2018杭州市初中毕业升学模拟考试数学试题(卷)与答案解析
- 格式:doc
- 大小:324.50 KB
- 文档页数:13
2018年浙江省杭州市萧山区小升初数学模拟试卷(7)一、填空题1.据杭州市假日办统计,2019年春节黄金周七天全市共接待中外游客4718706人次,读作,改写成用“万”作单位是万人次.2.27:36==<小数>=%=折3.5.03公顷=公顷平方米12时24分=时4.一堆吨煤,若每次用吨,次用完;若每次用它的10%,次用完.5.有7张卡片,上面分别写着2﹣8这7个数,任意摸出一张,摸到质数的可能性是.要使摸到奇数和偶数的可能性就一样大,要再加入1张数卡片.6.某小区的花园,长150米,宽40米.在小区平面图上用30厘米表示花园的长,则该图的比例尺是.平面图上,花园的面积是平方厘米.7.如图,两个长方形重叠放在桌上,阴影部分的面积是4平方厘米,是大长方形面积的,是小长方形的,则大长方形和小长方形面积的最简整数比是:,它们的面积是平方厘米.8.一个圆柱和一个圆锥等底等高,它们的体积相差28立方厘米,则圆柱的体积是立方厘米,已知圆锥的高是6厘米,则圆锥的底面积是平方厘米.9.小明有红、黄、蓝、绿、白、黑六种颜色的袜子各2双,每天穿一双同种颜色的袜子,一周至少有天穿的袜子颜色相同.闭上眼睛取袜子,小明一次至少要取出只,才能保证其中有两只袜子是同一种颜色的.10.依据图中的规律,在括号内填上适当的分数.二、判断题(在括号内打“√”或“×”).11.周长相等的两个圆,面积也一定相等.(判断对错)12.为了能清晰地显示一盒牛奶中各种成分的含量,应该选用扇形统计图.(判断对错)13.甲所在小组的平均身高是1.56米,乙所在小组的平均身高是1.48米,甲一定比乙高..(判断对错)14.A小学的女生人数占全校学生人数的48%,B小学的女生人数占全校学生人数的57%,所以,A小学的女生人数比B小学多.(判断对错)15.虾条包装上标着:净重(260±5克),所以每袋最少必须不少于260克.(判断对错)三、选择题16.在一座桥梁旁,有地块限重的交通标志牌(如图).被空中的飞鸟遮挡的字母应该是()A.km B.kg C.t D.L17.成年人的足长与身高的比大约是1:7.某小区发生盗窃事件,在犯罪现场有一个长24厘米的足印.经过侦查,锁定了四名犯罪嫌疑人.根据信息,这四人中,嫌疑最大的是()A.刘一182厘米B.赵六176厘米C.王五158厘米D.吴九169厘米18.两个数既是合数,又是互质数,而且最小公倍数是120,符合这些条件的两个数是()A.12和10B.3和40C.8和15D.4和3019.把3,4.5,5,7.5这四个数组成比例,其内项的积是()A.13.5B.22.5C.33.75D.37.5四、基本技能20.直接写出得数1.3+4.97=13.75﹣7.5=0.72=6÷13=6﹣=+= 5.4×=÷=0.25×24=8:80%= 3.14×52=8÷0.8÷1.25=35×20%=32×101=×99+=4×÷4×=21.递等式计算360÷18×7﹣120(7.9+47.5÷1.9)÷0.7×(4﹣÷80%)22.简便计算(要求写出简算过程)25×+74×40%+0.425×3.2×1.252019×23.解方程或解比例x﹣75%x=2414:x=:0.758x+6×0.7=9五、操作题24.(1)画出三角形ABC绕A点逆时针旋转90°后的图形.(2)画出三角形ABC以1:2的比例缩小后的图形.六、图形计算25.求阴影部分的周长(单位:厘米)26.如图是在圆柱里挖去一个圆锥,求它的体积(单位:厘米)七、看图填空27.某校六(1)班学生对全年级“我最喜欢的文艺节目”进行小调查,统计结果如图.(1)喜欢歌曲的人数占全年级的%,喜欢其他节目占全年级的%.(2)喜欢小品的学生有40人,那么六年级一共有人,喜欢杂技和相声的共有人.八、综合应用28.王叔叔买了一辆价值16000元的摩托车.按规定,买摩托车要缴纳10%的车辆购置税.王叔叔买这辆摩托车一共要花多少钱?29.淘淘和爷爷去操场上散步.操场一圈是400米,淘淘走一圈需要8分钟,爷爷走一圈需要10分钟.如果两人同时从一个地方出发,相背而行,相遇时他们都走了多少分钟?30.校服厂原来做一套校服,用布需要2米,现在改进了裁剪方法,每套节约用布一成,原来做120套这样的校服所用的布,现在至多可以做多少套?31.方方买了一幅超大拼图,第一天拼了整幅的,第二天在爸爸的帮助下完成了整幅的30%,还剩下575块没有拼好.这幅拼图一共有多少块?32.鹏鹏模仿“曹冲称象”来称重.鹏鹏站到一只小船上,船下沉了0.4厘米;换成他爸爸站到船上时,船下沉了0.7厘米.已知鹏鹏的体重约是38千克,那么爸爸的体重约是多少千克?(用比例解决)33.某森林公园里有樟树48棵,比松树的还少60棵.公园里松树有几棵?(用方程解)34.张师傅加工一批零件,完成的个数与零件的总个数的比是1:3.如果再加工15个,完成的个数与零件的总个数的比就变成了1:2.这批零件共有多少个?35.如图,在一个底面直径是20厘米的圆柱形水槽中,浸没着一个底面半径是5厘米的圆锥,取出圆锥后,发现水面下降2厘米.这个圆锥的高是多少?36.某商场进行家电促销,购物金额超过200元,超过部分六折优惠.现价500元的电饭锅,原价是多少元?37.如图,在一个棱长为20cm的正方体密闭容器的下底一个实心圆柱体,容器内盛有m升水时,水面恰好经过圆柱体的上底面.如果将容器倒置,圆柱体有8cm露出水面.已知圆柱体的底面积是正方体底面积的,求实心圆柱体的体积.2018年浙江省杭州市萧山区小升初数学模拟试卷(7)参考答案与试题解析一、填空题1.【解答】解:4718706读作:四百七十一万八千七百零六;4718706=471.8706万.故答案为:四百七十一万八千七百零六,471.8706.2.【解答】解:27:36==0.75=75%=七五折.故答案为:16,0.75,75,七五.3.【解答】解:(1)5.03公顷=5公顷300平方米(2)12时24分=12.4时.故答案为:5,300,12.4.4.【解答】解:(1)÷=4(次)(2)1÷10%=10(次)答:一堆吨煤,若每次用吨,4次用完;若每次用它的10%,10次用完.故答案为:4,10.5.【解答】解:(1)2﹣8这些数中,质数有2、3、5、7共4个;所以摸到质数的可能性是:4÷9=.(2)2﹣8这些数中,偶数有2、4、6、8共4个,奇数有3、5、7共3个,要使摸到奇数和偶数的可能性就一样大,那么偶数与奇数的个数一样,4﹣3=1;所以,再加上1张奇数卡片.故答案为:,奇.6.【解答】解:150米=15000厘米,40米=4000厘米,30:15000=1:5004000×=8(厘米)30×8=240(平方厘米)答:这幅图的比例尺是1:500,平面图上,花园的面积是240平方厘米.故答案为:1:500,240.7.【解答】解:6×4=24(平方厘米)4×4=16(平方厘米)24:16=6:4=3:224+16=40(平方厘米)答:则大长方形和小长方形的最简整数比是3:2,它们的面积是40平方厘米.故答案为:3,2,40.8.【解答】解:(1)28÷(3﹣1)=28÷2=14(立方厘米)(2)14×3÷6=42÷6=7(平方厘米)答:圆柱的体积是14立方厘米,圆锥的底面积是7平方厘米.故答案为:14;7.9.【解答】解:每天穿一种颜色,六天不重色,第七天必和前面某一天一样.所以,一周至少有2天穿的袜子颜色一样.假设小明取到的袜子都不一样,至少去6只,然后再取一只,就和其中的一只颜色一样,所以至少取7只,才能保证其中有两只袜子是同一种颜色的.故答案为:2;7.10.【解答】解:第6层的分数是:=因为的分母是81,81=92,所以是第9层.如图:二、判断题(在括号内打“√”或“×”).11.【解答】解:根据圆的周长公式:C=2πr,可以得出两个圆周长相等,则它们的半径就相等;再根据圆的面积公式:S=πr2,可知半径相等则面积就相等.所以周长相等的两个圆,面积也一定相等.故答案为:√.12.【解答】解:由统计图的特点可知:为了能清晰地显示一种酸奶中各成分的含量,应选用扇形统计图;原题说法正确.故答案为:√.13.【解答】解:平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标;甲所在小组学生平均身高是1.56米,并不代表甲的身高就是1.56米,可能比1.56米高,也可能比1.56米矮;乙所在小组学生平均身高1.48米,并不代表乙的身高就是1.48米,可能比1.48米高,也可能比1.48米矮;所以甲和乙相比无法确定谁高,原题说法错误;故答案为:×.14.【解答】解:根据题意可知,都把各自学校的总人数看作单位“1”,因为两个学校的总人数可能相等,可能不相等,所以这两个学校的女生人数可能相等,也可能不相等,所以本题说法错误;故答案为:×.15.【解答】解:260﹣5=255(克)答:每袋最少必须不少于255克.故题干的说法是错误的.故答案为:×.16.【解答】解:在一座桥梁旁,有地块限重的交通标志牌(如图).被空中的飞鸟遮挡的字母应该是10t.故选:C.17.【解答】解:设犯罪嫌疑人身高为x厘米24:x=1:7x=24×7x=168即犯罪嫌疑人身高约为168厘米169厘米最接近168厘米答:嫌疑最大的是吴九.故选:D.18.【解答】解:A、12和10,都是合数,但不是互质数,不符合题意;B、3和40,40是合数,但3是质数,不符合题意;C、8和15,都是合数,又是互质数,且它们最小公倍数是8×15=120,符合题意;D、4和30,都是合数,但不是互质数,不符合题意.故选:C.19.【解答】解:3×7.5=4.5×5=22.5,所以把3,4.5,5,7.5这四个数组成比例,其内项的积是22.5,故选:B.四、基本技能20.【解答】1.3+4.97=6.2713.75﹣7.5=6.250.72=0.496÷13=6﹣=5+= 5.4×=0.9÷=0.25×24=68:80%=10 3.14×52=78.58÷0.8÷1.25=835×20%=732×101=3232×99+=754×÷4×=21.【解答】解:(1)360÷18×7﹣120=20×7﹣120=20(2)(7.9+47.5÷1.9)÷0.7=(7.9+25)÷0.7=32.9÷0.7=47(3)×(4﹣÷80%)=×(4﹣0.25)=×=22.【解答】解:(1)25×+74×40%+0.4=0.4×(25+74+1)=0.4×100=40(2)25×3.2×1.25=25×4×0.8×1.25=(25×4)×(0.8×1.25)=100×1=100(3)2019×=(2020﹣1)×=2020×﹣=2019﹣=201823.【解答】解:(1)x﹣75%x=24x=24x÷=24÷x=288;(2)14:x=:0.75x=14×0.75x÷=14×0.75÷x=28;(3)8x+6×0.7=98x+4.2=98x+4.2﹣4.2=9﹣4.28x=4.88x÷8=4.8÷8x=0.6.五、操作题24.【解答】解:(1)画出三角形ABC绕A点逆时针旋转90°后的图形(图中红色部分).(2)画出三角形ABC以1:2的比例缩小后的图形(图中绿色部分).六、图形计算25.【解答】解:如图3.14×8+8×2=25.12+16=41.12(厘米)答:阴影部分的周长是41.12厘米.26.【解答】解:3.14×(4÷2)2×9﹣ 3.14×(4÷2)2×6=3.14×4×9﹣ 3.14×4×6=113.04﹣25.12=87.92(立方厘米),答:它的体积是87.92立方厘米.七、看图填空27.【解答】解:(1)90÷360==25%1﹣25%﹣20%﹣10%﹣15%=30%答:喜欢歌曲的人数占全年级的25%,喜欢其他节目占全年级的30%.(2)40÷20%=200(人)200×15%+200×10%=30+20=50(人)答:喜欢小品的学生有40人,那么六年级一共有200人,喜欢杂技和相声的共有50人.故答案为:25;30;200;50.八、综合应用28.【解答】解:16000×(1+10%)=16000×1.1=17600(元)答:王叔叔买这辆摩托车一共要花17600元钱.29.【解答】解:400÷(400÷8+400÷10)=400÷(50+40)=400÷90=(分钟),答:相遇时他们都走了分钟.30.【解答】解:2×120÷[2×(1﹣10%)]=240÷1.8≈133(套)答:现在可以做133套.31.【解答】解:575÷(1﹣﹣30%)=575÷57.5%=1000(块)答:这幅拼图一共有1000块.32.【解答】解:设爸爸的体重是x千克38:0.4=x:0.70.4x=38×0.70.4x=26.6x=66.5答:爸爸的体重是66.5千克.33.【解答】解:设公园里有松树x棵x﹣60=48x﹣60+60=48+60x=108x×4=108×4x=432答:公园里有松树432棵.34.【解答】解:15÷(﹣)=15÷(﹣)=15÷=180(个)答:这批零件共有180个.35.【解答】解:下降2厘米的水的体积即这个圆锥形零件的体积为:3.14×(20÷2)2×2=3.14×100×2=3.14×200=628(立方厘米)所以圆锥形零件的高为:628×3÷(3.14×52)=1884÷78.5=24(厘米)答:这个圆锥形零件的高是24厘米.36.【解答】解:设原价是x元,六折=60%(x﹣200)×60%+200=5000.6x﹣120+200=5000.6x=420x=700答:原价是700元.37.【解答】解:第一个正方体容器中空白的高是:8×(1﹣)=8×=7(厘米)正方体容器的底面积是:20×20=400(平方厘米)圆柱的底面积是:400×=50(平方厘米)圆柱的体积是:50×(20﹣7)=50×13=650(立方厘米)答:实心圆柱体的体积是650立方厘米.。
2018-2019学年浙江省杭州市下城区七年级(下)期中数学试卷姓名: 得分: 日期:一、选择题(本大题共 10 小题,共 30 分)1、(3分) 通过平移,可将如图中的福娃“欢欢”移动到图( )A. B. C. D.2、(3分) 下列图形中,∠1和∠2不是同位角的是( )A. B. C. D.3、(3分) 下列运算正确的是( )A.3a 2-a 2=3B.a 3•a 6=a 9C.(a 2)3=a 5D.(2a 2)2=4a 24、(3分) 关于x ,y 的方程组{x +py =0x +y =3的解是{x =1y =Δ,其中y 的值被盖住了,不过仍能求出p ,则p 的值是( )A.-12B.12C.-14D.145、(3分) 某校体育器材室有篮球和足球共66个,其中篮球比足球的2倍多3个,设篮球有x 个,足球有y 个,根据题意可得方程组( )A.{x +y =66x =2y −3B.{x +y =66x =2y +3C.{x +y =66y =2x −3D.{x +y =66y =2x +36、(3分) 对于有理数x ,y 定义新运算:x*y=ax+by-5,其中a ,b 为常数.已知1*2=-9,(-3)*3=-2,则a-b=( )A.-1B.1C.-2D.27、(3分) 如图,把一张长方形纸片ABCD 沿EF 折叠后,点C ,D 分别落在C ,D 的位置上,EC 交AD 于点G ,已知∠EFG=58°,则∠BEG 等于( )A.58°B.116°C.64°D.74°8、(3分) 若a 2+ma+4是一个完全平方式,则m 的值应是( )A.4B.-4C.2或-2D.4或-49、(3分) 若a+b=6,ab=4,则a 2-ab+b 2的值为( )A.32B.-12C.28D.2410、(3分) 如图,BD∥GE ,AQ 平分∠FAC ,交BD 于Q ,∠GFA=50°,∠Q=25°,则∠ACB 的度数( )A.90°B.95°C.100°D.105°二、填空题(本大题共 6 小题,共 24 分)11、(4分) 随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为______.12、(4分) 把二元一次方程3x-y=1变形成用x 的代数式表示y ,则y=______.13、(4分) 已知10x =8,10y =16,则102x-y =______. 14、(4分) 若(12t-1)t-2=1,则t 可以取的值是______.15、(4分) 如图,∠1=80°,∠2=100°,∠3=76°,则∠4的度数为______度.16、(4分) 有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为______.三、解答题(本大题共 5 小题,共 50 分)17、(6分) 计算(1)(-2x2)3+4x3•x3(2)(-√7)0+(-2)3•2-218、(10分) 如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB∥CD;(2)若∠2=25°,求∠3的度数.19、(10分) 列二元一次方程组解应用题:某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?20、(12分) 已知,关于x ,y 的方程组{x −y =4a −3x +2y =−5a的解为x 、y . (1)x=______,y=______(用含a 的代数式表示);(2)若x 、y 互为相反数,求a 的值;(3)若2x •8y =2m ,用含有a 的代数式表示m .21、(12分) 已知:△ABC 和同一平面内的点D .(1)如图1,点D 在BC 边上,过D 作DE∥BA 交AC 于E ,DF∥CA 交AB 于F .①依题意,在图1中补全图形;②判断∠EDF 与∠A 的数量关系,并直接写出结论(不需证明).(2)如图2,点D 在BC 的延长线上,DF∥CA ,∠EDF=∠A .判断DE 与BA 的位置关系,并证明.(3)如图3,点D 是△ABC 外部的一个动点,过D 作DE∥BA 交直线AC 于E ,DF∥CA 交直线AB 于F ,直接写出∠EDF 与∠A 的数量关系(不需证明).四、计算题(本大题共 2 小题,共 16 分)22、(8分) 用适当方法解下列方程组: (1){y =2x 3x +y =10 (2){x 4+y 3=33x −2(y −1)=20.23、(8分) 先化简,再求值:(3x+2)(3x-2)-5x(x-1)-(2x-1)2,其中x=-1.3 2018-2019学年浙江省杭州市下城区七年级(下)期中数学试卷【第 1 题】【答案】C【解析】解:A、属于图形旋转所得到,故错误;B、属于图形旋转所得到,故错误;C、图形形状大小没有改变,符合平移性质,故正确;D、属于图形旋转所得到,故错误.故选:C.根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.本题考查图形的平移变换.图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.【第 2 题】【答案】C【解析】解:选项A、B、D中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;选项C中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:C.在截线的同侧,并且在被截线的同一方的两个角是同位角.本题考查了同位角的应用,注意:两条直线被第三条直线所截,如果有两个角在第三条直线的同旁,并且在两条直线的同侧,那么这两个角叫同位角.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.【 第 3 题 】【 答 案 】B【 解析 】解:A 、3a 2-a 2=2a 2,故此选项错误;B 、a 3•a 6=a 9,正确;C 、(a 2)3=a 6,故此选项错误;D 、(2a 2)2=4a 4,故此选项错误;故选:B .直接利用同底数幂的乘除运算法则以及积的乘方运算法则、合并同类项法则分别判断得出答案. 此题主要考查了同底数幂的乘除运算以及积的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.【 第 4 题 】【 答 案 】A【 解析 】解:根据题意,将x=1代入x+y=3,可得y=2,将x=1,y=2代入x+py=0,得:1+2p=0,解得:p=-12,故选:A .将x=1代入方程x+y=3求得y 的值,将x 、y 的值代入x+py=0,可得关于p 的方程,可求得p .本题主要考查二元一次方程组的解的概念,根据方程组的解会准确将方程的解代入是前提,严格遵循解方程的基本步骤求得方程的解是关键.【 第 5 题 】【 答 案 】B【 解析 】解:依题意,得:{x +y =66x =2y +3. 故选:B .本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.【 第 6 题 】【 答 案 】B【 解析 】解:根据题意得,{a +2b −5=−9−3a +3b −5=−2, 化简得,{a +2b =−4①a −b =−1②, ①-②得,3b=-3,解得b=-1,把b=-1代入②得,a-(-1)=-1,解得a=0,∴a -b=0-(-1)=1.故选:B .根据新定义列出方程组,然后利用加减消元法求出a 、b 的值,再相减即可.本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,根据题目信息列出方程组是解题的关键.【 第 7 题 】【 答 案 】C【 解析 】解:∵AD∥BC ,∴∠AFE=∠FEC=58°.而EF 是折痕,∴∠FEG=∠FEC .又∵∠EFG=58°,∴∠BEG=180°-2∠FEC=180°-2×58°=64°.故选:C .根据平行线的:两直线平行,内错角相等.可知∠AFE=∠FEC=58°,再根据EF 是折痕可知∠FEG=58°利用平角的性质就可求得所求的角.本题考查平行线的性质、翻折变换、矩形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【 第 8 题 】【答案】D【解析】解:∵a2+ma+4是一个完全平方式,∴a2+ma+4=(a±2)2=a2±4a+4∴m=±4.故选:D.这里首末两项是a和2这两个数的平方,那么中间一项为加上或减去4和a积的2倍,故m=±4.本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.要求掌握完全平方公式,并熟悉其特点.【第 9 题】【答案】D【解析】解:∵a+b=6,ab=4,∴a2-ab+b2=(a+b)2-3ab=36-3×4=36-12=24故选:D.根据a+b=6,ab=4,应用完全平方公式,求出a2-ab+b2的值为多少即可.此题主要考查了完全平方公式的应用,要熟练掌握,应用完全平方公式时,要注意:①公式中的a,b可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.【第 10 题】【答案】C【解析】解:过点A作AH∥BD,∵BD∥GE,∴BD∥GE∥AH,∵∠GFA=50°,∠Q=25°,∴∠FAH=50°,∠HAQ=∠Q=25°,∴∠FAQ=∠FAH+∠HAQ=50°+25°=75°.∵AQ平分∠FAC,∴∠FAQ=∠CAQ=75°,∵∠ACB是△ACQ的外角,∴∠ACB=∠CAQ+∠Q=75°+25°=100°.故选:C.过点A作AH∥BD,由BD∥GE可知BD∥GE∥AH,由平行线的性质即可得出∠HAQ的度数,再由角平分线的定义即可求出∠QAC的度数,根据三角形外角的性质即可得出结论.本题考查的是平行线的性质,根据题意作出平行线,利用平行线的性质求解是解答此题的关键.【第 11 题】【答案】7×10-7【解析】解:0.000 0007=7×10-7.故答案为:7×10-7.科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 7<1时,n为负数.本题考查了用科学记数法表示一个较小的数,为a×10n的形式,注:n为负整数.【第 12 题】【答案】3x-1【解析】解:移项得,-y=1-3x,把y的系数化为1得,y=3x-1.故答案为:3x-1.先移项,再把y 的系数化为1即可.本题考查的是解二元一次方程,熟知等式的基本性质是解答此题的关键.【 第 13 题 】【 答 案 】4【 解析 】解:∵10x =8,10y =16,∴102x =64,∴102x-y =102x ÷10y =64÷16=4.故答案为:4.根据10x =8,10y =16,应用幂的乘方的运算方法,以及同底数的幂的除法法则,求出102x-y 的值是多少即可.此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.【 第 14 题 】【 答 案 】4或0【 解析 】解:①∵(12t-1)t-2=1,∴t -2=0且12t-1≠0,解得t=2不合题意,②当12t-1=1时,解得t=4,③12t-1=-1时,解得t=0,且t-2=-2,符合题意, 所以t=4或0.故答案为:4或0.分三种情况①当t-2=0且12t-1≠0,②当12t-1=1时,③12t-1=-1时分别求解即可.本题主要考查了零指数幂和有理数的乘方,解题的关键是要分三种情况讨论.【 第 15 题 】【 答 案 】76【 解析 】解:∵∠1=80°,∴∠5=100°.∵∠2=100°,∠3=76°,∴∠2=∠5,∴a∥b.∴∠4=∠3=76°.故答案为:76.先根据∠1=80°,∠2=100°得出a∥b,再由平行线的性质即可得出结论.本题考查的是平行线的判定与性质,熟知两直线平行,内错角相等是解答此题的关键.【第 16 题】【答案】13【解析】解:设正方形A的边长为a,正方形B的边长为b,由图甲得a2-b2-2(a-b)b=1即a2+b2-2ab=1,由图乙得(a+b)2-a2-b2=12,2ab=12,所以a2+b2=13,故答案为:13.设正方形A的边长为a,正方形B的边长为b,由图形得出关系式求解即可.本题主要考查了完全平方公式的几何背景,解题的关键是根据图形得出数量关系.【第 17 题】【答案】解:(1)(-2x2)3+4x3•x3=-8x6+4x6=-4x6;(2)(-√7)0+(-2)3•2-2=1-8×14=1-2=-1.【解析】本题涉及零指数幂、负整数指数幂、单项式乘法等知识.在计算时,需要针对每个知识点分别进行计算,然后根据实数或整式的运算法则求得计算结果.本题考查实数和整式的综合运算能力,是各地中考题中常见的计算题型.解答时要注意正确运用运算法则计算.【第 18 题】【答案】解:(1)∵∠ABD和∠BDC的平分线交于E,∴∠ABD=2∠1,∠BDC=2∠2,∵∠1+∠2=90°,∴∠ABD+∠BDC=180°,∴AB∥CD;(2)∵DE平分∠BDC,∴∠EDF=∠2=25°,∵∠1+∠2=90°,∴∠FED=90°,∴∠3=180°-90°-25°=65°.【解析】(1)根据角平分线定义求出∠ABD+∠BDC=180°,根据平行线的判定推出即可;(2)根据角平分线求出∠EDF,根据三角形外角性质求出∠FED,根据三角形内角和定理求出即可.本题考查了平行线的判定,三角形内角和定理,角平分线定义,三角形的外角性质的应用,能综合运用定理进行推理是解此题的关键,难度适中.【第 19 题】【答案】解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:{x+y=00020x+35y=15000,解得:{x=400 y=200.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32-20)+200×(50-35)=7800(元).答:该超市共获利润7800元.【解析】(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,根据总价=单价×数量结合该超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=每箱利润×数量,即可求出该超市销售万600箱矿泉水获得的利润.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【 第 20 题 】【 答 案 】解:(1){x −y =4a −3 ①x +2y =−5a ➁, ②-①得,y=-3a+1,把y=-3a+1代入①得,x=a-2,故答案为:x=a-2;y=-3a+1;(2)由题意得,a-2+(-3a+1)=0,解得,a=-12; (3)2x •8y =2x •(23)y =2x •23y =2x+3y ,由题意得,x+3y=m ,则m=a-2+3(-3a+1)=-8a+1.【 解析 】(1)利用二元一次方程组的解法解出方程组;(2)根据相反数的概念列出方程,解方程即可;(3)根据幂的乘方法则和同底数幂的乘法法则得到x+3y=m ,代入计算.本题考查的是积的乘方与幂的乘方,二元一次方程组的解法,相反数的概念,掌握二元一次方程组的解法,幂的乘方法则是解题的关键.【 第 21 题 】【 答 案 】解:(1)①补全图形如图1;②∠EDF=∠A .理由:∵DE∥BA ,DF∥CA ,∴∠A=∠DEC ,∠DEC=∠EDF ,∴∠A=∠EDF ;(2)DE∥BA .证明:如图,延长BA 交DF 于G .∵DF∥CA ,∴∠2=∠3.又∵∠1=∠2,∴∠1=∠3.∴DE∥BA.(3)∠EDF=∠A,∠EDF+∠A=180°.理由:如左图,∵DE∥BA,DF∥CA,∴∠D+∠E=180°,∠E+∠EAF=180°,∴∠EDF=∠EAF=∠A;如右图,∵DE∥BA,DF∥CA,∴∠D+∠F=180°,∠F=∠CAB,∴∠EDF+∠BAC=180°.【解析】(1)根据过D作DE∥BA交AC于E,DF∥CA交AB于F,进行作图;根据平行线的性质,即可得到∠A=∠EDF;(2)延长BA交DF于G.根据平行线的性质以及判定进行推导即可;(3)分两种情况讨论,即可得到∠EDF与∠A的数量关系:∠EDF=∠A,∠EDF+∠A=180°.本题主要考查了平行线的性质以及判定的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.【第 22 题】【答案】解:(1){y=2x①3x+y=10②,把①代入②得:3x+2x=10,即x=2,把x=2代入①得:y=4,则方程组的解为{x=2 y=4;(2)方程组整理得:{3x+4y=36①3x−2y=18②,①-②得:6y=18,即y=3,把y=3代入①得:x=8,则方程组的解为{x=8 y=3.【解析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【第 23 题】【答案】解:原式=9x2-4-(5x2-5x)-(4x2-4x+1)=9x2-4-5x2+5x-4x2+4x-1=9x-5,时,当x=−13)−5=-3-5=-8.原式=9x−5=9×(−13【解析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.此题主要考查了整式的化简求值,解题的关键是利用整式的乘法法则及平方差公式、完全平方公式化简代数式.。
2018-2019年小升初六年级期末毕业数学试题(共十套试卷)一、看清题目,巧思妙算。
(共30分) 1、直接写得数(每小题1分,共10分)85+0.25= 1787-998= 1÷20%= 6÷0.05=12.5×32×2.5= 5-=+9792 9.7-0.03= 54×25==+-+31213121=⨯÷737112、求未知数X (每小题2分,共8分) 1.8χ-0.7=2.9 7385=-χχ80%χ-18×32=4χ4.6=0.12:1.53、计算下列各题,能简算的要简算(每小题3分,共12分)。
1853-(2.35+8.6) 3.5×10.181×[)×(9105321÷] (43+611-2413)×12二、认真思考,谨慎填空(每空1分,共23分)1、 2时40分=( )时 3.8公顷=( )公顷( )平方米2、在86%,76,0.88,98四个数中,最大的数是( ),最小的数是( )。
3、一幢大楼地面以上有19层,地面以下有2层,地面以上第6层记作+6层,地面以下第2层记作( )层。
4、浩浩每天放学回家要花1小时完成语文、数学、英语三科作业。
如果每科作业花的时间都一样,完成每科作业需( )分钟,每科作业占总时间的( )。
5、将圆规两脚之间的距离定为( )厘米时,可以画出直径为6厘米的圆,这个圆的面积是( )平方厘米。
6、把右边的长方形以它的长为轴旋转一周,会得到一个( ),体积是( )立方厘米 。
7、按糖和水的比为1:19配制一种糖水,这种糖水的含糖率是( ) 现有糖50克,可配制这种糖水( )克。
8、有一种手表零件长5毫米。
在设计图纸上的长度是10厘米,这幅图纸的比例尺是( )。
9、右图是某粮食仓库储藏情况统计图。
已知仓库中大豆有4吨,那么其中玉米( )吨。
10、有40张5元和1元的人民币,面值共152元,5元的有( )张,1元的有( )张。
2018年杭州市中考数学试卷含答案解析(Word版)浙江省杭州市2018年中考数学试题一、选择题1.等式-3×(-1)-2×(-2)的值是(。
)。
A。
3.B。
-3.C。
4.D。
-42.数据xxxxxxx用科学计数法表示为(。
)。
A。
1.86×106.B。
1.8×106.C。
18×105.D。
18×1063.下列计算正确的是(。
)。
A.(-0.3)×(-0.4)=0.12.B。
0.8÷(-0.2)=-4.C.(-1.5)÷0.5=-3.D.(-0.6)+0.2=-0.44.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是(。
)。
A.方差B.标准差C.中位数D.平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则(。
)。
A。
B。
C。
D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知XXX这次竞赛得了60分,设XXX答对了XXX题,答错了b道题,则(。
)。
A。
a+b=16.B。
a-b=12.C。
a+b=12.D。
a-b=167.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于(。
)。
A。
1/6.B。
1/3.C。
1/2.D。
2/38.如图,已知点P在矩形ABCD内一点(不含边界),设PA=x,PB=y,PC=z,PD=w,若,x+y=10,z+w=12,则(。
)。
A。
xz=15.yw=20.B。
xz=20.yw=15.C。
xz=10.yw=24.D。
xz=24.yw=109.四位同学在研究函数y=ax²+bx+c(a>0)的性质。
甲发现当a=2时,函数有最小值;乙发现当y=3x²+bx+c(b,c是常数)时,函数有最小值;丙发现函数的最小值为3;丁发现当y=x²+bx+c时,函数有最小值。
2024年浙江省初中毕业生学业模拟考试(台州卷)数 学 试题卷亲爱的考生:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平. 答题时,请注意以下几点:1. 全卷共4页,满分120分,考试时间120分钟.2. 答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效.3. 答题前,请认真阅读答题纸上的“注意事项”,按规定答题.4. 本次考试不得使用计算器.一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1. “中国空间站”入选了2023年全球十大工程成就.空间站离地球的距离约为380 000米,数据380 000用科学计数法可表示为( ▲ ).A. 38×104B.3.8×106C.3.8×105D.0.38×106 2.下列四个2024年巴黎奥运会项目图标中,既是轴对称图形又是中心对称图形的是( ▲ ).A. B. C. D.3. 下列计算正确的是( ▲ ).A .32x x xB .523)(x xC .33)x x (D .326x x x4. 如图,直线AB ∥CD ,BC 平分∠ABD ,若∠1=55°,则∠2=( ▲ ).A .70°B .65°C .60°D .55°5. 对于平面图形上的任意两点P ,Q ,如果经过某种变换得到新图形上的对应点P ′,Q ′,保持PQ =P ′Q ′,我们把这种变换称为“保距变换”,下列变换中不一定是“保距变换”的是( ▲ ). A . 平移 B. 旋转 C. 轴对称 D. 位似 6. 小明的期中与期末测试成绩如下表:A.小明期末与期中总分相同B.小明英语期末名次一定在中等以上C.小明数学期末成绩比期中有进步D.小明语文期末成绩比期中有退步(第4题) (第7题) (第10题)DC B AG FE D C B A 2 1 D C B A7. 如图,Rt △ABC 中,∠ABC =90°,AB =3,BC =2,以点C 为圆心,BC 长为半径作圆弧交AC 于点D ,则AD 长在( ▲ ).A. 0与1之间 B . 1与2之间 C. 2与3之间 D. 3与4之间8. 有如下数列:a 1,a 2,a 3,a 4,a 5,a 6,...,a n-2,a n-1,a n ,...,满足a n -2·a n =2a n -1,已知a 1=1,a 3=4, 则a 2024=(▲).A.8B.6C.4D.29. 学校要制作一块广告牌,请来两名工人,已知甲单独完成需4天,乙单独完成需6天,若先由乙做1天,再两人合作,完成任务后共得到报酬900元,若按各人的工作量计算报酬,则分配方案为( ▲ ). A .甲360元,乙540元B .甲450元,乙450元C .甲300元,乙600元D .甲540元,乙360元10. 如图,在Rt △ABC 中,∠ACB =90°,以AB 为边向三角形外作正方形ABDE ,作EF ⊥BC 于点F ,交对角线AD 于点G ,连接BG. 要求△BFG 的周长,只需要知道( ▲ ). A.线段BF 的长度 B.线段AC 的长度 C.线段FG 的长度 D.线段BC 的长度 二、填空题(本题有6小题,每小题4分,共24分) 11. 分解因式:x 2 xy = ▲ .12. 一个不透明的口袋中有3个质地相同的小球,其中2个红色,1个蓝色. 随机摸取一个小球是红色小球的概率是 ▲ .13. 小明用刻度尺(单位:cm )测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,D 是AB 的中点,点A ,B 对应的刻度分别是1,8,则CD = ▲ cm .14. 某绿化队原来用漫灌方式浇绿地,a 天用水m 吨,现改用喷灌方式,可使这些水所用的天数为2a 天,现在比原来每天节约用水 ▲ 吨.(用含a ,m 的代数式表示)15. 在平行四边形ABCD 中,点E ,F 在BC 边上,把△ABE 沿直线AE 折叠,△CDF 沿直线DF 折叠,使点B ,C 落在对角线AC 上的点G 处,若∠AGD =110°,则∠B 的度数为 ▲ .(第13题) (第15题)16. 已知抛物线k x a y +=2)2(-上有A (-2,y 1),B (1,y 2),C (4,y 3),D (5,y 4)四个点,某数学兴趣小组研究后得到三个命题:①若y 1+y 3 > y 2+y 4,则a > 0;②若y 2-y 3 > 0,则y 1-y 4 > 0; ③若y 2 y 3 = 0,则y 1 y 4 > 0. 属于真命题是 ▲ .(填写序号)三、解答题(本题有8小题,第17~19题每题6分,第20,21题每小题8分,第22,23题每题10分,第24题12分,共66分) 17.π0(2)2 .18. 解不等式组:14,23.x x xEGFDCBAA BC D19. 图1是太阳能路灯的实物图,图2是其示意图,AB 垂直于地面l ,AB =800 cm ,BC =105 cm ,∠ABC=108°,求点C 离地面的高度. (结果精确到1cm ,参考数据:sin18°≈0.31,cos18°≈0.95 ,tan18°≈0.31 )20. 如图,一次函数b kx y 与反比例函数xcy的图象相交于A ,B 两点,A ,B 的坐标分别为(2,n ),(-4,-2).(1)分别求出一次函数和反比例函数的解析式;(2)已知点M (m ,c ),B (m ,d ),分别在一次函数和反比例函数上,当c >d 时,直接写出m 的取值范围.(第20题) (第21题)21. 如图,在△ABC 中,∠ABC 的平分线BD 交AC 边于点D ,已知∠ADB =2∠ABD .(1)求证:AB ²=AD AC ;(2)若DC =2AD =2,求∠A 的度数.22. 某中学开展专家讲座,帮助学生合理规划周末使用手机的时间,并在讲座前后对本校学生周末手机使用时间情况进行随机抽样调查,制成如下统计图表(数据分组包含左端值不包含右端值).(1)在讲座开展前抽取的学生中周末使用时长在哪个区间的人数最多?占抽取人数的百分之几? (2)该校共有学生1500人,请估计讲座开展后全校周末使用手机8小时以上的学生人数;(3)小军认为,活动开展后的样本中周末使用手机6小时以上的人数与讲座前相比变化不大,所以讲座并没有起到效果.请结合统计图表,对小军分析数据的方法及讲座宣传活动的效果谈谈你的看法.DCBAlD BCA图1 图223. 图1是某校园的紫藤花架,图2是其示意图,它是以直线AB 为对称轴的轴对称图形,其中曲线AC ,AD ,BE ,BF 均是抛物线的一部分.图1 图2 图3素材1:某综合实践小组测量得到点A ,B 到地面距离分别为5米和4米.曲线AD 的最低点到地面的距离是4米,与点A 的水平距离是3米;曲线BF 的最低点到地面的距离是289米,与点B 的水平距离是4米.素材2:按图3的方式布置装饰灯带GH ,GI ,KL ,MN ,HJ ,布置好后成轴对称分布,其中GI ,KL ,MN ,HJ 垂直于地面, GI 与HJ 之间的距离比KL 与MN 之间的距离多2米.任务一:(1)在图2中建立适当的平面直角坐标系,求曲线AD 的函数解析式; 任务二:(2)若灯带GH 长度为d 米,求 MN 的长度.(用含d的代数式表示); 任务三:(3)求灯带总长度的最小值.24. 如图,半圆O 的直径AB =6.点C 在半圆O 上,连结AC ,BC ,过点O 作OD ∥AC 分别交BC , AB于点E ,D ,连结AD 交BC 于点F . (1)求证:点D 是 BC的中点; (2)将点O 绕点F 顺时针旋转90 °到点G .①当点G 在线段AD 上,求AC 的长;②当点G 在线段AC 上,求sin ∠ABC 的值.(第24题)FBOA E CDBO备用图A数学答案第1页共5页2024年浙江省初中毕业生学业模拟考试(台州卷)数学参考答案和评分细则一、选择题(本题有10小题,每小题3分,共30分)题号12345678910答案CACADBBDBD二、填空题(本题有6小题,每小题4分,共24分)11.x (x -y )12.2313.3.514.2m a15.75°16.①③三、解答题(本题有8小题,第17~19题每题6分,第20,21题每小题8分,第22,23题每题10分,第24题12分,共66分)17.(6分)解:原式=3+1-4…3分=0…6分18.(6分)解:由①得:5x <-…2分由②得:1x <…4分∴不等式组的解集为:5x <-.…6分19.(6分)解:过点C 作CE ⊥AD ,垂足为E∵CE ⊥AD ,∴∠CEB =90°∴∠C =∠ABC -∠AEC =18°…2分∵BE =BC sin ∠C ,∴BE =105×0.31=32.55≈33(cm )…4分AE =AB +BE =833cm…6分答:点C 距离地面的高度是833cm20.(8分)解:(1)将B (-4,-2)代入xcy =42-=-c 得解得c=8…2分∴反比例函数的解析式:xy 8=令x=2代入得y=4∴A(2,4)将点A (2,4),点B (-4,-2)代入y =kx +b 得⎩⎨⎧+-=-+=bk b k 4224…4分数学答案第2页共5页解得⎩⎨⎧==21b k ∴一次函数的解析式为y =x +2…6分(2)-4<m <0或m >2(写对一个一分共2分)21.(8分)解证明:(1)∵BD 平分∠ABC ∴∠ABC =2∠ABD =2∠DBC∵∠ADB =2∠ABD ∴∠ABC =2∠ADB ……………1分∵∠ADB =∠DBC +∠C ∴∠ABD =∠C………………2分∴△ABD ∽△ACB ………………3分∴ACABAB AD =即AB ²=AD ⋅AC ………………4分(2)由(1)得∠DBC =∠C ∴BD =CD =2……………1分∵2AD =2∴AD =1∴AC =3∵AB ²=AD ⋅AC ∴AB=3……………2分∴AB ²+AD ²=BD ²……………3分∴∠A =90°……………4分22.(10分)(1)在开展前周末手机使用时长为4~6小时的同学最多.……2分5+8+15+12+10=50(人)15÷50×100%=30%……4分(2)16+24+40+16+4=100(人)4÷100×100%=4%1500×4%=60(人)……2分由样本估计总体,全校讲座开展后周末使用手机8小时以上大约有60人……3分(3)因为忽略了两次样本容量的差异,所以小军分析的方法不合理……1分样本中周末使用手机时长6小时以上的人数由44%下降为20%,所以此次讲座宣传活动是有效果的.……2分(未运用统计量说明的给1分)23.(10分)(1)如图,以地面所在直线为x 轴,AB 所在直线为y 轴,建立如图所示的直角坐标系.设()234y a x =-+,代入()05A ,得:()25034a =-+,解得:19a =,()21349y x =-+ (3)分数学答案第3页共5页(2)2H d x =,12M d x =-,2113492M d y ⎛⎫=--+ ⎪⎝⎭214523699d d =-+214523699MN d d =-+…4分(3)设曲线BF 的函数解析式为:()22849y a x =-+,代入()04B ,得:()2284049a =-+解得:118a =,()21284189y x =-+设灯带总长度为w ,GH d =,22w MN HJ GH=++22145212822436991829d d d d⎡⎤⎛⎫⎛⎫=-++-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦2111761239d d =-+,当2x =时,1739w =最小值.…3分24.(12分)解:(1)解法一:∵AB 是半圆O 直径∴∠C =90°……………………2分∵OD ∥AC∴∠OEB =∠C =90°,即OD ⊥BC……………………3分∴ BD= CD ,即点D 是 BC 的中点……………………4分解法二:∵OD ∥AC ∴∠D =∠CAD ……………………1分∵OA =OD ∴∠D =∠OAD …………………2分∴∠OAD =∠CAD……………………3分∴ BD= CD ,即点D 是 BC 的中点……………………4分解法三:连结CO ∵AB 是半圆O 直径∴∠ACB =90°……………………2分∵OD ∥AC ∴∠OEB =∠ACB =90°,即OD ⊥BC……………………3分∵OB =OC ,OE =OE ∴Rt △BOE ≌Rt △COE (HL )∴∠BOD =∠COD ∴ BD = CD ,即点D 是 BC的中点……………………4分(说明:各种方法合理均可.)(2)①解法一:连结OF ,作FG =OF∵点O 绕点F 顺时针旋转90°到点G ∴∠OFG =90°∴AF =DF……………………1分FBOAE CDF OAEC D G数学答案第4页共5页又∵OD ∥AC∴∠D =∠CAD ,∠C =∠DEC ∴△ACF ≌△DEF (AAS )……………………2分(由平行线直接得△ACF ∽△DEF 也给分.)∴AC =DE ∵O 是AB 中点,OD ∥AC ∴AC =2OE ……………………3分∵直径AB =6∴OE +DE =OD =3∴AC =2……………………4分解法二:连结OF ,BD ,作FG =OF ∵点O 绕点F 顺时针旋转90°到点G ∴∠OFG =90°∴AF =DF……………………1分又∵AB 是半圆O 直径∴∠ADB =90°∴OF ∥BD∴△OEF ∽△DEB ,OF :BD =1:2……………………2分∴DE =2OE ∵直径AB =6∴OE =1……………………3分∵O 是AB 中点,OD ∥AC ∴AC =2OE =2……………………4分(2)②解法一:如图,构造对应图形易证△CFG ≌△EOF………………1分∴OE =CF 由①得,AC =2OE ,△ACF ∽△DEF .设OE =CF =x ,则AC =2x ,DE =3-x ∴CF :AC =EF :DE =1:2∴EF =……………………2分∴CE =BE =CF +EF =∴在Rt △BOE 中,解得:x =1.8……………………3分∴sin ∠ABC ==0.6……………………4分(说明:各种方法合理均可.如:连结BD,通过比例和勾股定理求BD 的长等也可解决问题)解法二:如图,构造对应图形,作FH ⊥AB 于点H 易证△CFG ≌△EOF……………………1分∴OE =CF ,EF =CG ,∠OFE =∠CGF 易证△CFG ≌△HFO ,△CFA ≌△HFA ∴AC =AH =3,∠OFE =∠CGF =∠BOF ∴AG =AO =BO =BF =3……………………2分F B OAEC DGFBO AECD GF B O AE C DGH由①得,AC=2OE.设OE=CF=x,EF=CG=y,则AC=2x ∴2x-y=AG=3,x+y+y=BF=3(BC=2CE=2x+2y,再由AC2+BC2=AB2也可)解得:x=1.8……………………3分∴sin∠ABC==0.6……………………4分数学答案第5页共5页19.(本题满分6分)(第19题)21.(本题满分8分)(1)(4分)(第21题)(2)(4分)考号[0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9]20.(本题满分8分)(1)(6分)(2)(2分).(第20题)一、选择题(本题有10小题,每小题3分,共30分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)18.(本题满分6分)解不等式组:1423.x x x ⎧⎨⎩+<-,<+2024年中考模拟考试(一)数学答题卷学校班级姓名说明1、准考证号和选择题请用2B 铅笔填涂;2、除选择题外请用0.5mm 黑色中性笔答题;3、保持答题卷整洁,请勿折叠.缺考标记:[](考生不得填涂)二、填空题(本题有6小题,每小题4分,共24分)11..12..13..14..15..16...17.(本题满分6分)计算:9+(π-2)0+|-2|.三、解答题(本题有8小题,第17~19题每题6分,第20,21题每小题8分,第22,23题每题10分,第24题12分,共66分)◤□■◤◥24.(本题满分12分)(1)(4分)(第24题)(2)①(4分)②(4分)22.(本题满分10分)(1)(4分)(2)(3分)(3)(3分)23.(本题满分10分)(1)(3分)(图2)(2)(4分)(图3)(3)(3分)模拟(一)数学答题卷第3页共4页模拟(一)数学答题卷第4页共4页。
七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.如果股票指数上涨30点记作+30,那么股票指数下跌20点记作()A. −20B. +20C. −10D. +102.如图是由一些大小相同的小正方体堆成的几何体,则该几何体的左视图是()A. B. C. D.3.已知地球围绕太阳公转的轨道半长径约为150000000km,这个数据用科学记数法表示为()A. 15×107kmB. 1.5×107kmC. 1.5×108kmD. 0.15×109km4.小明父亲拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是()A. (4a+2b)米B. (5a+2b)米C. (6a+2b)米D. (a2+ab)米5.下列两种现象:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动;②过马路时,行人选择横穿马路而不走人行天桥其中可用“两点之间线段最短”来解释的现象是()A. ①B. ②C. ①②D. 都不可以6.若关于x的方程3x+a+4=0的解是x=−1,则a的值等于()A. −1B. 1C. −7D. 77.在下列调查方式中,较为合适的是()A. 为了解深圳市中小学生的视力情况,采用普查的方式B. 为了解龙华区中小学生的课外阅读习惯情况,采用普查的方式C. 为了解某校七年级(1)班学生期末考试数学成绩情况,采用抽样调查的方式D. 为了解我市市民对社会主义核心价值观的内容的了解情况,采用抽样调查的方式8.2017年,深圳市顺利获评为全国文明城市,为此小颖特别制作了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字相对的字是()A. 全B. 城C. 市D. 明9.空气污染物主要包括可吸入颗粒物(PM10)、细颗粒物(PM2.5),臭氧/二氧化硫、氮氧化物、一氧化碳六类,为了刻画每一类污染物所占的比例,最适合使用的统计图是()A. 折线统计图B. 条形统计图C. 扇形统计图D. 以上均可以10.已知有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()>0A. a+b<0B. a−b<0C. ab>0D. ab11.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A. 9x−7x=1B. 9x+7x+1C. 17x+19x=1 D. 17x−19x=112.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36∘B. 45∘C. 60∘D. 72∘二、填空题(本大题共4小题,共12.0分)13.计算:(−1)2018的结果是______14.若−4x a+5y3+x3y b=3x3y3,则ab的值是______.15.已知数轴上的A、B两点所表示的数分别为−4和7,C为线段AB的中点,则点C所表示的数为______16.用火柴棒按如图所示的方式搭出新的图形,其中第1个图形有6个正方形,第2个图形有11个正方形,第3个图形有16个正方形,则第n个图形中正方形的个数为______.三、计算题(本大题共4小题,共24.0分)17.计算:(1)22+(−33)−4×(−11)(2)|−36|×(34−56)+(−8)÷(−2)218.(1)化简:(2a2b−6ab)−3(−ab+a2b)(2)李老师让同学们计算“当a=−2017,b=2018时,代数式3a2+(ab−a2)−2(a2+12ab−1)的值”,小亮错把“a=−2017,b=2018”抄成了“a=2017,b=−2018”,但他最终的计算结果并没错误,请问是什么原因呢?19.解方程:(1)2(x−3)+3(x−1)=6(2)x+12−2x−36=120.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(−4)❈(−3)=+7;(−5)❈(+3)=−8;(+6)❈(−7)=−13;(+8)❈0=8;0❈(−9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,______.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,______.(2)计算:[(−2)❈(+3)]❈[(−12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)”四、解答题(本大题共3小题,共24.0分)21.为了解深圳市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四个等级进行统计,并将统计结果绘制成了如下两幅不完整的统计图(图1、图2),请根据图中的信息解答下列问题.(1)这次调查的市民人数为______人,图2中,n=______(2)补全图1中的条形统计图;(3)在图2中的扇形统计图中,表示“C.基本了解”所在扇形的圆心角度数为______度;(4)据统计,2017年深圳市约有市民2000万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有______万人22.如图,已知不在同一条直线上的三点A、B、C(1)按下列要求作图(用尺规作图,保留作图痕迹)①分别作直线BC、射线BA、线段AC;②在线段BA的延长线上作AD=AC−AB(2)若∠CAD比∠CAB大100∘,则∠CAB的度数为______.23.列方程解应用题:(1)“自由骑”共享单车公司委托甲、乙两家公司分别生产一批数量相同的共享单车,已知甲公司每天能生产共享单车100辆,乙公司每天能生产共享单车70辆,甲公司比乙公司提前3天完成任务,请问乙公司完成任务需要多少天?(2)元旦期间,天虹商场用2000元购进某种品牌的毛衣共10件进行销售,每件毛衣的标价为400元,实际销售时,商场决定对这批毛衣全部按如下的方式进行打折销售:一次性购买一件打8折,一次性购买两件或两件以上,都打6折,商场在销售完这批毛衣后,发现仍能获利44%①该商场在售出这批毛衣时,属于“一次性购买一件毛衣”的方式有多少件?②小颖妈妈计划在元旦期间在天虹商场购买3件这种品牌的毛衣,请问她有哪几种购买方案?哪一种购买方案最省钱?请说明理由.答案和解析【答案】1. A2. D3. C4. B5. B6. A7. D8. B9. C10. B11. C12. D13. 114. −615. 1.516. 5n+117. 解:(1)原式=−11+44=33;(2)原式=36×(−112)+(−8)÷4=−3+(−2)=−5.18. 解:(1)原式=2a2b−6ab+3ab−3a2b=−a2b−3ab;(2)原式=3a2+ab−a2−2a2−ab+2=2,所以无论a、b为何值时,原式的都为2,因此小亮虽然抄错了a、b的值,但只要结果为2,都正确.19. 解:(1)2(x−3)+3(x−1)=62x−6+3x−3=62x+3x=6+6+35x=15x=3;(2)x+12−2x−36=13(x+1)−(2x−3)=63x+3−2x+3=63x−2x=6−3−3x=020. 同号得正、异号得负,并把绝对值相加;都得这个数的绝对值21. 1000;35;72;34022. 40∘23. 解:(1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据题意得:100(x−3)=70x,解得:x=10.答:乙公司完成任务需要10天.(2)①设属于“一次性购买一件毛衣”的方式有x件,=44%,根据题意得:0.8×400x+0.6×400(10−x)−20002000解得:x=6.答:设属于“一次性购买一件毛衣”的方式有6件.②共有三种购买方案:方案一:每次购买1件,共需400×0.8×3=960(元);方案二:一次购买1件,另一次购买2件,共需400×0.8+400×0.6×2=800(元);方案三:一次性购买3件,共需400×0.6×3=720(元).∵960>800>720,∴一次性购买3件最省钱.【解析】1. 解:如果股票指数上涨30点记作+30,那么股票指数下跌20点记作−20,故选:A.根据正数和负数表示相反意义的量,股票指数上涨记为正,可得股票指数下跌的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2. 解:左视图有2列,每列小正方形数目分别为2,1,故选:D.读图可得,左视图有2列,每列小正方形数目分别为2,1.此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.3. 解:150000000km用科学记数法表示为1.5×108km,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:依题意得:2(a+b)+3a=5a+2b.故选:B.根据矩形周长公式进行解答.考查了列代数式.解题的关键是弄清楚该窗户所含有棱的条数和对应的棱长.5. 解:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,不能用“两点之间线段最短”来解释,②过马路时,行人选择横穿马路而不走人行天桥,可用“两点之间线段最短”来解释.故选:B.直接利用两点之间线段最短分析得出答案.此题主要考查了线段的性质,正确把握线段的性质是解题关键.6. 解:把x=−1代入3x+a+4=0得,−3+a+4=0,解得a=−1.故选:A.把x=−1代入3x+a+4=0得到关于a的方程,然后解方程即可.本题考查了一元一次方程的解,熟悉等式的性质是解题的关键.7. 解:A、了解深圳市中小学生的视力情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;B、了解龙华区中小学生的课外阅读习惯情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;C、了解某校七年级(1)班学生期末考试数学成绩情况,比较容易做到,适于全面调查,采用普查,故本选项不符合题意;D、了解我市市民对社会主义核心价值观的内容的了解情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项符合题意.故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8. 解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“全”与“市”相对,“文”与“城”相对,“明”与“国”相对,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 解:根据题意,得为了刻画每一类污染物所占的比例,结合统计图各自的特点,应选择扇形统计图.故选:C.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.本题考查扇形统计图、折线统计图、条形统计图各自的特点.10. 解:根据图示知:a<0<b,|a|<|b|;∴a+b>0,a−b<0,ab<0,ab<0.故选:B.根据数轴上a、b的位置可以判定a与b大小与符号;然后据此解答.本题考查了数轴,从a小于0,到b大于0,其积小于0,从而求得.11. 解:由题意可得,1 7x+19x=1,故选:C.根据题意可以列出相应的方程,从而可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.12. 解:∵∠AOB=90∘,∠COD=90∘,∴∠AOB+∠COD=180∘,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180∘,∴∠AOD+∠BOC=180∘,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180∘,∴∠BOC=36∘,∵OE为∠BOC的平分线,∠BOC=18∘,∴∠COE=12∴∠DOE=∠COD−∠COE=90∘−18∘=72∘,故选:D.根据∠AOD+∠BOC=180∘,∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD−∠COE即可解答.本题考查了角的计算,解决本题的关键是明确∠AOD+∠BOC=180∘.13. 解:(−1)2018的结果是1;故答案为:1根据有理数乘方计算即可.此题考查有理数的乘方,关键是根据有理数乘方的法则解答.14. 解:−4x a+5y3+x3y b=3x3y3,a+5=3,b=3,a=−2,ab=−2×3=−6,故答案为:−6.根据合并同类项得出a+5=3,b=3,求出a、b的值,再代入求出即可.本题考查了合并同类项,能求出a、b的值是解此题的关键.15. 解:∵数轴上A,B两点所表示的数分别是−4和7,(−4+7)=1.5.∴线段AB的中点所表示的数=12故答案为:1.5.根据A、B两点所表示的数分别为−4和7,利用中点公式求出线段AB的中点所表示的数即可.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16. 解:∵第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……∴第n个图形中正方形的个数为5n+1,故答案为:5n+1.由第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……据此可得.本题主要考查图形的变化规律,解题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17. (1)先计算乘法,再计算加法即可得;(2)根据有理数混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18. (1)先去括号,再合并同类项可得;(2)先去括号、合并同类项化简原式,据此可得.本题主要考查整式的加减,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.19. (1)去括号、移项、合并同类项,系数化成1即可求解.(2)去分母、去括号、移项、合并同类项,系数化成1即可求解.本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20. 解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(−5)❈12=−17;(3)加法的交换律仍然适用,例如:(−3)❈(−5)=8,(−5)❈(−3)=8,所以(−3)❈(−5)=(−5)❈(−3),故加法的交换律仍然适用.(1)首先根据❈(加乘)运算的运算法则进行运算的算式,归纳出❈(加乘)运算的运算法则即可;然后根据:0❈(+8)=8;(−6)❈0=6,可得:0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,等于这个数的绝对值.(2)根据(1)中总结出的❈(加乘)运算的运算法则,以及有理数的混合运算的运算方法,求出[(−2)❈(+3)]❈[(−12)❈0]的值是多少即可.(3)加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用,并举例验证加法交换律适用即可.此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意加法运算定律的应用.21. 解:(1)这次调查的市民人数为:20÷20%=1000(人);×100%=28%,∵m%=2801000n%=1−20%−17%−28%=35%,∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补图如下:(3)基本了解”所在扇形的圆心角度数为:360∘×20%=72∘;故答案为:72;(4)根据题意得:2000×17%=340(万人),答:估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有340万人;故答案为:340.(1)根据C类的人数和所占的百分比求出调查的总人数,再根据A类的人数求出A类所占的百分比,从而求出n的值;(2)根据求出的总人数和B类所占的百分比即可求出B类的人数,从而补全统计图;(3)用360∘乘以“C.基本了解”所占的百分比即可;(4)用2017年深圳市约有的市民乘以“D.不太了解”所占的百分比即可得出答案.本题主要考查了条形统计图以及扇形统计图的运用,解题时注意:从条形图可以很容易看出数据的大小,便于比较.从扇形图上可以清楚地看出各部分数量和总数量之间的关系.22. 解:(1)①如图,直线BC、射线BA、线段AC为所作;②如图,线段AD为所作;(2)∵∠CAD−∠CAB=100∘,∠CAD+∠CAB=180∘,∴2∠CAB=80∘,∴∠CAB=40∘.故答案为40∘.(1)①利用几何语言画出对应几何图形;②先在AC上截取AB得到AC−AB,然后在线段BA的延长线上截取AD,使AD=AC−AB;(2)利用邻补角的定义得到∠CAD+∠CAB=180∘,再加上已知条件∠CAD−∠CAB= 100∘,然后通过解方程组得到∠CAB的度数.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23. (1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据工作总量=工作效率×工作时间结合该批共享单车数量相同,即可得出关于x的一元一次方程,解之即可得出结论;(2)①设属于“一次性购买一件毛衣”的方式有x件,根据利润率=(销售收入−成本)÷成本,即可得出关于x的一元一次方程,解之即可得出结论;②由购买该品牌毛衣的数量为3件,可得出共三种购买方案,分别求出三种方案所需费用,比较后即可得出结论.本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)①找准等量关系,正确列出一元一次方程;②分别求出三种购买方案的费用.。
2018年11月浙江省高中学业水平考试数学试题一、选择题1.已知集合{1,2,3,4}A =,{1,3,5}B =,则A B =( )A.{1,2,3,4,5}B.{1,3,5}C.{1,4}D.{1,3}【答案】D【解析】因为{1,2,3,4}A =,{1,3,5}B =,所以{1,3}AB =.2.函数()cos 2f x x =的最小正周期是( ) A.4π B.2π C.π D.2π 【答案】C【解析】()cos 2f x x =,因为2ω=,所以22T ππ==. 3.计算129()4=( ) A.8116 B.32 C.98 D.23【答案】B【解析】1293()42==. 4.直线210x y +-=经过点( )A.(1,0)B.(0,1)C.11(,)22D.1(1,)2【答案】A【解析】把四个选项的横纵坐标代入直线方程210x y +-=中,可知选项A 可使等式成立.5.函数2()log f x x 的定义域是( )A.(0,2]B.[0,2)C.[0,2]D.(0,2)【答案】A【解析】20020x x x -≥⎧⇒<≤⎨>⎩,故函数()f x 的定义域为(0,2].6.对于空间向量(1,2,3)a =,(,4,6)b λ=,若//a b ,则实数λ=( )A.2-B.1-C.1D.2【答案】D【解析】因为//a b ,所以12346λ==,即112λ=,所以2λ=. 7.渐近线方程为43y x =±的双曲线方程是( ) A.221169x y -= B.221916x y -= C.22134x y -= D.22143x y -= 【答案】B 【解析】依题可设双曲线方程为22221x y a b -=,因为渐进线方程为43y x =±,所以43b a =,即22169b a =,只有B 选项221916x y -=符合. 8.若实数x ,y 满足101010x x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则y 的最大值是( )A.1B.2C.3D.4【答案】B【解析】由约束条件101010x x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,作出可行域如图,由图易知y 的最大值为2.9.某简单几何体的三视图(俯视图为等边三角形)如图所示(单位:cm ),则该几何体的体积(单位:3cm )为( )A.18B.【答案】C【解析】该几何体为正三棱柱,其底面积为24S ===3h =,所以体积V Sh ==10.关于x 的不等式13x x +-≥的解集是( )A.(,1]-∞-B.[2,)+∞C.(,1][2,)-∞-+∞D.[1,2]-【答案】C【解析】当1x ≥时,1132x x x x x +-=+-≥⇒≥;当11x -<<时,1113x x x x x +-=+-=≥⇒无解;当1x ≤时,1131x x x x x +-=--+≥⇒≤-;综上可得,2x ≥或1x ≤-.11.下列命题为假命题的是( )A.垂直于同一直线的两个平面平行B.垂直于同一平面的两条直线平行C.平行于同一直线的两条直线平行D.平行于同一平面的两条直线平行【答案】D【解析】平行于同一平面的两条直线除了平行外,还可以异面,可以相交.12.等差数列{}()n a n N *∈的公差为d ,前n 项和为n S ,若10a >,0d <,39S S =,则当n S 取得最大值时,n =( )A.4B.5C.6D.7【答案】C【解析】∵10a >,0d <,∴n a 是递减数列.又∵3993987654763()0S S S S a a a a a a a a =⇒-=+++++=+=,∴760a a +=,67a a >,∴60a >,70a <,∴max 6()n S S =.13.对于实数a 、b ,则“0a b <<”是“1ba <”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】充分性:由0a b <<,得01ba <<,故充分性成立; 必要性:由1ba <,得0ab a >⎧⎨<⎩或0a b a <⎧⎨>⎩,故必要性不成立.所以“0a b <<”是“1ba <”的充分不必要条件.14.已知函数()y f x =的定义域是R ,值域为[1,2]-,则值域也为[1,2]-的函数是()A.2()1y f x =+B.(21)y f x =+C.()y f x =-D.()y f x =【答案】B【解析】分析四个选项可知只有(21)y f x =+是由()y f x =的图象纵坐标不变,横坐标缩小为原来的12之后再将图像向左平移12个单位得到,故(21)y f x =+和()y f x =的值域是相同的. 15.函数2()()a f x x a R x=+∈的图象不可能是( ) A. B.C.D.【答案】A 【解析】当0a =时,函数22()(0)a f x x x x x=+=≠,函数图象可以是B. 当1a =时,函数221()a f x x x x x=+=+,函数可以类似于D. 当1a =-时,221()a f x x x x x =+=-,0x >时,210x x-=只有一个实数根1x =,图象可以是C.所以函数图象不可能是A. 16.若实数a ,b 满足0ab >,则2214a b ab ++的最小值为( ) A.8 B.6 C.4 D.2【答案】C【解析】因为0ab >,所以2211444a b ab ab ab ++≥+≥=,当且仅当214a b ab ab =⎧⎪⎨=⎪⎩,即1a =,12b =时取等号,所以最小值为4. 17.如图,在同一平面内,A ,B 是两个不同的定点,圆A 和圆B 的半径为r ,射线AB 交圆于点P ,过P 作圆A 的切线l ,当1()2r r AB ≥变化时,l 与圆B 的公共的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线【答案】D【解析】设直线l 与圆B 的交点为M ,过点M 作与过点A 平行于l 的直线的垂线,垂足为N ,易知MN PA MB r ===,即点M 到定直线AN 的距离等于其到定点B 的距离,所以点M 的轨迹是抛物线.18.如图,四边形ABCD 是矩形,沿AC 将ADC ∆翻折成AD C '∆,设二面角D AB C '--的平面角为θ,直线AD '与直线BC 所成角为1θ,直线AD '与平面ABC 所成的角为2θ,当θ为锐角时,有( )A.21θθθ≤≤B.21θθθ≤≤C.12θθθ≤≤D.21θθθ≤≤【答案】B【解析】由二面角的最大性与最小角定理可知,答案在A ,B 选项中产生.下面比较1θ和θ的大小关系即可.过D '作平面ABC 垂线,垂足为O ,过O 作OE AB ⊥,垂足为E ,连结D E ',则 D EO θ'=∠可以认为是OE 与平面AD E '所成的线面角,1θ可以认为是OE 与平面AD E '内的AD '所成的线线角,所以1θθ≤,综上,21θθθ≤≤.二、填空题19.已知函数2,0()1,0x f x x x ≥⎧=⎨+<⎩,则(1)f -= ,(1)f = . 【答案】0,2【解析】因为10-<,故(1)110f -=-+=;又10>,故(1)2f =. 20.已知O 为坐标原点,B 与F 分别为椭圆22221(0)x y a b a b+=>>的上顶点与右焦点,若OB OF =,则该椭圆的离心率是 .【解析】因为B ,F 为椭圆22221(0)x y a b a b+=>>的上顶点和右焦点,故设OB b =,OF c =,又OB OF =,所以b c =,因为a a ==,所以椭圆的离心率2c b e a a ====. 21.已知数列{}()n a n N *∈满足:11a =,12n n n a a +⋅=,则2018a = .【答案】10092【解析】1122n n n a a +++=,12n n n a a +=,22n na a +=,数列21{}n a -和2{}n a 均为等比数列,且公比均为2,首项分别是121,2a a ==,所以数列{}n a 的通项为,故100920182a =.22.如图,O 是坐标原点,圆O 的半径为1,点(1,0)A -,(1,0)B ,点P ,Q 分别从点A ,B 同时出发,在圆O 上按逆时针方向运动,若点P 的速度大小是点Q 的两倍,则在点P 运动一周的过程中,AP AQ ⋅的最大值为 .【答案】2【解析】设(cos ,sin )([0,])Q θθθπ∈,由P 点的速度是点Q 的两倍,即(cos 2,sin 2)P θθ--,(cos 21,sin 2)(cos 1,sin )AP AQ θθθθ⋅=-+-⋅+(cos 21)(cos 1)(sin 2)sin θθθθ=-+++-cos2cos cos cos21sin 2sin θθθθθθ=-+-+-cos(2)cos cos21θθθθ=--+-+cos 21θ=-+22sin 2θ=≤.三、解答题23.在ABC ∆中,内角A ,B ,C 所对的边分别是a ,b ,c ,且222b a c ac =+-. (Ⅰ)求角B 的大小;(Ⅱ)若2a c ==,求ABC ∆的面积;(Ⅲ)求sin sin A C +的取值范围.【答案】(Ⅰ)60︒; ; (Ⅲ). 【解析】(Ⅰ)由222cos 2a c b B ac +-=,可知1cos 2B =,所以60B =︒. (Ⅱ)由(Ⅰ)得60B ∠=︒,又2a c ==,所以11sin 22sin 6022ABC S ac B ∆==⨯⨯⨯︒=(Ⅲ)由题意得3sin sin sin sin(120)sin 30)2A C A A A A A +=+︒-=+=+︒,因为0120A ︒<<︒,所以3030150A ︒<+︒<︒30)A <+︒≤值范围是2. 24.已知抛物线2:4C y x =的焦点是F ,准线是l .(Ⅰ)写出F 的坐标和l 的方程;(Ⅱ)已知点(9,6)P ,若过F 的直线交抛物线C 于不同的两点A ,B (均与P 不重合),直线PA ,PB 分别交l 于点M ,N .求证:MF NF ⊥.【答案】(Ⅰ)(1,0)F ,1x =-; (Ⅱ)略.【解析】(Ⅰ)因为抛物线24y x =是焦点在x 轴正半轴的标准方程,所以2p =,所以焦点为(1,0)F .准线方程为1x =-.(Ⅱ)设11(,)A x y ,22(,)B x y (16y ≠±且26y ≠±),AB 直线方程为1x my =+(m 是实数),代入24y x =,得2440y m y --=,于是124y y m +=,124y y ⋅=-.由(9,6)P ,得146PA k y =+,直线PA 的方程为146(9)6y x y -=-+,令1x =-,得1164(1,)6y M y --+,同理可得2264(1,)6y N y --+,所以12121296()41(6)(6)F N F M MF NF F M F N y y y y y y y y k k x x x x y y ---++⋅=⋅==---++,故MF NF ⊥. 25.已知函数()()a f x x a R x =+∈. (Ⅰ)当1a =时,写出()f x 的单调递增区间(不需写出推证过程);(Ⅱ)当0x >时,若直线4y =与函数()f x 的图象相交于A ,B 两点,记()AB g a =,求()g a 的最大值;(Ⅲ)若关于x 的方程()4f x ax =+在区间(1,2)上有两个不同的实数根,求实数a 的取值范围.【答案】(Ⅰ)[1,0)-,[1,)+∞; (Ⅱ)4;(Ⅲ)15()22--. 【解析】(Ⅰ)()f x 的单调递增区间为[1,0)-,[1,)+∞(Ⅱ)因为0x >,所以(ⅰ)当4a >时,()y f x =的图象与直线4y =没有交点;(ⅱ)当4a =或0a =时,()y f x =的图象与直线4y =只有一个交点;(ⅲ)当04a <<时,0()4g a <<;(ⅳ)当0a <时,由4a x x +=,得240x x a -+=,解得2A x =由4a x x+=-,得240x x a ++=,解得2B x =-所以()4A B g a x x =-=,故()g a 的最大值是4.(Ⅲ)要使关于方程4(12)()a x ax x x +=+<<*有两个不同的实数根1x ,2x ,则0a ≠,且1a ≠±.(ⅰ)当1a >时,由()*得2(1)40a x x a -+-=,所以1201a x x a =-<-,不符合题意; (ⅱ)当01a <<时,由()*得2(1)40a x x a -+-=,其对称轴221x a =>-,不符合题意; (ⅲ)当0a <,且1a ≠-时,由()*得2(1)40a x x a +++=,又因为1201a x x a =>+,所以1a <-.所以函数a y x x=+在(0,)+∞是增函数. 要使直线4y ax =+与函数a y x x =+图象在(1,2)内有两个交点,则(1)11f a a =+=--,只需14164(1)0a a a a -->+⎧⎨-+>⎩,解得1522a --<<-.综上所述,实数a 的取值的范围为15()22--.。
苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是(,).9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.11.比较大小:1(填“>”、“<”或“=”).12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= .16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题(本大题共10小题,共68分)17.(4分)计算:.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数就是无限不循环小数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A错误;B、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B正确;C、考察人们保护海洋的意识,调查范围广适合抽样调查,故C错误;D、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、线段有2条对称轴,故此选项错误;B、角有1条对称轴,故此选项错误;C、等腰三角形有1条或3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵y=2x﹣3,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是( 1 ,﹣1 ).【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为①③②.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;所以按事件发生的可能性大小,按从小到大排列为①③②,故答案为:①③②.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.【分析】用学校总人数乘以教师所占的百分比,计算即可得解.【解答】解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.11.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.【解答】解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.【点评】此题主要考查了实数大小比较,正确得出的取值范围是解题关键.12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.【点评】本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为x>﹣1 .【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【解答】解:当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为:x>﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= 2 .【分析】求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BE,即可解答.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠C=∠A=60°,∵DE⊥BC、EF⊥AC、FD⊥AB,∴∠DEB=∠EFC=∠FDA=90°,∴∠BDE=∠FEC=∠AFD=30°,∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形,在△ADF、△BED、△CFE中∴△ADF≌△BED≌△CFE,∴AD=BE=CF,∵∠DEB=90°,∠BDE=30°,∴BD=2BE,∴AB=3BE,∴BE=AB=2.故答案为:2.【点评】本题考查了等边三角形性质,含30度角的直角三角形性质,解决本题的关键是熟记含30度角的直角三角形性质.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).【分析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点评】此题主要考查了一次函数的应用,利用数形结合得出乙的运动速度是解题关键.三、解答题(本大题共10小题,共68分)17.(4分)计算:.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣2﹣2+1=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)C组学生的频率为0.32 ,在扇形统计图中D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.【分析】欲证明DE∥CF,只要证明∠ADE=∠BCF,只要证明△AED≌△BFC即可;【解答】证明:∵AE∥BF,∴∠A=∠B,∵AC=BD,∴AC+BD=BD+CD,即:AD=BC,在△AED和△BFC中,∴△AED≌△BFC(SAS),∴∠ADE=∠BCF,∴DE∥CF.【点评】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB,由△ADB的面积为15cm2求得DE=3cm,再根据角平分线的性质可得.【解答】解:(1)如图所示,AD即为所求;(2)过D作DE⊥AB,E为垂足,由△ADB的面积为15cm2,得AB•ED=15,解得:ED=3cm,∵AD平分∠BAC,DE⊥AB,∠ACB=90°∴CD=ED=3cm.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图及角平分线的性质.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.【分析】(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.【解答】解:(1)由已知可设l1对应的函数表达式为y=2x+b,把x=﹣2,y=1代入表达式解得:b=5,∴l1对应的函数表达式为y=2x+5,画图如下:,(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,由题意得,解得即A(,),则AD=,设l1、l2分别交x轴的于点B、C,由y=﹣2x+4=0,解x=2,即C(2,0)由y=2x+5=0解得,即B(,0)∴BC=,∴即l2与l1及x轴所围成的三角形的面积为.【点评】本题考查了函数的平移和两条直线的平行问题;同时还要熟练掌握若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= 240 km,AB两地的距离为390 km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得 150﹣60x=60,解得:x=1.5由y2=60得 60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.【分析】(1)只要证明△BDH≌△CEK,即可解决问题;(2)只要证明△DHO≌△EKO即可解决问题;【解答】解:(1)∵DH⊥BC,EK⊥BC,∴∠DHB=∠K=90°,∵AB=AC,∴∠B=∠ACB,又∵∠ACB=∠ECK,∴∠B=∠ECK,在△BDH和△CEK中∵∠ACB=∠ECK,∠B=∠ECK,BD=CE∴△BDH≌△CEK(AAS).∴DH=EK.(2)∵DH⊥AC,EK⊥BC,∴∠DHO=∠K=90°,由(1)得EK=DH,在△DHO和△EKO中,∵∠DHO=∠K,∠DOH=∠EOK,DH=EK∴△DHO≌△EKO(AAS),∴DO=EO.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天最多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.【分析】(1)作△ADC关于CD的对称图形△A′DC,再证明AD=BA′即可;(2)如图,作△ADC关于AC的对称图形△A′DC.过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.由此构建方程即可解决问题;【解答】(1)证明:作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵CD平分∠ACB,∴∠ACD=45°在△ACD中,∠ADC=180°﹣∠A﹣∠A CD=75°∴∠A′DC=∠ADC=75°,∴∠A′DB=180°﹣∠ADC﹣∠A′DC=30°,∴∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=C A′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△A′DC.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点评】本题考查全等三角形的判定和性质、直角三角形30度角性质、轴对称、勾股定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.。
2018年杭州市初中毕业升学模拟考试数 学各位同学:1.本试卷分试题卷和答题卷两部分,考试时间100分钟,满分120分; 2.答题前,请在答题卡中填写姓名和准考证号; 3.不能使用计算器;4.所有答案都必须做在答题卡规定的位置上,注意试题序号和答题序号相对应.试题卷一.仔细选一选 (本题有10个小题,每小题3分, 共30分.)1.自从共享单车进入杭州到目前,市面上总共出现了70多款共享单车,有近60万辆共享单车涌入杭城.60万用科学记数可表示为A .6.0×10B .6.0×104C .6.0×105D .6.0×106 2.已知实数x 满足41≤≤x ,则x 的最大值与最小值的差是 A .3 B .4 C .5 D .83.某班长统计今年1—7月“书香校园”活动中,全班同学的课外阅读量(单位:本),绘制了折线统计图,下列说法正确的是 A .阅读量最少的是1月B .中位数是42C .众数是58D .平均数是524.下列计算中,正确的是A .x x =2B .523x x x =⋅C .a a a a =-•-÷)1(11D .2222-=- 5.如图,△ABC 中,DE ∥AB ,以BC 所在直线画数轴,B 对应 的实数是1,D 对应的实数是3,若S △EDC : S △ABC =9:16, 则C 表示的实数是A .34B .333-C .334-D .333+ 6.如图,已知OA =OB =OC =2,且∠ACB =45°,则AB 的长为 A .2 B .3 C .22 D .32第5题图OCBA 第6题图xnmN MCBA 第8题图OE DCBA第9题图7.若一个多边形的边数增加1,其内角和增加原来的101,则原多边形是几边形 A .10 B .11 C .12 D .138.如图,在等边三角形ABC 中,在AC 边上取两点M 、N ,使∠MBN =30°.若AM =m ,MN =x ,CN n =,则以x ,m ,n 为边长的三角形的形状为A .锐角三角形B .直角三角形C .钝角三角形D .随,,x m n 的值而定 9.已知□ABCD 中,AC =8,E 是AD 上一点,△DCE 的周长是□ABCD 周长的一半,且EC =5.连结EO ,则EO 的长为A .2B .3C .4D .5 10.在数学中,为了书写简便,我们会用符号∑表示若干个数的和,例如:把1+2+3+…+(n -1)+n 记为1nk k =∑,即1nk k =∑=1+2+3+…+(n -1)+n ,又如()1nk x k =+∑=(x +1)+(x +2)+(x +3)+…+(x +n ). 则化简[]∑=--+31)1)((k k x k x 的结果是( )A .20332--x xB .18332--x xC .20332-+x xD .18332-+x x 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11.某个公园有A 、B 两个入口和C 、D 、E 三个出口,小明从A 入口进入公园并且C 出口走出公园的概率是___▲ _____.12.已知二次函数54)3)(1(+++-=a x x a y ,则它的顶点坐标为 ▲ . 13.已知A 、B 两点分别在反比例函数x k y =(0≠k )与x k y 32-=(23≠k )的图象上,若点A 与点B 关于x 轴对称,则k 的值是 ▲ . 14.若关于x 的不等式abb ax >-的解为1-<x ,则b = ▲ .(用a 的代数式表示) 15.如图,在△ABC 中,AB =6,∠B =60°,点D 、E 分别在AB 、BC 上,且BD =BE =2,将△BDE 沿DE 所在直线折叠得到△B ′DE (点B ′在四边形ADEC 内),连接AB ′,则AB ′的长为 ▲ .16.下列关于分式ax x x +--672的说法:①当x 取2时,这个分式有意义,则8≠a ;②当x =7时,分式的值一定为零;③当a <9时,无论x 取何值,分式都有意义;④要使方程ax x x +--672=21有唯一解,则a =2. 其中正确的有 ▲ .(填序号) 三. 全面答一答 (本题有7个小题, 共66分)17.(本小题满分6分)甲、乙、丙三人应聘某公司,三人的笔试、面试成绩如下表:公司按一定的比例进行算分,若甲最后得分为88分,(1)请计算笔试成绩和面试成绩在总分所占的比例. (2)根据(1)的比例算分,谁最终被录取?(得分最高者被录取)请计算说明. 18.(本小题满分8分)一轮船A 以40海里/小时的速度由西向东航行,在途中接到台风警报.台风中心B 正第15题图C以20海里/小时的速度由南向北移动。
已知距台风中心200海里的区域(包括边界)都属于受台风影响区,当轮船接到台风警报时,测得AB =1000海里,BO =600海里. (1(2)如果你认为轮船会进入台风影响区,那么从接到警报开始,经过多少时间就进入台风影响区? 受台风影响有多久?19.(本小题满分8分) 已知一次函数343--=x y ,交x 轴点A ,y 轴于点B . (1)求A 、B 坐标(2)以AB 为边,向右上方作正方形ABCD , 已知反比例函数xky =过点C ,求k . 20.(本小题满分10分) 如图,A 、B 、C 、D 四个点均在圆上,O 是圆心,且AO ∥DC ,OD ∥BC ;(1)请探索∠B 和∠C 的数量关系,并说明理由; (2)当∠BAO =30°时,求∠B .FEDCB A21.(本小题满分10分)在矩形ABCD 中,E 是AD 上一点,AE =3,AB =23,连结AC 、BE .若BE ⊥AC ,垂足为F ,连结DF .(1)求BC 的长;(2)求证:CF =2AF (3)求tan ∠CFD .22.(本小题满分12分)已知二次函数322++-=mx mx y (m 0≠)的图象为M .(1)若二次函数与x 轴只有一个交点,求M 的顶点坐标.(2)若点2(3,6)n n n --和2(3,6)n n n +-在图象M 上,求m 的值.(3)若),1(1y A -,),0(2y B ,),(3y k C 在M 上,且2y <3y <1y ,写出k 的取值范围.A'NMDCBA23.(本小题满分12分)如图,菱形ABCD 中,∠A =60°,AB =2.(1)若M 是AB 的中点,N 是AD 上任意一点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连结A ′C ,则A ′C 长度的最小值是多少?(2)若M 、N 、G 、H 均是菱形各边上动点,将菱形ABCD 沿MN 、GH 折叠,使得点A 、C 两点重合于对角形AC 上一点P ,则六边形MNDHGB 面积的最大值是多少?此时AM长为多少?2018年杭州市初中毕业升学文化模拟考试数学评分标准一、选择题:二、填空题:11、1612、(-1,5) 13、1 14、aa+-1215、16、①④三、简答题:17、(1)设笔试成绩权重比为a,则面试成绩权重比为1-a。
由是85a+90(1-a)=88 得a=0.4 (3分)(2)乙:80×0.4分+95×0.6=32+57=89 (1分)丙:82×0.4+93×0.6=32.8+55.8=88.6分(1分)乙被录取(1分)18、由勾股定理得:AO=800海里(1分)设x小时后受台风影响则AA’=40x BB1=20x A1O=800-40x B1O=600-20x (2分)∴222002800-+-xx(2分)(=20)40600()得x1=20 x2=24 (2分)答:……(1分)19、(1)A(—4,0)B(0,—3)(2分)(2)过C作CE⊥y轴证△AOB≌△BEC (2分)∴CE=OB=3 AO=BE=4 (2分)∴OE=1即C(3,1) (1分)∴k=3×1=3 (1分)20、(1)设∠OAD=x∵AO=OD ∴∠ADO=x∴∠AOD=180°-2x (1分)∵AO∥PC ∴∠ODC=∠AOD=180°-2x (1分)∵OD ∥BC ∴∠C=180°-(180°-2x)= 2x (1分) ∵∠B+∠ADC=180° ∴∠B=180°-x-(180°-2x)= x (1分)∴∠B=21∠C (1分)(2)∵∠BAO=30° ∴∠BAD=x+30° (2分)又∵∠C+∠BAD=180°(1分) ∴x+30°+2x=180°3x=150° X=50° 即∠B=50°(2分)21、(1)证△EAB ∽△ABC (1分)∴BCABAB AE =(1分) ∴BC=63183)23(2== (1分) (2)△AFE ∽△CFB (1分) ∴2163===BC AE CF AF (1分) ∴CF=2AF (1分)(3)过D 作DG ⊥AC 于G 由(1)(2)得:AC=63543618==+ (1分) DG=3263623=⨯ (1分)∵BE ⊥AC∴EF ∥DG ∴1==EDAE FG AF ∴FG=631=AC (1分) ∴tan ∠CFD=2632= (1分)22、(1)由题042=-ac b 即03)(4)2(2=⨯-⨯-m m 得)m 舍(01=32-=m (2分)∴22)1(3363-=+-=x x x y顶点M (1,0) (2分)(2)由题,两点关于对称轴对称 则122233=⨯--=++-m m n n 解n=1 (1分)则(-2,-5)、(4,-5) (1分)(-2,-5)代入得3445+--=-m m解m=1 (2分)(3) 01<<-k (2分) 或2<k<3 (2分)23、以M 为圆心,AM 为半径画圆,连CM 交圆于K ,则CK 长即为A ’C 最小值 (2分)过C 作CE ⊥AB 于E ,则BE=1,CE=3,由勾股定理得CM=7 (2分)∴CK=17- (2分)(2)设AM=x ,则AP=x 3,CP=x 332-∴CG=2-xS 菱=3222432=⨯⨯ (2分) S △AMN =243x S △CHG =2)2(43x - ∴S 六=)44(43433222+---x x x (2分) =)844(4322-++--x x x =)442(432---x x =)312(232-+--x x =323323)1(232≤+--x当AM=1时,面积最大233。