学过程;(3) 渗透组分在膜下游的汽化,膜下游的高真空度使得这一过程的传质阻力可以忽略。
Pv分离过程主要通过前两步的传递竞争实现。
3 渗透汽化膜分离技术的进展3. 1 与其它分离技术的集成渗透汽化过程已经成功地应用于许多工业过程中,但在许多情况下,单独应用渗透汽化系统并不是最佳的选择,而渗透汽化过程和其它过程的集成则可以充分发挥这些过程的优势,提高过程的经济性。
目前,集成过程研究最多、应用最成功的主要有2类,即PV与精馏过程集成和PV与反应过程集成。
PV与精馏集成,可用于羟酸酯生产中分离羟酸酯/ 羟酸/ 醇恒沸物,二甲基碳酸酯生产中分离二甲基碳酯/ 甲醇恒沸物,无水乙醇生产中分离乙醇/水恒沸物,甲基叔丁基醚生产中分离醇/ 醚/ C4恒沸物等。
PV与反应过程集成可促进酯化反应,如乙酸丁酯、油酸正丁酯、二乙基油石酸、二甲基脲、戊酸乙酯的生产等,可促进生化反应,如发酵法制乙醇及制乳酸中产物与底物的分离。
3. 2 工艺的改进浙江大学的陈欢林等提出了连续渗透汽化级联工艺的计算方法,还对过程设计与装置的运行结果进行了比较,所提出的级联逐板计算方法,能用于醇水混合物渗透汽化膜分离的工业过程放大设计。
黄元明等根据VC开发出渗透汽化级联计算软件。
该软件可以有效应用于醇水混合物渗透汽化膜分离的工业设备的设计。
阎建民等利用酯化反应动力学方程,依据渗透汽化分离过程的内在规律,并考虑蒸馏对脱水的作用,建立了新的耦合酯化过程的动力学模型,从而可以从理论上分析渗透汽化结合传统的蒸馏方式用于酯化反应脱水的过程。
3. 3渗透汽化膜反应器渗透汽化膜反应器(pervaporatio n membrane reactor简称PVM R)是一种将膜组件以一定形式耦合到反应过程中,并通过渗透汽化打破反应平衡以获得更高收率和反应速率的新型、高效反应器。
它集反应和分离于一体,不仅节约了能耗,还提高了反应收率,缩短了反应时间。
但是到目前还没有大规模地应用到生产中,这主要有以下2个关键技术还没有解决好:一是膜的制备问题。
首先,均匀、无缺陷的膜薄层制备技术不成熟。
其次,现有的膜在反应的多元体系中没有很好的渗透汽化性能和足够的稳定性。
无论是有机膜还是无机膜都存在这个缺陷。
膜材料不过关是渗透汽化膜反应器没有工业应用的最主要的因素,需要更深入地研究开发,改进膜的性能使其更适应复杂的反应体系。
二是膜组件与反应的耦合问题。
对于特定的反应体系,应该选择相应类型的渗透汽化膜反应器。
选择的工作就是研究在各类膜反应器中反应的动力选择的工作就是研究在各类膜反应器中反应的动力学和热力学,再结合其它工程因素评价出收率高、耗能少的膜组件与反应器的最佳耦合方式。
这是一项复杂的工作,由于缺少理论研究和实践经验,目前还没有一个成熟的通用模式来简化这个过程。
因此,怎样将膜组件耦合到反应中才最节能、最有效同样需要更多的实验性研究工作。
4 渗透汽化技术的应用4. 1 渗透汽化分离水中微量有机物分离水中微量有机物是渗透汽化过程很重要的应用领域之一。
分离体系分为挥发性有机物(VOC)水溶液和难挥发性有机物水溶液两大类。
有机物优先透过膜主要在如下三领域中有广泛的应用:4.1.1 有机物优先透过膜在净化水源的应用:有机液优先透过PV膜分离技术大多应用于常规的蒸馏、精馏、吸附或其他膜分离法难于奏效或处理成本太高的有机液/水分离场所。
有机物是环境的重要污染源之一,如造纸厂和石油化工厂都会放出大量的含酚废水。
由于酚是一个高沸点物质,因此蒸馏等方法难以将它去除,而使用膜法则可将水中酚含量从O.08wt%降至O.007wt%,如果将PV过程和反渗透过程结合起来,则可将酚含量降至O.002wt%以下咖。
又如,饮用水往往用氯气消毒,而含有微量有机物的水经氯气处理后会产生致癌物质,因此,应当尽可能地除去饮用水中的微量有机物。
4.1.2 有机物优先透过膜在生物发酵中的应用:在生物发酵制取乙醇的过程中,当发酵液中乙醇含量达到一定限度(10wt%),会严重抑制发酵过程的进行。
如使用乙醇优先透过的PV 膜连续不断地从发酵罐中分离乙醇,使发酵液保持低醇含量,可保证生产过程一直维持在高效状态。
4.1.3 有机物优先透过膜在有机物的回收中的应用:渗透汽化作为一种新兴的膜分离技术以其他分离技术无法比拟的优势逐渐在食品工业中得以应用,并取得了良好的进展。
在食品工业领域如酒精饮料加工业、果汁加工业和食品成分分析等领域均能体现优势。
芳香性有机物对热特别敏感,在传统的果汁浓缩过程中,由于加工过程所采取的蒸发操作以及热处理往往造成芳香性组分的物理和化学方面的损失。
渗透汽化技术在常温下进行可以避免芳香性物质的损失。
4. 2 渗透汽化膜分离技术在化工生产上的应用渗透汽化技术在化工生产上的应用十分广泛,主要用于有机溶剂的脱水、水中少量有机溶剂的脱除和有机/ 有机混合物的分离4.2.1 有机溶剂及混合溶剂的脱水首个渗透汽化的中试装置是用于发酵乙醇产品的脱水。
1985年,第一个用于化学工业乙酸乙酯脱水的设备投入运行。
目前,渗透汽化已广泛用于醇类、酮类、醚类、酯类、胺类等有机水溶液的脱水(例如润滑油生产中脱蜡溶剂的脱水) ,为这类有机溶剂的生产提供新的经济有效的方法。
用于其它含少量水的有机溶剂(如苯、含氯的烃类化合物)中少量水的去除有更大的优势。
该技术在有机水溶液脱水方面潜在市场很大。
4.2.2 废水处理及溶剂回收水中少量有机物的脱除从废水中除去少量有机物,目的是解决环境污染问题。
可处理的污染物有苯、甲苯、酚、氯仿、三氯乙烷、丙酮、甲乙酮、醋酸乙酯等。
用有机物优先透过膜使少量有机物透过,可使水中有机物含量符合过膜使少量有机物透过,可使水中有机物含量符合排放标准,且整个过程的能耗很低。
对于回收有机水溶液中含1 %~5 %的有机溶剂,传统的方法是精馏或萃取,利用渗透汽化与传统方法结合回收溶剂,总操作费用为单纯精馏的1/ 2~2/ 3 ,整个生产装置的总投资比传统的分离方法省20 %~60 %。
4.2.3 有机/ 有机混合物的分离化工生产中有大量的有机混合物需要分离,有相当一部分有机混合物是恒沸物、近沸物及同分异构物。
用普通的精馏方法不能分离或难于分离,用恒沸蒸馏或萃取精馏需加入第三组分,这不但使分离过程复杂化,设备投资增加,能耗及操作费用上升,而且不可避免第三组分(共沸剂或萃取剂)的损失及对产品的污染。
用PV法具有过程简单、能耗低、投资及操作费用省、无污染等优点,因此,有机混合物分离是PV技术中节能潜力最大的应用,代表性的有醇与醚、芳烃与烷烃、烷烃与烯烃的分离。
如果这些应用取得突破性的进展,成功地应用于工业生产,那么,许多高能耗的工艺将会被此项技术所取代或部分取代,在化学工业中将产生举足轻重的影响。
4. 3 渗透汽化集成过程渗透汽化过程的研究和应用,已从有机物中脱水发展到水中脱除有机物杂质以及有机物间的分离。
考虑到渗透汽化在工业应用中的经济效益,一般将其与其它过程相集成,充分发挥渗透汽化的高效分离性能,做到扬长避短,达到优化的目的。
目前,基于渗透汽化的集成过程,正在进行大量的研究和开发利用。
4.3.1 渗透汽化一精馏集成过程渗透汽化与精馏集成技术相对比较成熟,采用此技术生产无水酒精,相较于传统工艺,省去了恒沸精馏塔和溶剂回收塔。
R.Rautenbach.研究发现,当料液浓度为50wt%时,对不同的生产能力和产品醇的纯度要求,集成工艺工程比传统的精馏一恒沸精馏工艺节省费用10%~60%。
萃取精馏与PV一精馏两种方法处理EtOH/水共沸物的经济性进行了比较,结果表明,在同样情况下,将酒精纯度由94wt%升至99.8wt%,每吨酒精的生产费用,萃取精馏为62—89马克,而PV-精馏方法仅为22—30马克。
目前,已有采用大规模的渗透汽化与精馏结合装置f2卯,生产无水酒精。
另外,也有进行渗透汽化与精馏集成过程生产无水异丙醇(Isopropanol,简称IPA)的研究。