当前位置:文档之家› 广义相对论的几个疑难问题

广义相对论的几个疑难问题

广义相对论的几个疑难问题
广义相对论的几个疑难问题

广义相对论的几个疑难问题

Einstein广义相对论深刻地揭示了时间、空间和运动物质之间内在关系.然而Einstein 引力场方程的一些特殊引力场精确解中却存在不能消除的奇点,像具有球对称静态引力场Schwarzschild外部解及匀速转动引力场外部解[2]等.另外,用Einstein引力场方程处理宇宙演化解中,存在与直接观测到的质量密度相矛盾的结论,即质量缺失问题(也就是所谓的暗物质).Penrose和Hawking认为只要关于物质、能量、以及因果性一些合理物理条件成立,在Einstein广义相对论中就不可避免存在着奇点.在这类奇点处,时空流行达到尽头,象在星体中引力坍缩终止于黑洞中心奇点就是这样的.由于不知道奇点所准循的规律,物理学、包括广义相对论将随着奇点出现而失效.一般认为出现这种运动终止于奇点现象反映了广义相对论引力场理论某种不完善,并不一定是客观世界所固有的.

1. 由于地球观察者与宇宙物质间存在相对运动速度,描述膨胀宇宙必须采用动态能量动量张量,不能采用静态能量动量张量.采用动态能量动量张量后的计算结果表明,爱因斯坦引力场方程不可能用来描述均匀且各向同性膨胀的宇宙,现代标准宇宙学面临基础缺失的危机.

2.广义相对论:广义相对论在所有尺度上都是正确的吗?

3.超弦理论最终可能会放弃时间和空间这两个概念.

4、是否存在额外的时空维度?

对重力真正性质的研究也会带来这样的疑问:空间是否不仅仅限于我们能轻易观察到的四维,要确定这一点,我们可能首先要怀疑自然是否是自相矛盾的:我们是否应该接受这样的观点,即有两种力作用于两个不同的层面——重力作用于星系这个大层面,而其它三种力作用于原子的微小世界?统一场论会说这是一派胡言——肯定有一种方法将原子层面的三种力量与重力连接起来.这就将我们引向了一些线性理论学家对重力的解释,其中就包括其它维的空间,开始的宇宙线性理论模型将重力和其它三种力在复杂的11维宙中结合起来,在那个宇宙——也就是我们宇宙中——其中的7维隐藏在超乎想象的微小空间中,以至于我们无法觉察到,弄懂这些多维空间的一个办法是,想象一个蛛网的一根丝,用裸眼来看,这根细丝只是一维的,但在高倍放大镜下,它就分解成了一个有相当宽度、广度和深度的物体,线性理论学家说,我们之所以看不见其它维的空间,只是因为缺少能将它们分解的精密仪器.我们可能永远无法直接看到这些多维空间,但有了天文学家和粒子物理学家的仪器,也许可以找到它们存在的证据.在试图引申爱因斯坦理论和了解引力的量子性质时,粒子物理学家们假设存在着超出已知四维时空的高维时空.它们的存在对宇宙的诞生和演化具有隐含,可能会影响基本粒子的相互作用,并改变近距离时的引力.

高能与核物理在弦理论方面的研究表明有额外维.TeV能级加速器和其他对撞机的实验,通过寻找两个加速的粒子(如TeV能级加速器的质子与反质子)在对撞中产生粒子时丢失的能量,来寻找额外维.

5、什么是引力?

在爱因斯坦改进牛顿的理论时,他扩展了重力的概念,将巨大的重力场和以接近光速运动的物体都计算在内,这一扩展形成了著名的相对论和时空理论,但爱因斯坦的理论没有涉及极小领域的量子力学,因为重力在很小范围内可以忽略不计,而且还没有人对个别少量的重力进行过试验性的观察.然而,自然界也有重力被压迫在小物体之内的极端情况,比如说,在靠近黑洞中央的地方,大量物质被挤在量子大小的空间里,重力就在很小的距离内变得非常强,大爆炸时期混沌的初始宇宙中一定就是这种情况.黑洞在宇宙中普遍存在,可以探讨它们的巨大引力.早期宇宙中的强引力效应具有客观测到的重要性.爱因斯坦理论也应适用于这些情况,正像它适用于太阳系一样.完整的引力理论应该包括量子效应—爱因斯坦引力理论不包括—或不解释为什么它们不相关.高能和核物理理论学家研究弦理论和额外维空间的可能性,有助于解释引力的量子方面.像在费米实验室(左图)TeV能级加速器和CERN的LHC上开展的实验将能够在未来几年内对一些这样的思想进行检验.弦理论已经导致对黑洞的熵进行计算.

6、为了能与地球近平直参考系中的实际测量结果进行比较,必须将弯曲时空中对引力问题的计算换算成用平直时空中的标准尺和标准钟(或局部惯性系的标准尺和标准钟)来计量.这在弯曲时空引力理论中被认为是基本原则,但目前广义相对论对具体问题计算的过程中却普遍地忽略了这个原则.采用标准尺和标准钟计算的结果表明,水星近日点进动是实际观察值的4.8倍,而且方向相反,雷达波延迟只是观察值的53%,这样的结果显然是根本不可能的.因此广义相对论实际上并未得到实验证实,除非爱因斯坦引力场方程描述的已经是平直时空中的结果,不是弯曲时空中的结果,但这与爱因斯坦弯曲时空引力理论的前提相矛盾.

7、美国宾夕法尼亚州大学的爱德华·吉南和弗兰克·马洛尼两位天文学家发现距我们2000光年的DI海格立斯双星的运动与相对论完全相悖,它们的质量都很大,分别为4.5和5.2个太阳质量,公转周期为10.55天,轨道偏心率0.489左右.据此,按相对论计算,其轨道应该有明显的最近点进动现象.然而事实上,当两星的其中之一运动到另一个星体之前并发生全食时,人们只观测到两次较明显的亮度衰变.天文学家根据时间建立了该双星的亮度曲线,计算出偏全食时间,并据此演绎出双星相应位置.鉴于DI海格立斯双星的

观测已有84年的历史,人们拥有丰富的资料,经对3000多轨道进行详细分析,吉南和马洛尼两位天文学家计算出两星最近点进动仅为0.64度,而相对论理论推算的结果却是2.34

度!

广义相对论基础

广义相对论基础 Introduction to General Relativity 课程编号:S070200J15 课程属性:学科基础课学时/学分:60/3 预修课程:大学理论物理、高等数学 教学目的和要求: 本课程为物理学、天文学研究生的学科基础课,同时也是为今后有可能接触到引力理论的其它学科研究生的学科基础课。主要介绍爱因斯坦的广义相对论。使学生具有在今后接触到引力场问题时,能通过阅读有关书籍文献对更深入的问题进行了解的能力。本课强调弄清物理和几何图像。本课不涉及引力场量子化、引力和其它作用之统一以及以抽象数学工具表现时空几何等问题。本课也扼要对广义相对论的观测和实验检验,黑洞问题和宇宙学问题进行简要地介绍。 内容提要: 第一章张量分析基础 张量代数,联络,协变微商,测地线方程,Killing矢量。 第二章引力场方程 引力与度规,引力红移,黎曼曲率张量,Bianchi恒等式,引力场方程。 第三章场方程的应用(Ⅰ) 西瓦兹解,西瓦兹场中质点的运动,光线偏折,引力透镜效应,雷达回波,0Kruskal坐标和黑洞,Keer度规。 第四章场方程的应用(Ⅱ) 宇宙学原理,共动坐标系,Robertson-Walker度规,宇宙学红移,标准宇宙学模型简介。 主要参考书: 1. R, Adler, M.Bagin,M.Schiffer,Introduction to General Relativity(第二版),McGraw-Hill Book Company,New York,1975. 2. 俞允强,《广义相对论引论》,北京大学出版社,北京,1997。 3. S. Weinberg,Gravitation and Cosmology,John Wiley Sons,Inc.,New York,1972. 撰写人:邓祖淦(中国科学院研究生院) 撰写日期:2001年09日

广义相对论的理解

11、广义相对论的几 个疑难问题 1、暗物质的本质:现代宇宙学观测表明宇宙中存在暗物质和暗能量。但是它们的起源仍然是个谜。我们能找到的普通物质仅占整个宇宙的4%,各种测算方法都证实,宇宙的大部分是不可见的。要说宇宙中仅仅就是暗色尘云和死星体是很容易的,但已发现的有力证据说明,事实并非如此。正是对宇宙中未知物质的寻找,使宇宙学家和粒子物理学家开始合作,最有可能的暗物质成分是中微子或其它两种粒子:neutralino和axions(轴子),但这仅是物理学的理论推测,并未探测到,据认为,这三种粒子都不带电,因此无法吸收或反射光, 但其性质稳定,所以能从创世大爆炸后的最初阶段幸存下来。 天文学家已经证明:宇宙中的天体从比我们银河系小100万倍的星系到最大星系团,都是由一种物质形式所维系在一起的,这种物质既不是构成我们银河系的那种物质,也不发光。这种物质可能包括一个或更多尚未发现的基本粒子组成,该物质的聚集产生导致宇宙中星系和大尺寸结构形成的万有引力。同时,这些粒子可能穿过地面实验室。 美国能源部LANL实验室的液体闪烁体中微子探测器、加拿大Sudbury中微子观测站和日本超级神冈加速器实验的最新结果给出 有力的证据:中微子以各种形式“振荡”,因此必定会具有质量。虽然质量很小,但宇宙中大量的中微子加起来可使总的质量达到相当高。美国费米国家实验室新的加速器实验MiniBooNE和MINOS将研究中微子震荡和中微子质量。 尚未发现的其它粒子有可能存在,例如一种称为超对称的新对称理论预言有一种大的新类型的粒子,其中有些可解释暗物质。现正在费米实验室TeV能级加速器进行的和计划在CERN正建造的大型强子对撞机(LHC)上开展的实验,以及地下低温暗物质寻找和空间利用伽马射线大面积天体望远镜所进行的实验,目的都是要寻找超对称粒子。 阿尔法磁谱仪(AMS)安装在国际空间站上,寻找反物质星系和

狭义相对论和广义相对论

要了解狭义相对论和广义相对论的区别,我们首先要搞清楚,这两个理论大概说了什么? 狭义相对论 我们先从狭义相对论说起,其实狭义相对论解决了一个物理学的重大矛盾。在爱因斯坦之前,最成功的两个理论分别是牛顿提出的牛顿力学和麦克斯韦提出麦克斯韦方程。只不过,这两个理论有个矛盾,那就是:光速。 具体来说,牛顿的理论认为,速度可以不断地进行叠加,没有上限,只要你加得上去就行。可是,麦克斯韦方程得出的光速是一个固定值,似乎暗示着光速无论在什么惯性坐标系下都是一样的。要知道,我们在使用牛顿力学时,是需要先选定参考坐标的。因此,科学家就在思考,是不是存在一个奇怪的坐标系,让光速一直保持一个速度,它们管这个叫做以太。于是,一群科学家就拼了命地去找“以太”,然后他们接二连三地失败了。 后来,26岁的爱因斯坦提出了狭义相对论。

有人说他高举了奥卡姆剃刀原理才成功的,这个奥卡姆剃刀原理大意是:如无必须勿增实体。翻译过来就是,咋简单咋来。既然光速是不变的,那为啥还要假设“以太”? 于是,爱因斯坦就以“光速不变原理”和“相对性原理”为基础假设,推导出了狭义相对论。这个过程就有点像平面几何,就只有五条公设,但是能搞出一整套体系。而这里的相对性原理,说白了就是经典物理学的老套路,在研究运动时,需要先选个惯性参考系。 通过这两条假设,爱因斯坦出了很多奇葩的结论,比如:时间膨胀。说的是,如果你想对于我高速运动,那我看你的时间就会变慢,这种变慢可以理解成,如果你在高速的飞船里做操,那我这里看到的就是你在慢动作做操。而你自己其实感觉到的时间是正常流逝。所以,是以我参考系看你时间膨胀了。如果你也 看到,你也会发现我的时间也变慢了,因为我想对于你也是在高速运动的。

广义相对论简介

广义相对论简介 引子 由牛顿力学到狭义相对论,基本观念的发展是,其一:由一切惯性系对力学规律平权到一切惯性系对所有物理规律平权;其二:由绝对时空到时空与运动有关。 爱因斯坦进一步的思考:非惯性系与惯性系会不平权吗?物质与运动密不可分,那么时空与物质有什么关系?关于惯性和引力的思考,是开启这一迷宫大门的钥匙,最终导致广义相对论的建立。 §1 广义相对论的基本原理 一、等效原理 1. 惯性质量与引力质量 实验事实:引力场中同一处,任何自由物体有相同的加速度。 根据上述事实及力学定律,可得任一物体的惯性质量 与引力质量 满足 常量,与运动物体性质无关,选择合适的单位,可令 = = , 即惯性质量与引力质量相等。从而,在引力场中自由飞行的物体,其加速度必等于 当地的引力强度 。 2. 惯性力与引力 已知在非惯性系中引入惯性力后,可应用力学规律,而惯性力。在 此基础上,讨论下述假想实验。 1) 自由空间中的加速电梯(如图1) 以 为参考系,无法区分ma 是惯性力还是引力。因此,也可以认为是在引力场中 匀速运动的电梯。 2) 引力场中自由下落的电梯S*(如图2) 以S*为参考系,无法区分是二力平衡 还是无引力。因此,也可认为S*是 自由空间中匀速运动的电梯。 以上二例表明,由 = , 可导出惯性力与引力的力学效应不可区分, 或者说,一加速参考系与引力场等效。当然,由于真实引力场大范围空间内不均匀, 图 图1 图 2

因此,这种等效只在较小范围空间内才成立,我们称之为局域等效。 3. 等效原理 弱等效原理:局域内加速参考系与引力场的一切力学效应等效。 强等效原理:局域内加速参考系与引力场的一切物理效应等效。 广义相对论的等效原理是指强等效原理。 4.对惯性系的再认识——局域惯性系 按牛顿力学的定义,惯性定律成立的参考系叫惯性系。恒星参考系是很好的惯性 系,不存在严格符合此定义的真正的惯性系。惯性系之间无相对加速度。 按爱因斯坦的定义,狭义相对论成立的参考系,或(总)引力为零的参考系叫惯 性系。因此,以引力场中自由降落的物体为参考的局域参考系是严格的惯性系,简 称为局惯系。引力场中任一时空点的邻域内均可建立局惯系,在此参考系内运用狭 义相对论。同一时空点的各局惯系间无相对加速度,不同时空点的各局惯系间有相 对加速度。 二、广义相对性原理 原理叙述为:一切参考系对物理规律平权,即物理规律在一切参考系中的表述形 式相同。 为了在广义相对性原理的基础上建立广义相对论理论,爱因斯坦所做的进一步工 作是使引力几何化,即把引力场化作时空几何结构加以表述。对广义相对论普遍理 论的研究数学上涉及黎曼几何、张量分析等,超出本简介范围,下面只作浅显的说 明。 §2 引力场的时空弯曲 一、弯曲空间的概念 从高维平直空间可观测低维平直空间与弯曲空间的差异。 平面——二维平直空间内:测地线(即两点间距离的极值线)为直线,三角形内 角和=,圆周长=。 球面——二维弯曲空间:测地线为弧线,如图。三角形(PMN)的内角和>, 圆周长<。 故通过测量可判定空间弯曲。(如图3) Array二、引力场的空间弯曲 讨论爱因斯坦转盘(如图4) 相对惯性系S以角速度均匀 转动的参考系。由S系可推知 系中的测量结果(狭义相对论) 图 3

广义相对论的建立

在狭义相对论建立之后,爱因斯坦并没有停止他科学创造的步伐。在1907年,当绝大部分物理学还没有理解狭义相对论所带来的物理学思想的重大革命意义时,爱因斯坦却远远超过了他同时代的物理学家,发现了狭义相对论的根本缺陷,开始了新的理论构想。 一、狭义相对论的局限性 爱因斯坦发现:“在古典力学里,同样也在狭义相对论里,有一个固有认识论的缺点。这个缺点恐怕是由E.马赫最先清楚地指出来的。”马赫的问题时:“为什么惯性系在物理上比其他坐标系都特殊,这是怎么一回事?”的确,按照狭义相对论,很多物理量定律在洛伦兹变换下具有协变性,因而物理定律在各个惯性系里都成立。或者说对物理学定律而言,各个惯性系都是等效的。但是,无论是古典力学还是狭义相对论,都不能说明为什么只有惯性系才有特殊优越的地位?惯性系又是什么?按牛顿力学,凡是与做惯性运动物体相固联的参考系就是惯性系。但是如何确定物体在做惯性运动,最终有需仰仗一个“不动的绝对空间”,许多人,包括爱因斯坦本人都对这个问题产生了怀疑。1922年,他在京都大学访问期间所作的《我是如何创立相对论》的讲演中,谈到1907年他对狭义相对论的想法时,他说:“当时,我对狭义相对论并不满意,因为它被严格的限制在一个相互具有恒定速度的参考系中,它不适用于一个任意运动的参考系,于是我努力把这一限制取消,以使这一理论能在更多一般的情况下讨论。对于坚信因果关系的普遍性的爱因斯坦来说,当然不能容许惯性系与非惯性系之间这种内在不对称情况的存在。如何来解决这个难题呢?其最根本、最自然的作法。就是扩大狭义相对性原理的物理范围和内容。 除了惯性系这一限制外,狭义相对论的另一严重困难来自于引力,即狭义相对论与牛顿的引力公式和引力势方程不相容。 自狭义相对论提出后,许多人曾致力于检验各种物理定律在洛伦兹变换下的协变性,他们都获得了成功,但是包括爱因斯坦本人在内,都发现当把牛顿的引力理论纳入到相对论理论之中时,却遇到了明显的矛盾。 爱因斯坦的一个重要观点,是相信世界的内在和谐,追求理论的逻辑统一。运用狭义相对论理论,爱因斯坦已经把电场与磁场,质量和能量统一起来。并使牛顿力学与麦克斯韦方程协调起来。接着爱因斯坦就想把引力现象纳入到狭义相对论的理论体系中去。威力做到这一步,首先必须用场的表达式来描述引力现象。因为狭义相对论既然取消了绝对同时性观念,那么引力的超距作用也就不可能继续保留了。 开始,爱因斯坦认为寻找一个描述引力场变化的结构定律也许并不难。他设想:最简单的作法当然是保留拉普拉斯的引力标量势,并且用一个关于时间的微分量,以明显的方式来弥补足泊松方程。是狭义相对论得到满足。引力场中质点的运动定律也必须适应狭义相对论。”然而爱因斯坦的研究结果是令人怀疑的。因为,依照古典力学物体在竖直引力场中的竖直加速度,同该物体的速度的水平分量无关。因而,在这样的引力场里,一个力学体系或者它的重心的竖直加速度的产生,同它内在的动能无关。但是在1905年爱因斯坦根据狭义相对论已经得出:“物体的质量是它所含能量的量度。”根据这个结论,物体的惯性质量将随其能量而改变,因此落体的加速度将同它的水平速度或者该体系的内能有关。“这不符合这样一个古老的实验事实:在引力场中一切物体都具有同一加速度。”这一段尝试是爱因斯坦相信:“在狭义相对论的框子里,最不可能有令人满意的就是引力理论的。”关于这一认识,爱因斯坦在京都大学的讲演中说:“一个最令人不满意的事是,尽管惯性和能量之间的关系在狭义相对论中已经明确的解决了,但是惯性与重力或引力场内的能量关系并不清楚。我感到这个问题不可能在狭义相对论的框架中解决。” 值得称道的是,对狭义相对论提出上述两点质疑的,正是提出并建立狭义相对论的爱因斯坦本人。他以敏锐的洞察力及坚持不懈的探索精神,抓住了这两个致命的环节,一个更为深刻与普遍的广义相对论由此诞生。

相对论的发展

第八章 相对论的发展 教学目的与要求:掌握:狭义相对论的内容及建立过程。爱因斯坦是如何得到广义相对论的两个基本假设的;广义相对论的实验验证情况。熟悉:绝对时空观的困难;爱因斯坦的生平。 教学重点,难点:狭义相对论的内容及建立过程。爱因斯坦是如何得到广义相对论的两个基本假设的;广义相对论的实验验证情况。 教学内容: §1.相对论先驱者的思想 一 洛仑兹的收缩假说 迈克尔逊—莫雷实验的“零结果”在最初人们并没有因此否定静止以太的存在,反而认为是实验可能失败了。或力图对实验结果作出种种解释。其中最具代表性的理论假说是荷兰物理学家洛仑兹的收缩假说。 1.洛仑兹(H.A.Lorenzt) 1853年7月生于荷兰。1870年考入莱顿大学,主攻数学、物理学和天文学,1875年12月获得博士学位,1877年被乌得勒支大学聘为数学教授,同年莱顿大学授予他荷兰唯一的理论物理学教授席位(24岁)。1912年洛仑兹辞去莱顿大学教授职务,去政府部门任高等教育部部长。他创立了电子论,首次把以太和普通物质分开,1895年提出著名的洛仑兹力公式。他将经典电磁场理论发展到了最后的高度,为相对论的诞生创造了条件。他因其电子论对塞曼效应进行了定量解释,与塞曼分享了1902年诺贝尔物理学奖。 2.长度收缩假说的提出 1892年11月洛仑兹发表了《论地球对以太的相对运动》,用长度收缩假说解释了迈克尔逊—莫雷实验。他认为运动物体在其运动方向上的收缩,抵消了地球在以太中运行所造成的光程差,所以观察不到预期的条纹移动。他写到:“我终于想出唯一的方法来调和它与菲涅耳的理论:连接一个固体上的两点连线,如果开始平行于地球运动的方向,当它转过90℃后就不能保持原来的长度。如果令后一个位置的长度为L ,则前一个位置的长度为L(1-α)。”其中α=v2/2c2 。1895年洛仑兹给出了更精确的长度收缩系数为 22 1c v ? 洛仑兹一直认为这种收缩是真实的,是由分子运动引起的。这与爱因斯坦提出狭义相对论有本质区别。 3. 一级近似的解释及地方时 洛仑兹的上述收缩假说只涉及到v 2/c 2的这种二级近似。1895年,洛仑兹发表了《运动物体中电磁现象和光现象的理论研究》,提出了地方时概念,他对麦克斯韦方程组施加了一种变换。其中时间t 变为“当地时间” t′=t–(v/c2)x ,电场E 变换为E′=E+v×B/c ,磁场B 变换为B′=B-v×E/c ,结果发现麦克斯韦电磁场方程组的形式不变。由此证明其收缩假说可以准确到v/c 一阶范围。这样就解释了迈克尔逊—莫雷实验。 “当地时间”t’=t–(v/c 2)x ,指在物体上的测得的时间,它与坐标系的平移速度有关。它表明,好象在运动坐标系上的时钟走慢了。洛仑兹认为地方时只不过是一个数学假设,不具有真实的物理意义,而牛顿力学中的绝对时间才是唯一真实的时间。与此相反,爱因斯坦认为不存在所谓的绝对时间,地方时才是唯一真实的时间。 4.实验验证的失败 ①按照洛仑兹的长度收缩假说,物体的密度在不同的方向上会有所不同,这样光通过它

量子科学实验

量子科学实验 一、背景及科学意义 根据国务院第105次常务会议审议通过的“中国科学院创新2020规划”,中国科学院启动实施系列战略性先导科技专项,量子科学实验卫星(以下称量子卫星)所属空间科学战略性先导科技专项是首批启动的先导专项之一。在2008年立项的中科院重大创新项目“空间尺度量子实验关键技术”的基础上,经过近一年的科学目标与有效载荷配置论证、工程立项综合论证,于2011年12月23日正式立项启动。 量子科学实验卫星工程将借助于卫星平台,一方面将在国际上首次实现千公里级的无条件安全的量子通信,促进广域乃至全球范围量子通信网络的最终实现;另一方面,将是国际上首次在宏观大尺度上对量子理论本身展开实验检验,在更深层次上为认识量子物理的基础科学问题、拓宽量子力学的研究方向做出重要贡献。量子科学实验卫星所发展起来的技术,还将为在空间尺度对广义相对论效应、量子引力等物理学基本原理的深入检验奠定基础,促进整个物理学的发展。 量子科学实验卫星总重量631公斤,将由“长征二号丁”运载火箭在酒泉卫星发射中心发射,运行于500公里太阳同步轨道,轨道倾角97.37°,设计在轨运行寿命2年。有效载荷有量子密钥通信机、量子纠缠发射机、量子纠缠源及实验控制与处理机和高速相干激光通信机。卫星配置两套独立的有效载荷指向机构,通过姿控指向系统协同控制,可与地面上相距千公里量级的两处光学站同时建立量子光链路,光轴指向精度优于3.5urad。 二、科学目标 1、进行星地高速量子密钥分发实验,并在此基础上进行广域量子密钥网络实验,以期在空间量子通信实用化方面取得重大突破。 2、在空间尺度进行量子纠缠分发和量子隐形传态实验,开展空间尺度量子力学完备性检验的实验研究。 三、研制历程

广义相对论

广义相对论是阿尔伯特●爱因斯坦于1916年发表的用几何语言描述的引力理论,它代表了现代物理学中引力理论研究的最高水平。广义相对论将经典的牛顿万有引力定律包含在狭义相对论的框架中,并在此基础上应用等效原理而建立的。在广义相对论中,引力被描述为时空的一种几何属性(曲率);而这种时空曲率与处于时空中的物质与辐射的能量-动量张量直接相关系,其关系方式即是爱因斯坦的引力场方程(一个二阶非线性偏微分方程组)。 从广义相对论得到的有关预言和经典物理中的对应预言非常不相同,尤其是有关时间流逝、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——虽说广义相对论并非当今描述引力的唯一理论,它却是能够与实验数据相符合的最简洁的理论。不过,仍然有一些问题至今未能解决,典型的即是如何将广义相对论和量子物理的定律统一起来,从而建立一个完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用:它直接推导出某些大质量恒星会终结为一个黑洞——时空中的某些区域发生极度的扭曲以至于连光都无法逸出。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们能够观察到处于遥远位置的同一个天体的多个成像。广义相对论还预言了引力波的存在,引力波已经被间接观测所证实,而直接观测则是当今世界像激光干涉引力波天文台(LIGO)这样的引力波观测计划的目标。此外,广义相对论还是现代宇宙学膨胀宇宙论的理论基础。 相关简介 相对论是现代物理学的理论基础之一。论述物质运动与空间时间关系的理论。20世纪初由爱因斯坦创立并和其他物理学家一起发展和完善,狭义相对论于1905年创立,广义相对论于1916年完成。19世纪末由于牛顿力学和(苏格兰数学家)麦克斯韦(1831~1879年)电磁理论趋于完善,一些物理学家认为“物理学的发展实际上已经结束”,但当人们运用伽利略变换解释光的传播等问题时,发现一系列尖锐矛盾,对经典时空观产生疑问。爱因斯坦对这些问题,提出物理学中新的时空观,建立了可与光速相比拟的高速运动物体的规律,创立相对论。狭义相对论提出两条基本原理。(1)光速不变原理。即在任何惯性系中,真空中光速c都相同,与光源及观察者的运动状况无关。(2)狭义相对性原理是物理学的基本定律乃至自然规律,对所有惯性参考系来说都相同。

广义相对论的创立

广义相对论的创立 1、广义相对论的创立是科学史上的奇迹 爱因斯坦是20世纪最伟大的科学家。他对科学的贡献遍及整个物理学领域。正如一些学者所指出的那样,“按照诺贝尔物理学奖颁发的标准,他至少可得五次奖金(指狭义相对论、质能相当性、广义相对论、光量子论、布朗运动等五项工作)。然而,在爱因斯坦的科学贡献中最令人赞叹的成就还是他成功地独自创立了广义相对论。 人们普遍认为,爱因斯坦在20世纪科学史上占据着至高无上的地位。如果我们问那些伟大的物理学家中的任何一个人,为20世纪物理学做出了最重要贡献的人是谁,那么,他们将会毫不犹豫地回答:阿耳伯特·爱因斯坦。爱因斯坦的物理发现的压倒一切的重要性和他在科学史中独一无二的地位被普遍地承认,并且几乎无可争辩。著名的物理学家朗之万在评价爱因斯坦时说:“在我们这一时代的物理学家中,爱因斯坦的地位将在最前列。他现在是并且将来也还是人类宇宙中有头等光辉的一颗巨星。很难说他是否同牛顿一样伟大,或者是比牛顿更伟大,不过,可以肯定地说,他的伟大是可以同牛顿比拟的。按我的意,他也许比牛顿更伟大一些,因为他对于科学的贡献更深入到人类思想基本概念的结构中。”另一位著名的物理学家朗道曾对20世纪杰出的物理学家的贡献做过一个有趣的比较。他把玻尔。海森伯、狄拉克、薛定谔等人都列为第一等,把自己列为第ZI等,唯独把爱因斯坦列为第Z等。由此可以看出爱因斯坦在20 世纪科学史上占据多么突出的地位,而这主要是因为他独自一人成功地创立了广义相对论。 广义相对论的创立与其他物理学理论(包括狭义相对论)产生的途径完全不同,既不是为了解决理论与实验存在着的分歧,也不是为了满足理论发展的迫切需要,并且广义相对论是一项“真正的个人的工作”,完全是爱因斯坦独自的发现。 广义相对论是一门艰深难懂的理论,以致于它产生之后多年都很少有人真正弄懂它。英费尔德讲过这样一件趣事,“在大战期间爱丁顿作了一个关于广义相对论的报告。在报告结束时,一位物理学家对爱丁顿说:‘这是一个出色的报告。您是这个世界上懂得并熟悉它的三个人之一’。当爱丁顿露出怀疑的神情时,这位物理学家补充说:‘教授先生,您不要以为这是奉承的话,您是大谦虚了’。爱丁顿回答说:‘我并不感到难为情,我只是在想这第三个人是谁’。” 广义相对论又是一门优美迷人的理论,以致于人们往往用鉴赏一件艺术品的眼光去审视它,赞美它。德布罗意这样写道:它的“雅致和美丽是无可争辩的。它应该作为20世纪数学物理学的一座最优美的纪念碑而永垂不朽”。 广义相对论这种既艰深难懂又优美迷人的特征,在玻恩的一段话中表现的最为充分确切。他写道:“我还记得,1913年我在蜜月旅行途中随身行李里带了几本爱因斯坦的论文翻印本,它们老是好几个钟头地吸引着我的注意力,使我的新娘非常恼火。这些论文在我看来是很吸引人的,但是很难,几乎使人感到害怕。当我1915年在柏林遇到爱因斯坦的时候,这个理论已经有了很多改进,而且由于莱维瑞尔所发现的水星近日点的反常性得到解释更增加了一层光辉。我不仅从书刊中,而且从多次同爱因斯坦的讨论中懂得了它,其结果是,我决定绝不在这方面尝试做任何工作。广义相对论的创立那时在我看来乃是人类思索自然中的最伟大的功绩,是哲学领悟、物理直觉和数学技巧最惊人的结合,今天我还是这样看。但是,它和经验的关联太少。我觉得它好像是一件伟大的艺术品,供人远远欣赏和赞羡。” 2、爱因斯坦创立广义相对论的主要过程 创立广义相对论的过程是科学史上极为壮丽的一幕,是爱因斯坦多年探索的成果,是他非凡智慧的结晶,是他不懈努力的产物,从中可以使我们更加深入地理解爱因斯坦的主要思想方法。 爱因斯坦说过:“用尽可能简短的形式来表述一系列概念的进展,而又足以完整地把发展的连续性彻底保存下来,那是有点吸引人的。”本文力图按照这种精神,在其他一些学者研究工作的基础之上,简要叙述爱因斯坦创立广义相对论的主要过程,以便从中得出有益于我们的启示。 2、1、提出两条基本原理

广义相对论的学习总结

广义相对论的学习总结 1.引言 1.1前言 经过过去一年对广义相对论的学习,基本对广义相对论的基本原理和运用有了比较完整的认识。这篇文章是为了总结自己学习的体会,尽量用自己的语言谈谈对广义相对论的理解。由于作者水平有限,也为了文章的简洁,所以省去数学推导,仅保留基本的数学公式和方法说明。 广义相对论是爱因斯坦一大理论成果,可以解释宏观世界一切物体的运动,可以在一切坐标系下运用,本身又保持了相当完美的对称性和简洁性。随着空间探测技术的发展,广义相对论的许多结论都得到了证明,而广义相对论和量子力学构成了现代物理的两大支柱。 1.2导语 在具体介绍广义相对论的内容之前,我想用自己的语言,对广义相对论的思想和研究问题步骤做一个小的总结和介绍。总的来说,广义相对论是建立在四个假设之上,通过这四个假设,爱因斯坦认为惯性场和引力场等效,以及所有参考系的平权性。然后爱因斯坦把引力场认为是一种几何效应。是由于质量在空间上的分布不均匀,导致空间的空间扭曲。 在数学上,用张量来代表物理量,以满足物理规律在所有参考系下都成立。用黎曼几何来刻画弯曲空间,联络来描述引力强度,曲率

张量来描述空间弯曲,度规张量来描述引力势。 接下来便是构建场运动方程。我们可以用惠曼的名言总结道:“物质告诉时空如何弯曲,时空告诉物质如何运动。”按照爱因斯坦的想法,引力是由于质量空间分布不均匀造成的几何效应。所以爱因斯坦场方程左边应该是反映时空的几何性质的张量,右边是能动张量。再继续利用能量守恒定律,便可以推出爱因斯坦场方程。 应用爱因斯坦的场方程,得到了很多新奇的结论和实验预言,并且以“水星进动”和“引力红移”为代表的实验验证了广义相对论的正确性。 广义相对论还预言了引力弯曲效应极大情况下黑洞的存在。 而广义相对论作为宇宙学的理论基础,特别是近几十年观测技术的进步,使得宇宙学建立起了相对完整的理论系统。 2.基本假设 广义相对论建立在以下假设下。 2.1等效原理 广义相对论用的是强等效原理。 引力场与惯性场的的一切物理效应都是局域不可分辨的。 2.2马赫原理 惯性力起源于物质间的相互作用,起源于受力物体相对于遥远星系的加速运动,而且与引力有着相同或相近的物理根源。

相对论

相对论(关于时空和引力的基本理论) 相对论是关于时空和引力的基本理论,主要由阿尔伯特·爱因斯坦创立,依据研究的对象不同分为狭义相对论和广义相对论。相对论的基本假设是相对性原理,即物理定律 与参照系的选择无关。 狭义相对论和广义相对的区别是,前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理 的假设下,广泛应用于引力场中。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。它发 展了牛顿力学,推动物理学发展到一个新的高度。 狭义相对性原理是相对论的两个基本假定,在目前实验的观测下,物体的运动与相对 论是吻合很好的,所以目前普遍认为相对论是正确的理论。 研究发展编辑 研究历程 广义相对论 1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久。突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题。第二天,他又来到贝索家,说:谢谢你,我的问题解决了。原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与 光信号的速度有一种不可分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前。[1] 1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表。这篇论文是关于狭义相对论的第一篇文章,它包含 了狭义相对论的基本思想和基本内容。这篇文章是爱因斯坦多年来思考以太与电动力 学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再是必要的,以太 漂流是不存在的。[2] 1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和由此得出的结论》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱因斯坦关于等效原 理的思想又不断发展。他以惯性质量和引力质量成正比的自然规律作为等效原理的根

爱因斯坦《狭义与广义相对论浅说》

狭义与广义相对论浅说 爱因斯坦 .

第一部分狭义相对论·············································································································· ····································································································································································································································· ················································································································································································································· ······································································································· ················································································· ····································································· ············································································································ ············································································································ ························································································································································································································· ··························································································· ······················································································· ······································································································· ··························································································· ······································································································· ··································································································· ·········································································································· ························································································································································································································· ········································ ····························· ······················································································· ·························································································································································································· ················································ ······················································ ······················································································· ···································································· ··················································································· ··················································································· ···························································· ····················································································································································································································· ······························································································· ··············································································· ······························································································· ····························································································· ····················································································· ····························································································· ······································································· (4) 1.几何命题的物理意义 4 2.坐标系 5 3.经典力学中的空间和时间7 4.伽利略坐标系8 5.相对性原理(狭义)8 6.经典力学中所用的速度相加定理10 7.光的传播定律与相对性原理的表面抵触10 8.物理学的时间观12 9.同时性的相对性14 10.距离概念的相对性15 11.洛伦兹变换16 12.量杆和钟在运动时的行为19 13.速度相加定理斐索实验20 14.相对论的启发作用22 15.狭义相对论的普遍性结果22 16.经验和狭义相对论25 17.闵可夫斯基四维空间27 第二部分广义相对论29 18.狭义和广义相对性原理29 19.引力场31 20.惯性质量和引力质量相等是广义相对性公设的一个论据32 21.经典力学的基础和狭义相对论的基础在哪些方面不能令人满意34 22.广义相对性原理的几个推论35 23.在转动的参考物体上的钟和量杆的行为37 25.高斯坐标41 26.狭义相对论的空时连续区可以当作欧几里得连续区43 27.广义相对论的空时连续区不是欧几里得连续区44 28.广义相对性原理的严格表述45 29.在广义相对性原理的基础上解引力问题47 第三部分关于整个宇宙的一些考虑49 30.牛顿理论在宇宙论方面的困难49 31.一个“有限”而又“无界”的宇宙的可能性50 32.以广义相对论为依据的空间结构53 附录54 一、洛伦兹变换的简单推导54 二、闵可夫斯基四维空间(“世界”)57 三、广义相对论的实验证实58 (1)水星近日点的运动59 (2)光线在引力场中的偏转60 (3)光谱线的红向移动62 四、以广义相对论为依为依据的空间结构64 五、相对论与空间问题65

广义相对论的创立

1、xx相对论的创立是科学史上的奇迹 爱因斯坦是20世纪最伟大的科学家。他对科学的贡献遍及整个物理学领域。正如一些学者所指出的那样,“按照诺贝尔物理学奖颁发的标准,他至少可得五次奖金(指狭义相对论、质能相当性、广义相对论、光量子论、布朗运动等五项工作)。然而,在爱因斯坦的科学贡献中最令人赞叹的成就还是他成功地独自创立了广义相对论。 人们普遍认为,爱因斯坦在20世纪科学史上占据着至高无上的地位。如果我们问那些伟大的物理学家中的任何一个人,为20世纪物理学做出了最重要贡献的人是谁,那么,他们将会毫不犹豫地回答: 阿耳伯特·爱因斯坦。爱因斯坦的物理发现的压倒一切的重要性和他在科学史中独一无二的地位被普遍地承认,并且几乎无可争辩。著名的物理学家朗之万在评价爱因斯坦时说: “在我们这一时代的物理学家中,爱因斯坦的地位将在最前列。他现在是并且将来也还是人类宇宙中有头等光辉的一颗巨星。很难说他是否同牛顿一样伟大,或者是比牛顿更伟大,不过,可以肯定地说,他的伟大是可以同牛顿比拟的。按我的意,他也许比牛顿更伟大一些,因为他对于科学的贡献更深入到人类思想基本概念的结构中。”另一位著名的物理学家朗道曾对20世纪杰出的物理学家的贡献做过一个有趣的比较。他把玻尔。海森伯、狄拉克、薛定谔等人都列为第一等,把自己列为第ZI等,唯独把爱因斯坦列为第Z等。由此可以看出爱因斯坦在20世纪科学史上占据多么突出的地位,而这主要是因为他独自一人成功地创立了广义相对论。 广义相对论的创立与其他物理学理论(包括狭义相对论)产生的途径完全不同,既不是为了解决理论与实验存在着的分歧,也不是为了满足理论发展的迫切需要,并且广义相对论是一项“真正的个人的工作”,完全是爱因斯坦独自的发现。

广义相对论习题

名词解释:——1)惯性系疑难 ——由于引力作用的普遍存在,任一物质的参考系总有加速度,因而总不会是真正的惯性系。在表述物理规律时惯性系占有特殊的优越地位,但自然界却不存在一个真正的惯性系。 2)广义相对性原理——所有参考系都是等价的(一切参考系都是平权的)。 3)史瓦西半径 ——史瓦西半径是任何具重力的质量之临界半径。在物理学和天文学中,尤其在万有引力理论、广义相对论中它是一个非常重要的概念。1916年卡尔·史瓦西首次发现了史瓦西半径的存在,他发现这个半径是一个球状对称、不自转的物体的重力场的精确解。 一个物体的史瓦西半径与其质量成正比。太阳的史瓦西半径约为3千米,地球的史瓦西半径只有约9毫米。 小于其史瓦西半径的物体被称为黑洞。在不自转的黑洞上,史瓦西半径所形成的球面组成一个视界。(自转的黑洞的情况稍许不同。)光和粒子均无法逃离这个球面。银河中心的超大质量黑洞的史瓦西半径约为780万千米。一个平均密度等于临界密度的球体的史瓦西半径等于我们的可观察宇宙的半径 公式2 2Gm r c = 4)爱因斯坦约定——对重复指标自动求和。 5)一阶逆(协)变张量—— 'x T T T T x α μμ μαμ?''→?=? (n 1 个分量) 6)二阶逆(协)变张量——''x x T T T T x x αβ μνμν μναβμν??''→?=?? (n 2个分量)

1)广义相对论为什么要使用张量方程?—— 将物理规律表达为张量方程,使它在任何参考系下具有相同的形式,从而满足广义相对性原理。 2)反称张量的性质?——(a)当任意两个指标取同样值时,张量的该分量为零。 (b)n 维空间中最高阶的反称张量是n 阶的,这张量只有一个独立分量。 (c)n 维空间中的n-1阶反称张量只有1n 个独立分量。 3)仿射联络的坐标变换公式?它是张量吗? 4)仿射联络的性质? 5)一阶逆(协)变张量协变微商的公式?;,T T T μμααλλμλ=+Γ ;,T T T λμνμνμνλ=-Γ

广义相对论

第一&二章 1. 设想有一光子火箭,相对于地球以速率v=0.95c 飞行,若以火箭为参考系测得火箭长度为15 m ,问以地球为参考系,此火箭有多长 ? 解 :固有长度, 2. 一长为 1 m 的棒静止地放在 O ’x ’y ’平面内,在S ’系的观察者测得此棒 与O ’x ’轴成45°角,试问从 S 系的观察者来看,此棒的长度以及棒与 Ox 轴的夹角是多少?设想S ’系相对S 系的运动速度 4.68m l ==

第三章 1.简述狭义相对论与广义相对论的基本原理。P9、15、2* ①狭义相对论:所有的基本物理规律都在任一惯性系中具有相同的形式。这就叫狭义相对性原理。 相对性原理:一切惯性参照系等效,即物理规律在所有的惯性系中都具有完全相同的形式。 光速不变原理:真空中的光速是常量,它与光源或观察者的运动状态无关,即不依赖于惯性系的选择。 ②广义相对论:一切参照系都是平权的。或者说,客观的物理规律应在任意坐标变换下保持形式不变。 等效原理:惯性力场与引力场的动力学效应是局部不可分辨的。 广义相对性原理:一切参考系都是平权的或客观的真实的物理规律应该在任意坐标变换下形式不变,即广义协变性。 2.什么是广义相对论的等效原理?强等效原理与弱等效原理有何区别? 等效原理:惯性力场与引力场的动力学效应是局部不可分辨的。 3.在牛顿力学中是否能够定义惯性参照系?什么是局部惯性系?P12、29 引力与惯性力有何异同? 定义不同:惯性力的度量是惯性质量写为F=ma,而引力的度量是引力质量, 由万有引力定律写成 (1)(2) 2 g g m m F G r ,从物理本质上是不同的。 相同:二者的实验量值是相等的,根据等效原理引力与惯性力的任何物理效果都是等效的 4.弯曲时空是用什么几何量来描述的?什么是引力场的几何化?P35 处于形变的四维时空区域,从物理上说可以认为是有引力存在的时空区域。所以,表示时空弯曲的几何量,同时也表示了引力场的状态。 引力场中的物理问题便等价于弯曲时空的几何问题,这种看法就称为引力场的几何化。 5.如何利用等效原理说明引力场中光线弯曲与谱线的红向偏移?

相关主题
文本预览
相关文档 最新文档