当前位置:文档之家› 金属有机骨架材料在催化中的研究进展_于会贤

金属有机骨架材料在催化中的研究进展_于会贤

金属有机骨架材料在催化中的研究进展_于会贤
金属有机骨架材料在催化中的研究进展_于会贤

2012年第11期广东化工

第39卷总第235期https://www.doczj.com/doc/c56007765.html, · 83 ·

金属有机骨架材料在催化中的研究进展

于会贤,张富民,钟依均,朱伟东

(浙江师范大学物理化学研究所,先进催化材料教育部重点实验室,浙江金华 321004)

[摘要]简介了金属有机骨架材料(MOFs)的合成方法,主要介绍了MOFs应用于Lewis酸、碱和手性催化中的研究进展,对MOFs材料在催化领域的应用进行了展望。

[关键词]金属有机骨架材料;合成;催化

[中图分类号]O643 [文献标识码]A [文章编号]1007-1865(2012)11-0083-02

Applications of Metal-organic Frameworks in Catalysis

Yu Huixian, Zhang Fumin, Zhong Yijun, Zhu Weidong

(Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry,

Zhejiang Normal University, Jinhua 321004, China)

Abstract: Different methods to metal-organic frameworks (MOFs) as catalysts were addressed. Special attention was paid on introducing the research progress on the applications of MOFs in Lewis acid, base, and enantioselective catalysis. Finally, the applicability of MOFs in catalysis was anticipated.

Keywords: metal-organic framework;synthesis;catalysis

近年来,金属有机骨架材料(Metal-organic framework,MOFs)作为一类新型的多孔材料,在其合成和性能研究领域都得到了快速的发展。MOFs材料之所以成为目前科学界的研究热点,是因为这一类材料具诸多优良性质,例如大的比表面积、高的孔隙率、可裁剪孔道结构、化学可修饰等。众多设计合成的MOFs除了在气体吸附、存储和分离中应用外,在催化领域同样具有广阔的应用前景。

1 MOFs的合成

目前,对于MOFs材料的合成主要方法有挥发法、扩散法、溶剂热法、微波法、超声法、机械合成法以及后处理法等。

1.1 水(溶剂)热合成法

水(溶剂)热合成法[1-2][hydrothermal(solve-thermal)method]适用于将可溶性的金属源与有机配体装入一个密闭的体系中来培养晶体。有机溶剂由于带有不同的官能团,其蒸汽压、极性、表面张力、介电常数、粘度等性质差异很大。此外,不同的反应前体和一些有机、无机结构导向剂同时被引入到反应体系中,而且反应过程中还常伴随着一些通常条件下不能进行的反应,大大增加了合成产物结构的多样性。在溶剂热合成中,常用的有机溶剂有胺类例三乙胺、N,N-二甲基甲酰胺(DMF)、N,N-二乙基甲酰胺(DEF)等,吡啶、醇类(甲醇、乙醇等)和二甲基亚砜(DMSO)等。

1.2 微波合成法

Ni和Masel[3]报道了采用微波合成法(microwave synthesis)合成出MOF-5、IRMOF-2和IRMOF-3,该方法的优点是大大降低合成时间,此后这一合成技术已应用于其它MOFs材料的合成[4-5]。通过研究Cu-BTC(HKUST-1)晶体的生长,科学家们认识了

微波合成法提高MOFs晶体形成速率的机理,认为主要是由于成核速率的加快,而不是晶体的生长所致[6]。此外,在合成MIL-53(Fe)中发现,微波合成法不仅可以提高成核速率,而且对晶体生长速率也有提高[7]。

1.3 超声合成法

超声化学合成法(sonochemical synthesis)是另一种合成小晶粒MOFs材料和缩短合成时间的有效方法,这种方法在近几年才得到应用。其合成过程可分为声空化—液体中空腔的形成、振荡、生长收缩及崩溃,以及引发的物理和化学变化。通过声波辐射可以使反应体系产生局部高温和高压,导致快速升温[8]。以1-甲基-2吡啶烷酮(NMP)为溶剂,MOF-5通过超声化学合成法,在30 min 内产出5~25 μm的晶体,所合成MOF-5的性质与经微波合成和传统的水热合成法非常相似[9]。MOF-177的合成也有类似结果,通过控制反应时间合成的MOF-177晶体尺寸可控制在50~900 nm 范围内[10]。通过超声化学合成法可以降低Cu-BTC的合成时间[11]。通过控制反应时间还可以得到不同相的同一产物,例如Zn(1,4-二羧酸苯)·(H2O)n合成过程中,随着反应时间的增长可以得到从纳米带到纳米片再到微晶三种不同构相的产物[12]。

1.4 后处理法

后处理法(post-synthetic modification,PSM)是指在已合成的MOFs晶体骨架上引入其它的有机功能团,从而修饰MOFs材料的结构及物理化学性质。该方法不受已有的晶体结构限制,只需MOFs材料骨架具有足够的刚性和多孔性,并不会改变骨架的完整性。采用PSM方法合成具有以下几方面优点:(1)可以引入多种不同的功能基团;(2)化学衍生仅发生在已有的晶体上,因此被修饰产物易于分离和纯化;(3)不同取代基修饰的MOFs材料具有不同的功能团,但具有相同的拓扑结构;(4)通过控制取代基的类型和被修饰程度还可以系统地调变和优化MOFs材料的性质。但在使用PSM法合成MOFs材料时必须遵循以下两个原则[13]:一方面所加入的修饰功能团分子要足够小,以便可以进入材料的孔道内;另一方面,所设定的反应条件不会破坏原有的骨架结构。

2 MOFs在催化中的应用

多相催化体系由于产物易分离以及催化剂便于回收再利用等优点,很早就被应用于工业生产中,例如沸石在石油工业中的应用。虽然在二十多年前就已经有人提出MOFs材料可以作为催化剂应用,直到近年才有相关的研究成果被报道。

2.1 Lewis酸催化

在1994年,Fujita研究小组[14]首次在Cu-BTC上进行了乙醛的氰基硅烷化反应,展现出良好的择形选择性催化。Cu-BTC中含有不饱和金属点位(CUMs)的Lewis酸性位可以作为催化活性中心,被应用于香茅醛环化反应、α-松萜氧化物的异构化和含有2-溴苯丙酮的乙烯缩醛重排[15]中,表现出优异的择形选择性催化。

2.2 碱催化

MOFs材料具有高度的可调变性,不仅可以引入CUMs,同时也可以将带有电子对的有机功能团作为活性中心,经后处理(PSM)使其嫁接到MOFs材料骨架上。

2008年,Férey小组[16]研究表明,MIL-101经加热脱水得到的Cr的CUMs与有机功能团乙二胺中含有孤电子的N相配位,从而得到氨基化的MIL-101。经乙二胺后修饰的MIL-101作为碱催化剂应用于诺文葛耳(Knoevenagel)缩合反应中,具有极佳的催化性能。

2.3 手性催化

设计手性MOFs材料并将其应用于对映选择性催化中是目前多相催化研究领域的热点之一。然而,目前大多数的纯手性的MOFs催化剂孔结构不稳定、易坍塌。因此,合成拥有结构稳定性的手性MOFs催化剂将成为该领域的发展趋势[17-18]。现有的合成手性MOFs催化剂的方法主要有下列三种:(1)使用刚性的手性有机配体如POST-1;(2)嫁接手性链作为修饰基团而不直接参加骨架结构的组成;(3)在一些特殊情况中,非手性链的特定方向可以产生手性MOFs材料[19]。

MOFs材料具有高度可控性的结构引起了研究不对称催化的科学工作者的关注[20-21]。Lin等人[22]将对映异构体1,1’-二萘衍生物作为配体合成了具有手性的MOFs材料,如[Ln2(H2L-1

)2(CH3OH)]H4L·HCl·6H2O(L1代表手性配体)。随后,Lin等人[23]又合成了具有高孔隙率的铬基MOFs手性催化剂[Cd(L2)2(ClO4 )2]·11EtOH·6H2O(L2是含有二吡啶基手性配体)。Kim等人[24]首次将MOFs纯手性催化剂[Zn3(m3-O)(L4-H)6]·2H3O·12H2O(D-POST-1)应用于不对称催化反应

[收稿日期] 2012-05-28

[作者简介] 于会贤(1986-),女,吉林敦化人,硕士研究生,主要研究方向为金属有机骨架材料在气体吸附和催化性能研究。

广东化工 2012年第11期· 84 · https://www.doczj.com/doc/c56007765.html, 第39卷总第235期

中,虽然只有较低的对映选择性,但对于实现MOFs材料在不对称催化中的应用是一个重要的里程碑。Lin研究小组[25]还通过Ti(O i Pr)4后处理,将已合成的3D手性催化剂[Cd3(L3)3Cl6]·4DMF·6MeOH·3H2O 获得Ti-BINOLate催化剂,该催化剂成功地实现了二乙基锌的不对称加成反应,其对映选择性与均相催化体系相当,但Ti-BINOLate催化剂可重复套用,展示了多相催化体系的优势。

3 MOFs在催化应用中的展望

MOFs特殊的孔道结构和较大的比表面积,同时可以在设计中引入功能化金属离子和配体产生催化位点等性质,使得其在催化方面的应用受到极大关注。然而,由于绝大多数MOFs的合成采用了芳香羧酸,如吡啶二羧酸,对苯二甲酸,或咪唑,三氮唑等具有共轭结构的配体和过渡金属(主要为第一过渡金属离子)配位体,导致绝大多数MOFs材料具有较低的孔结构稳定性。在温和的反应条件下,已有一类MOFs材料展示了优良的多相催化性能,尤其在不对称催化中可望替代均相催化体系。然而,目前大多数MOFs催化剂孔结构不稳定、易坍塌,且催化活性组分在反应过程中易溶脱,导致重复套用次数受限制。因此,发展具有高稳定性的MOFs催化剂将成为催化研究的一个重要分支。

参考文献

[1]施尔畏,夏长泰,王步国,等.水热法的应用与发展[J].无机材料学报.1996,11:193-206.

[2]吴会军,朱冬生,向兰.有机溶剂热法合成纳米材料的研究与发展[J].化工新型材料.2005,33:1-4.

[3]Ni Z,Masel R I.Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis[J].J Am Chem Soc,2006,128:12394-12395.

[4]Jhung S H,Lee J H,Yoon J W,et al.Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability[J].Adv Mater,2007,19:121-124.

[5]Aochoa P,GivajaI G,Miguel P J S,et al.Microwave assisted hydrothermal synthesis of a novel CuI-sulfate-pyrazine MOF[J].Inorg Chem Commun,2007,10:921-924.

[6]Khan N A,Haque E,Jhung S H.Rapid syntheses of a metal-organic framework material Cu3(BTC)2(H2O)3 under microwave:a quantitative analysis of accelerated syntheses[J].Phys Chem Chem Phys,2010,12:2625-2631.

[7]Haque E,Khan N A,Park J H,et al.Synthesis of a metal-organic framework material,iron terephthalate,by ultrasound,microwave,and conventional electric heating:A kinetic study[J].Chem Eur J,2010,16:1046-1052.

[8]Suslick K S,Hammerton D A,Cline R E.Sonochemical hot spot.J Am Chem Soc,1986,108:5641-5642.

[9]Son W J,Kim J,Ahn W S.Sonochemical synthesis of MOF-5[J].Chem Commun,2008,6336-6338.

[10]Qiu L G,Li Z Q,Wu Y,et al.Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines[J].Chem Commun,2008,3642-3644.[11]Jung D W,Yang D A,Kim J,et al.Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent[J].Dalton Trans,2010,39:2883-2887.

[12]Li Z Q,Qiu L G,Wang W,et al.Fabrication of nanosheets of a fluorescent metal-organic framework[Zn(BDC)(H2O)]n (BDC=1,

4-benzenedicarboxylate):Ultrasonic synthesis and sensing of ethylamine[J].Inorg Chem Commun,2008,11:1375-1377.

[13]Jones S C,Bauer C A.Diastereoselective heterogeneous bromination of stilbene in a porous metal-organic framework[J].J Am Chem Soc,2009,131:12516-12517.

[14]Fujita M,Kwon Y J,Washizu S,et al.Preparation,clathration ability,

and catalysis of a two-dimensional square network material composed of cadmium (II) and 4,4’-bipyridine[J].J Am Chem Soc,1994,116:1151-1152.[15]Alaerts L,Séguin E,Poelman H,et al.Probing the lewis acidity and catalytic activity of the metal-organic framework [Cu3(btc)2](BTC=Benzene-1,3,5-tricarboxylate)[J].Chem Eur J,2006,12:

7353-7363.

[16]Hwang Y K,Hong D Y,Chang J S,et al.Amine grafting on coordinatively unsaturated metal centers of MOFs:Consequences for catalysis and metal encapsulation[J].Angew Chem Int Ed,2008,47:4144-4148.

[17]Bradshaw D,Claridge J,Cussen E,et al.Design,chirality,and flexibility

in nanoporous molecule-based materials[J].Acc Chem Res,2005,38:273-282.[18]Ma L,Abney C,Lin W.Enantioselective catalysis with homochiral metal-organic frameworks[J].Chem Soc Rev,2009,38:1248-1256.

[19]Li W,Ju Z F,Yao Q X,et al.A novel two-dimensional homochiral manganese (II)-carboxylate coordination framework exhibiting field-induced

spin-flop transition[J].Cryst Eng Comm,2008,10:1325-1327.

[20]Fletcher A J,Cussen E J,Bradshaw D,et al.Adsorption of gases and vapors on nanoporous Ni2(4,4’-bipyridine)3(NO3)4 metal-organic framework materials templated with methanol and ethanol:Structural effects in adsorption kinetics[J].J Am Chem Soc,2004,126:9750-9759.

[21]Vaidhyanathan R,Bradshaw D,Rebilly J N,et al.A family of nanoporous materials based on an amino acid backbone[J].Angew Chem Int Ed,2006,

45:6495-6499.

[22]Hu A,Ngo H L,Lin W.Chiral porous hybrid solids for practical heterogeneous asymmetric hydrogenation of aromatic ketones[J].J Am Chem Soc,2003,125:11490-11491.

[23]Wu C D,Lin W.Highly Porous,Homochiral metal-organic frameworks:solvent-exchange-induced single-crystal to single-crystal transformations[J].Angew Chem Int Ed,2005,44:1958-1961.

[24]Seo J S,Whang D,Lee H,et al.A homochiral metal-organic porous material

for enantioselective separation and catalysis[J].Nature,2000,404:982-986.[25]Wu C D,Hu A,Zhang L,et al.A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis[J].J Am Chem Soc,2005,127:8940-8941.

(本文文献格式:于会贤,张富民,钟依均,等.金属有机骨架材

料在催化中的研究进展[J].广东化工,2012,39(11):83-84)

(上接第101页)

丙橡胶生产装置;德国朗盛公司计划在抚顺投资建设一套50 kt/a 乙丙橡胶生产装置;民营企业山东玉皇化工公司也计划在山东省东明县建设一套50 kt/a乙丙橡胶生产装置;周边国家如日本、韩国纷纷扩大乙丙橡胶产能,特别是中东国家也准备利用廉价的资源优势发展合成橡胶,沙特拉比格炼油石化公司、沙特基础工业公司也正在推进乙丙橡胶项目,并中国为目标市场,这些不断增加产能的公司,将对国内产品构成严重威胁,其市场竞争也将会持续升级。

中国海油大亚湾石化基地是目前国内最大的“油化一体”石油化工加工基地之一,在原料、公用工程、土地、运输、环保等方面具备建厂条件,中国海油应充分发挥原料供应稳定、产品贴近华南终端市场、营销网络健全等优势,在惠州建设一套50 kt/a乙丙橡胶生产装置,并以此为基础建立配套的研发系统,满足国内市场的需求。

5 建议

(1)我国乙丙橡胶的潜在市场及发展前景较好,中国海油应抓紧决策,以便抢占市场先机。

(2)只有国产乙丙橡胶和进口产品相比具有价格优势和加上适当的销售服务才能进入国内市场,中国海油应认真选择合作伙伴,充分减低装置投资。

(3)建立和完善市场服务体系,乙丙橡胶在橡胶工业上不属于通用胶种,其消费市场覆盖的领域较宽,用户多而分散,中国海油在开发市场时应着重突出技术服务,有利于新产品快速推向市场。

(4)产品牌号设置上应充分进行市场研究,争取把适合中国市场被国外进口产品垄断的乙丙橡胶新品种引进来,以满足国内市场对其他专用品种、专用牌号的需求。

(5)随着环保理念的进一步强化,环保工艺以及环保型乙丙橡胶将成为乙丙橡胶生产和需求结构的重要变化。更清洁的茂金属技术、气相聚合技术的乙丙橡胶产品的国际市场占有率越来越高,中国海油引进技术时要全面考虑技术方的合理性和前瞻性。

参考文献

[1]崔小明.乙丙橡胶生产技术发展趋势及市场分析[J].化工新型材料,2010,38(9):78-79.

[2]赵西明.乙丙橡胶生产技术进展及市场分析[J].当代石油石化,2010(5):32-35.

[3]白东明.乙丙橡胶工艺进展[J].化学T程师,2010(6):41-48.

[4]徐一兵.乙丙橡胶的生产技术进展及市场分析[J].合成橡胶工业,2011,34(4):325.

[5]关颖.其它共单体型乙丙橡胶[J].弹性体,2009,9(5):59-60.

(本文文献格式:杨晓波.中国海油乙丙橡胶产业发展探讨[J].广东化工,2012,39(11):100-101)

【CN110038634A】一种基于MXene与金属有机骨架化合物复合结构的析氧反应催化剂及其合成方

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910373344.X (22)申请日 2019.05.07 (71)申请人 大连理工大学 地址 116024 辽宁省大连市甘井子区凌工 路2号 (72)发明人 王治宇 邱介山 孙富  (74)专利代理机构 大连理工大学专利中心 21200 代理人 李晓亮 潘迅 (51)Int.Cl. B01J 31/22(2006.01) B01J 35/00(2006.01) B01J 35/02(2006.01) (54)发明名称 一种基于MXene与金属有机骨架化合物复合 结构的析氧反应催化剂及其合成方法 (57)摘要 一种基于MXene与金属有机骨架化合物复合 结构的析氧反应催化剂及其合成方法,属于纳米 材料、能源与催化领域。该催化剂由表面均匀负 载MOFs纳米颗粒的MXene二维纳米薄片组成,具 有二维结构。制备方法:将MXene、金属盐、有机配 体和缚酸剂溶解混合均匀后,离心、洗涤、真空干 燥,获得结构、成分可精细调控的二维纳米结构 的电催化剂。本发明获得的电催化剂可有效克服 MOFs导电性差、稳定性差而导致析氧反应催化性 能无法发挥的基础性难题;所得催化剂在碱性电 解液中对析氧反应表现出优异的催化活性与稳 定性,为燃料电池、金属空气电池、电解水等新能 源技术的广泛应用奠定基础。权利要求书1页 说明书5页 附图5页CN 110038634 A 2019.07.23 C N 110038634 A

权 利 要 求 书1/1页CN 110038634 A 1.一种基于MXene与金属有机骨架化合物复合结构的析氧反应催化剂,其特征在于,该催化剂由表面均匀负载MOFs纳米颗粒的MXene二维纳米薄片组成,具有二维结构,尺寸在100-500nm之间;MXene上负载的MOFs纳米颗粒含量在75wt.%以上,尺寸在10-100nm之间,MOFs中的金属元素包括镍、铁、钴、锰中的至少一种或两种以上;所得催化剂在碱性条件下对析氧反应具有优异的催化活性与稳定性。 2.权利要求1所述的一种基于MXene与金属有机骨架化合物复合结构的析氧反应催化剂的合成方法,其特征在于,包括如下步骤: 1)将MXene于常温常压条件下分散在水中制备分散液; 2)将金属盐和有机配体于常温常压条件下溶解于N,N-二甲基甲酰胺DMF和乙醇的混合溶剂中形成均一溶液;所述的金属盐和有机配体摩尔比为1:1,有机配体的浓度为0.0375-0.04mol/L;所述的有机配体为对苯二甲酸和2-氨基对苯二甲酸的至少一种;所述的金属盐为镍、铁、钴、锰的氯化盐、硝酸盐、醋酸盐中的至少一种或两种以上; 3)于常温常压条件下将步骤1)制备的MXene分散液与步骤2)制备的金属盐/有机配体均一溶液均匀混合; 4)于常温常压条件下向步骤3)制备得到的混合溶液中加入缚酸剂三乙胺后,搅拌反应2-4h,反应结束后使用乙醇离心洗涤,真空干燥得到产物。 3.根据权利要求2所述的一种基于MXene与金属有机骨架化合物复合结构的析氧反应催化剂的合成方法,其特征在于,步骤1)所述的MXene分散液浓度为5-15mg mL-1。 4.根据权利要求2所述的一种基于MXene与金属有机骨架化合物复合结构的析氧反应催化剂的合成方法,其特征在于,步骤2)所述的混合溶剂中,DMF与乙醇的体积比为5:1-15: 1。 5.根据权利要求2所述的一种基于MXene与金属有机骨架化合物复合结构的析氧反应催化剂的合成方法,其特征在于,步骤2)中,当使用两种金属盐时,两种不同阳离子金属盐的摩尔比为5:1-1:5;当使用三种金属盐时,三种不同阳离子金属盐的摩尔比为1:1:1。 6.根据权利要求2所述的一种基于MXene与金属有机骨架化合物复合结构的析氧反应催化剂的合成方法,其特征在于,步骤4)所述的三乙胺与混合溶液体积比为:1:20-68。 2

金属有机骨架材料(MOFs)简介

金属—有机骨架(MOFs)材料代表了一类杂合的有机—无机超分子材料,是通过 有机桥联配体和无机的金属离子的结合构成的有序网络结构。MOFs 呈现出目前最高的 比表面积,最低的晶体密度以及可调节的孔尺寸和功能结构,使 MOFs 可以实现一些特 殊的应用,包括气体的存储和分离,催化以及药物缓释等。通过在有机配体中引入功能 基团或者利用 MOFs 作为主体环境引入活性组分,合成功能化的 MOFs 材料,可以大大 拓宽其应用范围。-华南理工-袁碧贞 金属有机骨架(Metal-Organic Frameworks MOFs)材料是利用含氧、氮等多齿有机 配体与金属离子通过自组装形成的具有周期性网络结构的一种类沸石材料 [1]。—华南理工-袁碧贞 MoF材料是由含氧!氮等的多齿有机配体(大多是芳香多酸和多碱)与过渡金 属离子自组装而成的配位聚合物,是一种比表面积大!孔隙率高!热稳定性好! 构型多样化的类沸石材料[22一],其发展历程大致可以分为三代12.]"如图1一1所示" 最早的MoF材料是由Kattagawa/J!组在20世纪90年代中期合成的,但其合成的材 料在客体分子去除后,骨架坍塌,晶体结构遭到破坏,未形成永久性的孔隙率" 这也是第一代MOF材料"随后科学家们开始研究新型的阳离子!阴离子以及中 性的有机配体链接形成的配位聚合物"第二代材料在客体分子移走后能够留下空 位形成永久性的孔隙率"MOF材料在受到压力!光!化学刺激或者除去溶剂分 子时,材料骨架的形状会发生变化,这就是第三代MOF材料"含有梭基的阴离 子配体和金属离子链接构成的MOF材料属于我们所说的第二代MOF材料,然而 含有氮杂环的有机中性配体构建的MOF材料属于我们所说的第三代MOF。——北化-安晓辉金属-有机骨架 ( metal-organic frameworks, MOFs) 材料是由金属离子与有机配体通过自组装过 程杂化生成的一类具有周期性多维网状结构的多孔 晶体材料,具有纳米级的骨架型规整的孔道结构,大 的比表面积和孔隙率以及小的固体密度,在吸附、分 离、催化等方面均表现出了优异的性能,已成为新材 料领域的研究热点与前沿。MOFs 材料的出现可以 追溯到 1989 年以 Robson 和 Hoskins 为主要代表的 工作,他们通过 4,4',4″,4-四氰基苯基甲烷和正 一价铜盐[Cu( CH 3 CN) 4 ]·BF 4 在硝基甲烷中反应, 制备出了具有类似金刚石结构的三维网状配位聚合 物 [1] ,同时预测了该材料可能产生出比沸石分子筛 更大的孔道和空穴,从此开始了 MOFs 材料的研究 热潮。但早期合成的 MOFs 材料的骨架和孔结构不 够稳定,容易变形。直到 1995 年 Yaghi 等合成出了 具有稳定孔结构的 MOFs

金属有机骨架材料

金属有机骨架材料 金属有机骨架材料(MOFs )是近十年来发展迅速的一种配位聚合物,具有三维的孔结构, 一般以金属离子为连接点,有机配体位支撑构成空间3D延伸,系沸石和碳纳米管之外的又 一类重要的新型多孔材料,在催化,储能和分离中都有广泛应用,目前,大多数研究人员致力于氢气储存的实验和理论研究。金属阳离子在MOFs骨架中的作用一方面是作为结点 提供骨架的中枢,另一方面是在中枢中形成分支,从而增强MOFs的物理性质(如多孔性和手性)。这类材料的比表面积远大于相似孔道的分子筛,而且能够在去除孔道中的溶剂分子 后仍然保持骨架的完整性。因此,MOFs具有许多潜在的特殊性能,在新型功能材料如选 择性催化、分子识别、可逆性主客体分子(离子)交换、超高纯度分离、生物传导材料、光 电材料、磁性材料和芯片等新材料开发中显示出诱人的应用前景,给多孔材料科学带来了新的曙光。常见的不同类型的金属有机骨架材料的结构如下图所示: 如下图所示: 卜叮 MOFs材料作为储氢领域的一名新军,由于具有纯度高、结晶度高、成本低、能够大批量生产、结构可控等优点,正受到全球范围的极大关注,近年来已成为国际储氢界的研究热点。经过近10年的努力,MOFs材料在储氢领域的研究已取得很大的进展,不仅储氢性能有了大幅度的提高,而且用于预测MOFs材料储氢性能的理论模型和理论计算也在不断发展、逐步完善。但是,目前仍有许多关键问题亟待解决。比如,MOFs材料的储氢机理尚存在 争议、MOFs材料的结构与其储氢性能之间的关系尚不明确、MOFs材料在常温常压下的储 氢性能尚待改善。这些问题的切实解决将对提高MOFs材料的储氢性能并将之推向实用化 进程发挥非常重要的作用。

金属有机骨架材料的合成与应用文献综述

金属有机骨架材料的合成与应用 摘要:近年来,金属有机骨架材料受到科学家们的高度关注,使得它成为新功能材料研究领域的热点。本文从金属有机骨架材料的合成、影响因素、存在问题等方面进行了阐述,并对这种新型多功能材料的应用方面作了展望。 关键字: 1.引言 金属有机多孔骨架化合物(Metal-Organic Frameworks,MOFs)是近十年来学术界广泛重视的一类新型多孔材料。MOFs是一种类似于沸石的新型纳米多孔材料,但又有别于沸石分子筛。它们的热稳定性不及无机骨架微孔材料,因此在传统的高温催化方面的应用受到限制,但在一些非传统领域,如非线性光学材料、磁性材料、超导材料和储氢材料等新材料方面的应用前景正在逐步被开发出来。金属有机多孔骨架化合物,又称为金属有机配位聚合物,它是由含氧、氮等的多齿有机配体(大多是芳香多羧酸) 与过渡金属离子自组装而成的配位聚合物。在构筑金属有机多孔骨架时,有机配体选择起着关键性的作用。目前,已经有大量的金属有机骨架材料被合成 ,主要是以含羧基有机阴离子配体为主,或与含氮杂环有机中性配体共同使用。这些金属有机骨架中多数都具有高的孔隙率和好的化学稳定性。通过设计或选择一定的配体与金属离子组装得到了大量新颖结构的金属有机多孔骨架化合物。也可以通过修饰有机配体,对这些聚合物的孔道的尺寸进行调控。 这种多孔材料的孔道大小、尺寸是多孔材料结构的最重要特征。孔材料在许多领域有着广泛的应用,如微孔分子筛作为主要的催化材料、吸附分离材料和离子交换材料在石油加工、石油化工、精细化工以及日用化工中起着越来越重要的作用。在高新技术应用领域,多孔材料也展现出良好的发展前景,如人们利用瓶中造船路线,在微孔分子筛孔道中制备染料复合体,为进一步研究固体微激光器提供基础;通过纳米化学反应路线技术,在微孔分子筛笼中制备Cd4S4 纳米团簇或通过“嫁接”或“锚装”等方法组装具有特定功能与性质的复杂分子、

金属有机骨架材料的合成及应用论文

金属有机骨架材料的合成及应用 一、背景 金属有机骨架材料(Metal-Organic Frameworks,MOFs)是一种类似于沸石的新型纳米多孔材料,具有结构组成的多样性、较大的比表面积和孔隙率、热稳定性好、可裁剪性的孔等特点,可应用在气体储存、分离、催化等领域。 多孔材料具有规则而均匀的孔道结构,其中包括孔道的大小、形状、维数、走向以及孔壁的组成和性质。孔道的大小、尺寸是多孔材料结构的最重要特征。人们把尺寸范围在2 nm 以下的孔道称为微孔,尺寸范围在2 ~50 nm 的孔道称为介孔,孔道尺寸大于50 nm 的就属于大孔范围了。多孔材料在许多领域有着广泛的应用,如微孔分子筛作为主要的催化材料、吸附分离材料和离子交换材料在石油加工、石油化工、精细化工以及日用化工中起着越来越重要的作用。在高新技术应用领域,多孔材料也展现出良好的发展前景,如人们利用瓶中造船路线,在微孔分子筛孔道中制备染料复合体,为进一步研究固体微激光器提供基础;通过纳米化学反应路线技术,在微孔分子筛笼中制备Cd4S4 纳米团簇或通过“嫁接”或“锚装”等方法组装具有特定功能与性质的复杂分子、配合物、簇合物、金属有机化合物、超分子、纳米态、齐聚体与高聚物等。半个世纪以来,随着多孔材料类型与品种的不断扩充与发展,应用领域的拓宽与需求的增加,研究领域和学科间交叉与渗透的日益加强及深化,研究方法与现代试验技术的进步,大大推动了多孔材料化学内涵的深入与学科面的拓宽。 1 无机微孔化合物 近二十年来,无机微孔化合物的发展极为迅速,它的种类从最初的沸石分子筛,逐渐又增加了磷酸盐、砷酸盐、锗酸盐、亚磷酸盐、硫酸盐、亚硒酸盐以及金属硫化物等类沸石微孔化合物。这类化合物被广泛应用于催化、吸附、分离和离子交换等领域。然而随着无机微孔化合物种类的增多以及应用领域的不断拓展,人们对它的性能又提出了更多和更高的要求。微孔化合物的结构与其性能紧密相关,例如,超大微孔结构能进行大分子催化反应;特种笼腔结构适用于特定微反应器与特种分子功能材料的组装;含有手性孔道的化合物有利于进行手性分子拆分与不对称催化反应等。因此,具有特殊孔道或笼腔结构的微孔化合物就成为人们研究的一个热点。一个显著的例子是具有24 元环超大孔道的磷酸锌化合物ND-1。无机微孔化合物通常在水热或溶剂热条件下合成,其合成机理非常复杂,影响因素也很多,如起始原料组成、晶化温度、晶化时间、压力、溶剂类型、结构导向剂,pH 值等。其中结构导向剂对微孔化合物的生成起着非常重要的作用。目前使用的结构导向剂主要有金属阳离子、有机物、氟离子和金属配合物。这些客体分子或离子在合成时的作用主要有:(1)模板作用;(2)结构导向作用;(3)空间填充剂;(4)平衡骨架电荷,影响产物的骨架电荷密度等[6]。 2 金属有机多孔骨架 金属有机多孔骨架化合物是近十年来学术界广泛重视的一类新型多孔材料。这类化合物含有各种各样的孔道类型,这些孔道无论从形状、大小,还是从对客体分子的吸附性能上讲, 都有别于沸石分子筛。它们的热稳定性不及无机骨架微孔材料,因此在传统的高温催化方面的应用受到限制,但在一些非传统领域,如非线性光学材料、磁性材料、超导材料和储氢材料等新材料方面的应用前景正在逐步被开发出来。金属有机多孔骨架化合物,又称为金属有机配位聚合物,它是由金属离子和有机配体自组装而形成。在构筑金属有机多孔骨架时,有机配体选择起着关键性的作用。一般说来,空间位阻大的配体不利于形成高维数的网络结构,而刚性的配体常被用来构筑孔道结构的高维聚合物。数年来,通过设计或选择一定的配体与金属离子组装得到了大量新颖结构的金属有机多孔骨架化合物。通过修饰有机配体,可以对这些聚合物的孔道的尺寸进行调控。 一、引言 多孔材料领域突出的挑战之一是设计和合成有特殊结构和高比表面积的物质。在许多实际应用中,如催化剂、分离和气体的储存等,这样的材料都是非常重要的。对于无序的碳结构,最大的比

金属-有机骨架载体钌-硼催化剂的性能

金属-有机骨架载体钌-硼催化剂的性能 2016-07-27 13:28来源:内江洛伯尔材料科技有限公司作者:研发部 H2压力对钌催化苯加氢性能影响近年来, 新型多孔复合材料——金属-有机骨架(MOF)材料受到了人们的广泛关注. MOF 材料通过金属离子与有机配体自组装形成, 具有拓扑结构多样、比表面积大、孔隙率高、孔道规则、孔道尺寸可调等优点, 在气体储存与分离、分子筛分与识别及催化等领域有着广阔的应用前景. 在催化应用中, MOF材料通常有不饱和配位的金属中心或功能化的有机配体, 从而具有一定的Lewis酸性, 使MOF材料本身显示出催化作用. MOF材料的有序孔道也可以在特定反应中起到择形催化的作用. 另一方面, MOF材料的大比表面积和多孔性使其有可能成为优秀的加氢催化剂载体. 如Jiang等采用沉积-还原法制备了ZIF-8(I22)负载的Au@Ag核壳催化剂,发现在NaBH4还原4-硝基苯酚反应中, 催化活性高于Au和Ag的单金属催化剂. Proch等制备了

Pt@MOF-177催化剂, 在无溶剂、无碱、室温下的醇氧化反应中显示出较高的活性. Schr?der 等制备了Ru@MOF-5催化剂用于苯加氢制环己烷, 在0.3MPa H2压力和75°C下反应20 h, 苯的转化率为25%. Wu等在超临界CO2-甲醇流体中制备了Ru@Zr-MOF催化剂, 在60 °C和6 MPa反应条件下, 苯加氢生成环己烷的转换频率(TOF)为5260 h-1,高于Ru/La-MOF催化剂. 其原因可能是Zr-MOF同时具有微孔和介孔, 有利于反应物和产物的扩散及反应的发生. 与苯加氢制环己烷相比, 苯部分加氢制环己烯在热力学和动力学上难度均更高. 由于环己烯拥有活泼的C=C双键, 是一种用途更广的化学合成中间体, 因此苯部分加氢制环己烯催化剂有着重要的研究价值. 已有的研究表明,在苯部分加氢反应中, 催化剂载体的性质对环己烯选择性的影响很大. 然而, 在文献中尚未见到将MOF材料用于苯部分加氢反应的报道. 通常, 为了促进中间产物环己烯从催化剂表面脱附, 以提高环己烯的选择性, 苯部分加氢反应一般在140°C 以上有水相存在的条件下进行.因此在选择MOF材料作为苯部分加氢催化剂载体时, 热稳定性尤其是水热稳定性是重要考虑因素. 在保证MOF材料有较高热稳定性的前提下, 优先选择以水热(溶剂热)法制备的MOF材料为催化剂载体, 以期MOF材料的结构在反应中能够保持稳定. Férey与其合作者最早开展了MIL(materials of Insititut Lavoisier)系列MOF的研究工作. 他们通过水热法合成了大量三价金属与对苯二甲酸或均苯三甲酸配位形成的MIL-n材料. MIL-n材料通过MO4(OH)2(M=Cr3+, Al3+, Fe3+)八面体与有机配体相互桥联, 形成具有菱形孔道的三维骨架结构, 其中MIL-53(Al)有较高的热稳定性, 其热分解温度高达500 °C. Cavka等报道了通过溶剂热法合成的另一种高热稳定性的MOF材料, 命名为UIO-66. 它通过高度对称的八面体无机金属单元Zr6O4(OH)4与有机配体相互桥联, 形成四面体和八面体两种类型的孔笼. 每个八面体孔笼的八个面上, 均与一个四面体孔笼相连, 在三维空间形成不断延伸的骨架结构材料, 其热分解温度亦高于500°C.

金属有机骨架化合物历史及研究进展

Advances in Material Chemistry 材料化学前沿, 2020, 8(1), 1-4 Published Online January 2020 in Hans. https://www.doczj.com/doc/c56007765.html,/journal/amc https://https://www.doczj.com/doc/c56007765.html,/10.12677/amc.2020.81001 History and Research Progress of Organometallic Skeleton Compounds Chenxi Yang1,2,3,4 1Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an Shaanxi 2Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an Shaanxi 3Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural Resources, Xi’an Shaanxi 4Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi’an Shaanxi Received: Feb. 19th, 2020; accepted: Mar. 5th, 2020; published: Mar. 12th, 2020 Abstract Metal-organic frameworks (MOFs) have become excellent porous materials due to their regularity, rigidity, elasticity, variability and designability. In this paper, the history of MOFs is reviewed, and the synthesis methods and ligand selection of MOFs are summarized. By summarizing different synthetic methods, the advantages and disadvantages of different synthetic methods are intro-duced, and the methods used in different situations are summarized. Keywords Metal-Organic Frameworks, Ligands, Synthesis 金属有机骨架化合物历史及研究进展 杨晨曦1,2,3,4 1陕西地建土地工程技术研究院有限责任公司,陕西西安 2陕西省土地工程建设集团有限责任公司,陕西西安 3自然资源部退化及未利用土地整治工程重点实验室,陕西西安 4陕西省土地整治工程技术研究中心,陕西西安 收稿日期:2020年2月19日;录用日期:2020年3月5日;发布日期:2020年3月12日

金属有机骨架材料在催化中的研究进展_于会贤

2012年第11期广东化工 第39卷总第235期https://www.doczj.com/doc/c56007765.html, · 83 · 金属有机骨架材料在催化中的研究进展 于会贤,张富民,钟依均,朱伟东 (浙江师范大学物理化学研究所,先进催化材料教育部重点实验室,浙江金华 321004) [摘要]简介了金属有机骨架材料(MOFs)的合成方法,主要介绍了MOFs应用于Lewis酸、碱和手性催化中的研究进展,对MOFs材料在催化领域的应用进行了展望。 [关键词]金属有机骨架材料;合成;催化 [中图分类号]O643 [文献标识码]A [文章编号]1007-1865(2012)11-0083-02 Applications of Metal-organic Frameworks in Catalysis Yu Huixian, Zhang Fumin, Zhong Yijun, Zhu Weidong (Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China) Abstract: Different methods to metal-organic frameworks (MOFs) as catalysts were addressed. Special attention was paid on introducing the research progress on the applications of MOFs in Lewis acid, base, and enantioselective catalysis. Finally, the applicability of MOFs in catalysis was anticipated. Keywords: metal-organic framework;synthesis;catalysis 近年来,金属有机骨架材料(Metal-organic framework,MOFs)作为一类新型的多孔材料,在其合成和性能研究领域都得到了快速的发展。MOFs材料之所以成为目前科学界的研究热点,是因为这一类材料具诸多优良性质,例如大的比表面积、高的孔隙率、可裁剪孔道结构、化学可修饰等。众多设计合成的MOFs除了在气体吸附、存储和分离中应用外,在催化领域同样具有广阔的应用前景。 1 MOFs的合成 目前,对于MOFs材料的合成主要方法有挥发法、扩散法、溶剂热法、微波法、超声法、机械合成法以及后处理法等。 1.1 水(溶剂)热合成法 水(溶剂)热合成法[1-2][hydrothermal(solve-thermal)method]适用于将可溶性的金属源与有机配体装入一个密闭的体系中来培养晶体。有机溶剂由于带有不同的官能团,其蒸汽压、极性、表面张力、介电常数、粘度等性质差异很大。此外,不同的反应前体和一些有机、无机结构导向剂同时被引入到反应体系中,而且反应过程中还常伴随着一些通常条件下不能进行的反应,大大增加了合成产物结构的多样性。在溶剂热合成中,常用的有机溶剂有胺类例三乙胺、N,N-二甲基甲酰胺(DMF)、N,N-二乙基甲酰胺(DEF)等,吡啶、醇类(甲醇、乙醇等)和二甲基亚砜(DMSO)等。 1.2 微波合成法 Ni和Masel[3]报道了采用微波合成法(microwave synthesis)合成出MOF-5、IRMOF-2和IRMOF-3,该方法的优点是大大降低合成时间,此后这一合成技术已应用于其它MOFs材料的合成[4-5]。通过研究Cu-BTC(HKUST-1)晶体的生长,科学家们认识了 微波合成法提高MOFs晶体形成速率的机理,认为主要是由于成核速率的加快,而不是晶体的生长所致[6]。此外,在合成MIL-53(Fe)中发现,微波合成法不仅可以提高成核速率,而且对晶体生长速率也有提高[7]。 1.3 超声合成法 超声化学合成法(sonochemical synthesis)是另一种合成小晶粒MOFs材料和缩短合成时间的有效方法,这种方法在近几年才得到应用。其合成过程可分为声空化—液体中空腔的形成、振荡、生长收缩及崩溃,以及引发的物理和化学变化。通过声波辐射可以使反应体系产生局部高温和高压,导致快速升温[8]。以1-甲基-2吡啶烷酮(NMP)为溶剂,MOF-5通过超声化学合成法,在30 min 内产出5~25 μm的晶体,所合成MOF-5的性质与经微波合成和传统的水热合成法非常相似[9]。MOF-177的合成也有类似结果,通过控制反应时间合成的MOF-177晶体尺寸可控制在50~900 nm 范围内[10]。通过超声化学合成法可以降低Cu-BTC的合成时间[11]。通过控制反应时间还可以得到不同相的同一产物,例如Zn(1,4-二羧酸苯)·(H2O)n合成过程中,随着反应时间的增长可以得到从纳米带到纳米片再到微晶三种不同构相的产物[12]。 1.4 后处理法 后处理法(post-synthetic modification,PSM)是指在已合成的MOFs晶体骨架上引入其它的有机功能团,从而修饰MOFs材料的结构及物理化学性质。该方法不受已有的晶体结构限制,只需MOFs材料骨架具有足够的刚性和多孔性,并不会改变骨架的完整性。采用PSM方法合成具有以下几方面优点:(1)可以引入多种不同的功能基团;(2)化学衍生仅发生在已有的晶体上,因此被修饰产物易于分离和纯化;(3)不同取代基修饰的MOFs材料具有不同的功能团,但具有相同的拓扑结构;(4)通过控制取代基的类型和被修饰程度还可以系统地调变和优化MOFs材料的性质。但在使用PSM法合成MOFs材料时必须遵循以下两个原则[13]:一方面所加入的修饰功能团分子要足够小,以便可以进入材料的孔道内;另一方面,所设定的反应条件不会破坏原有的骨架结构。 2 MOFs在催化中的应用 多相催化体系由于产物易分离以及催化剂便于回收再利用等优点,很早就被应用于工业生产中,例如沸石在石油工业中的应用。虽然在二十多年前就已经有人提出MOFs材料可以作为催化剂应用,直到近年才有相关的研究成果被报道。 2.1 Lewis酸催化 在1994年,Fujita研究小组[14]首次在Cu-BTC上进行了乙醛的氰基硅烷化反应,展现出良好的择形选择性催化。Cu-BTC中含有不饱和金属点位(CUMs)的Lewis酸性位可以作为催化活性中心,被应用于香茅醛环化反应、α-松萜氧化物的异构化和含有2-溴苯丙酮的乙烯缩醛重排[15]中,表现出优异的择形选择性催化。 2.2 碱催化 MOFs材料具有高度的可调变性,不仅可以引入CUMs,同时也可以将带有电子对的有机功能团作为活性中心,经后处理(PSM)使其嫁接到MOFs材料骨架上。 2008年,Férey小组[16]研究表明,MIL-101经加热脱水得到的Cr的CUMs与有机功能团乙二胺中含有孤电子的N相配位,从而得到氨基化的MIL-101。经乙二胺后修饰的MIL-101作为碱催化剂应用于诺文葛耳(Knoevenagel)缩合反应中,具有极佳的催化性能。 2.3 手性催化 设计手性MOFs材料并将其应用于对映选择性催化中是目前多相催化研究领域的热点之一。然而,目前大多数的纯手性的MOFs催化剂孔结构不稳定、易坍塌。因此,合成拥有结构稳定性的手性MOFs催化剂将成为该领域的发展趋势[17-18]。现有的合成手性MOFs催化剂的方法主要有下列三种:(1)使用刚性的手性有机配体如POST-1;(2)嫁接手性链作为修饰基团而不直接参加骨架结构的组成;(3)在一些特殊情况中,非手性链的特定方向可以产生手性MOFs材料[19]。 MOFs材料具有高度可控性的结构引起了研究不对称催化的科学工作者的关注[20-21]。Lin等人[22]将对映异构体1,1’-二萘衍生物作为配体合成了具有手性的MOFs材料,如[Ln2(H2L-1 )2(CH3OH)]H4L·HCl·6H2O(L1代表手性配体)。随后,Lin等人[23]又合成了具有高孔隙率的铬基MOFs手性催化剂[Cd(L2)2(ClO4 )2]·11EtOH·6H2O(L2是含有二吡啶基手性配体)。Kim等人[24]首次将MOFs纯手性催化剂[Zn3(m3-O)(L4-H)6]·2H3O·12H2O(D-POST-1)应用于不对称催化反应 [收稿日期] 2012-05-28 [作者简介] 于会贤(1986-),女,吉林敦化人,硕士研究生,主要研究方向为金属有机骨架材料在气体吸附和催化性能研究。

金属-有机框架的发展和应用

金属-有机框架的发展和应用 摘要:近年来,由于金属-有机框架(MOFs)材料特殊的结构使得其在气体储存、催化活性、离子交换、磁性材料、分子和光学性能等方面的潜在用途,MOFs的设计与合成吸引了大家的注意力。当前,已有很多用于制备多种金属-有机框架(MOFs)的方法和相关理论。本文主要介绍了MOFs的研究进展、应用,概述了MOFs未来的趋势。 关键词:金属-有机框架,发展,应用 Abstract: In recent years, the design and synthesis of Metal-Organic Frameworks (MOFs) have attracted great interest due their potential use as gas storage, catalysis activity, ion exchange, magnetism, molecular, and optical properties. Currently, varied methods and theories have been used for the formation of metal-organic frameworks (MOFs). This paper mainly introduces the development and application of MOFs, and the future tendency. Keyword: Metal-Organic Frameworks; Development; Application 1绪论 金属-有机框架材料(Metal Organic Frameworks,MOFs)又叫金属有机配位聚合物(Metal Organic Coordination Polymers,MOCPs)已经成为一种新型的功能化晶体材料。它是由有机桥连配体同过配位键的方式将无机金属中心(金属离子或者金属离子簇)连接起来形成无限延伸的网络状结构的晶体材料。金属-有机框架材料将无机化学和有机化学两种通常视为两种完全不同的化学学科巧妙地结合在一起。根据金属-有机框架材料在空间维度延伸情况将金属有机框架材料分为一维链,二维层,三维空间网络状结构。 金属-有机框架材料的最大特点就是它是一种晶体材料具有超高的孔隙率(高达90%的自由体积)和巨大的内比表面积(超出6000平方米/克)。而且由于无机和有机不同成分组成的结构使得其结构多样并可调节,这些最终促使金属有机框架材料在许多方面有着潜在应用[1]。 2金属有机框架化合物的研究进展

金属有机骨架材料的合成及应用_魏文英

收稿:2004年11月,收修改稿:2005年3月 *通讯联系人 e -mail :hanjin yu @eyou .com 金属有机骨架材料的合成及应用 魏文英 方 键 孔海宁 韩金玉*  常贺英  (天津大学化工学院绿色合成与转化教育部重点实验室 天津300072) 摘 要 金属有机骨架(MOFs )材料是目前研究很热的一种新功能材料。本文讨论了金属有机骨架材 料的设计原理、制备过程、骨架结构的影响因素以及骨架合成的发展状况,总结了金属有机骨架材料在催化剂、气体的储存和分离方面的应用,并对这种新型多功能材料在设计、合成与应用中的广阔前景做了展望。 关键词 金属有机骨架 配位聚合物 多孔材料 催化剂 气体储存 分离 中图分类号:O63;TB383 文献标识码:A 文章编号:1005-281X (2005)06-1110-06 Synthesis and Applications for Materials of Metallorganic Frameworks W ei W enying Fang Jian Kong Haining Han J inyu *  Chang H eying (Key Laborator y for Green Chemical Technology of the Ministry of Education ,School of Chemical Engineering &Technology ,Tianjin University ,Tianjin 300072,China ) A bstract Materials of metallorganic fra me works is a new kind of functional materials being lar gely researched no w .The principles of design ,pr eparation pr ocess ,the factors effecting on the structure and the development status of synthesis for metallorganic frameworks (MOFs )are disc ussed .The applications of the new kind of poly -function materials in the aspect of catalyst ,gas storage and separation are summarized .In addition ,suggestions of the prospective design ,synthesis and applications are presented . Key words metallorganic framework ;coordination polymers ;porous materials ;catalysts ;gas storage ;separation 一、引 言 多孔材料领域突出的挑战之一是设计和合成有特殊结构和高比表面积的物质。在许多实际应用中,如催化剂、分离和气体的储存等,这样的材料都是非常重要的。对于无序的碳结构,最大的比表面积是2030m 2 ·g -1[1] ,文献报道 [2] 的有序结构沸石的 最大表面积是904m 2 ·g -1 。随着超分子配位化学和 金属有机化合物直接组合化学的发展,新型的多孔 材料开始出现。Ya ghi 等[3—6] 设计并合成了一种金属有机骨架多孔材料,由金属与多齿型羧基有机物组合而成,其比表面积已经达到3000m 2 ·g -1 。最 近,Yaghi 等 [7] 又进一步合成了晶体Zn 4O (B TB )2 (MOF -177),比表面积约4500m 2 ·g -1 。多齿有机配体与金属离子组合而成的骨架材料,产生了新一代超分子多孔材料。这类材料中的孔隙具有各种形状 和尺寸,是沸石和分子筛之类的多孔材料所观察不到的。 金属有机骨架(MOFs )是由含氧、氮等的多齿有机配体(大多是芳香多酸和多碱)与过渡金属离子自组装而成的配位聚合物。早在20世纪90年代中期,第一类MOFs 就被合成出来,但其孔隙率和化学稳定性都不高。因此,科学家开始研究新型的阳离子、阴离子以及中性的配位体形成的配位聚合物。目前,已经有大量的金属有机骨架材料被合成 [8—15] , 主要是以含羧基有机阴离子配体为主,或与含氮杂环有机中性配体共同使用。这些金属有机骨架中多数都具有高的孔隙率和好的化学稳定性。由于能控制孔的结构并且比表面积大,MOFs 比其它的多孔材料有更广泛的应用前景,如吸附分离[16—21] 、催化剂、 磁性材料 [22] 和光学材料 [23] 等。另外,MOFs 作为一 第17卷第6期2005年11月 化 学 进 展 PR OGRESS I N C HE MISTRY Vol .17No .6  Nov .,2005

金属有机骨架材料(MOFs)简介

金属一有机骨架(MOFs)材料代表了一类杂合的有机一无机超分子材料,是通过有机桥联配体和无机的金属离子的结合构成的有序网络结构。MOFs呈现出目前最高的 比表面积,最低的晶体密度以及可调节的孔尺寸和功能结构,使MOFs可以实现一些特 殊的应用,包括气体的存储和分离,催化以及药物缓释等。通过在有机配体中引入功能基团或者利用MOFs作为主体环境引入活性组分,合成功能化的MOFs材料,可以大大 拓宽其应用范围。-华南理工-袁碧贞 金属有机骨架(Metal-Organic Frameworks MOFs )材料是利用含氧、氮等多齿有机配体与金属离子通过自组装形成的具有周期性网络结构的一种类沸石材料 [1]。一华南理工-袁碧贞 MoF材料是由含氧!氮等的多齿有机配体(大多是芳香多酸和多碱)与过渡金属离子自组装而成的配位聚合物,是一种比表面积大!孔隙率高!热稳定性好! 构型多样化的类沸石材料[22 —],其发展历程大致可以分为三代12.]"如图1 一1所示" 最早的MoF材料是由Kattagawa/J!组在20世纪90年代中期合成的,但其合成的材料在客体分子去除后,骨架坍塌,晶体结构遭到破坏,未形成永久性的孔隙率” 这也是第一代MOF材料"随后科学家们开始研究新型的阳离子!阴离子以及中 性的有机配体链接形成的配位聚合物"第二代材料在客体分子移走后能够留下空位形成永久性的孔隙率"MOF材料在受到压力!光!化学刺激或者除去溶剂分子时,材料骨架的形状会发生变化,这就是第三代MOF材料"含有梭基的阴离子配体和金属离子链接构成的MOF材料属于我们所说的第二代MOF材料,然而 含有氮杂环的有机中性配体构建的MOF材料属于我们所说的第三代MOF。一一北化-安晓 辉 金属-有机骨架(metal-organic frameworks,MOFs)材料是由金属离子与有机配体通过自组装过程杂化生成的一类具有周期性多维网状结构的多孔晶体材料,具有纳米级的骨架型规整的孔道结构,大的比表面积和孔隙率以及小的固体密度,在吸附、分离、催化等方面均表现出了优异的性能,已成为新材料领域的研究热点与前沿。MOFs材料的出现可以 追溯到1989年以Robson和Hoskins为主要代表的工作,他们通过4, 4', 4〃,4 -四氰基苯基甲烷和正一价铜盐]Cu( CH 3 CN) 4 :? BF 4 在硝基甲烷中反应,制备出了具有类似金刚石结构的三维网状配位聚合物 [1 : ,同时预测了该材料可能产生出比沸石分子筛更大的孔道和空穴,从此开始了MOFs材料的研究 热潮。但早期合成的MOFs材料的骨架和孔结构不 够稳定,容易变形。直到1995年Yaghi等合成出了 具有稳定孔结构的MOFs [2] ,才使其具有了实用 价值。 由于MOFs 材料具有大的比表面积和规整的孔道结构,并且孔尺寸的可调控性强,骨架金属离子和有机配体易实现功能化,因此在催化研究 [3—9] 、气体 吸附

金属有机骨架材料制备、特性及其在环境治理方面应用的研究进展

D O I :10.3969/j .i s s n .1001-5337.2019.4.083 *收稿日期:2019-03-31 基金项目:山东省自然科学基金(Z R 2019B B 040);山东省农业良种工程项目(2019L Z G C 020). 通信作者:陈峻峰,男,1987-,博士,讲师;研究方向:水污染控制工程;E -m a i l :c h e n j u n f e n g @q f n u .e d u .c n .金属有机骨架材料制备、特性及其 在环境治理方面应用的研究进展* 付梦雨, 王宏莹, 陈峻峰, 刘欢欢, 郭华敏, 刁忠煜 (曲阜师范大学生命科学学院,273165, 山东省曲阜市) 摘要:文章介绍了M O F s 材料的特性二合成方法以及近年来在治理水污染二大气污染等环境修复中的应用.M O F s 材料主要用途为吸附分离甲烷二 二氧化碳等温室气体,以及二氧化硫二挥发性有机物等其他有害气体;还可用于吸附水体中重金属离子和有毒染料,并催化污染物的降解. 关键词:金属有机骨架;水污染;大气污染;催化;气体吸附 中图分类号:X 703.1 文献标识码:A 文章编号:1001-5337(2019)04-0083-08 1 金属有机骨架材料的概述 金属有机骨架材料(m e t a lo r g a n i cf r a m e -w o r k s ,MO F s ),也称为多孔配位聚合物,是一类通过无机金属离子或金属簇和有机配体的自组装形成 的配位聚合物材料[1] . 其中金属离子可以看作是构成网络框架的节点,使用较为普遍的金属离子是低价态的过渡金属.除此之外,还包括一些碱金属二稀 土金属二以及高价态过渡金属[2 ]. 在金属离子配位反应中,通过控制金属离子与有机配体反应的摩尔比例,不同的金属可以具有不同的配位数,这样就会得到不同的几何骨架结构.正是由于金属离子和有机配体的多样性,MO F s 材料可以根据期望目标设计成为具有不同物理化学性质的空间结构. 此外,MO F s 凭借其丰富的拓扑结构二 内部不饱和金属位点二以及具有较大孔洞的配位聚合物和同沸石等材料相似的内部空间结构等特点,在离子交换二催化二气体吸附二能源储备等领域有广阔的发展前景.目前MO F s 的制备方法主要有水热( 溶剂热)合成法,扩散法,微波合成法,机械化学合成法,快速合成法等. 2 金属有机骨架材料研究进展 2.1 制备方法 2.1.1 水热( 溶剂热)合成法水热(溶剂热)合成法是MO F s 研究者最早使 用也是最常用的方法.这种方法是将所需金属化合物和有机配体与水或其他溶剂一同放在一些特殊的密闭反应器里,加热反应器,在高温二高压的环境下过饱和溶液中的物质将进行化学反应,从而合成MO F s 的一种方法.典型的例子就是E d d a o u d i 等[3 ] 将硝酸锌水合物和12种不同有机配体混合, 以N ,N -二乙基甲酰胺(D E F )为溶剂合成的I R MO F s 系 列材料.水热(溶剂热)合成法解决了常温下部分反应物不溶解的问题,操作设备简单,能耗较低,但其合成时间较长,而且难以控制晶体形态. 2.1.2 扩散法 该方法是将金属盐二有机配体和溶剂以一定比 例混合,置于玻璃瓶中,并将此玻璃瓶放入密闭的具有去质子化溶剂的大玻璃瓶中,静置一段时间后观察.扩散法的优势是合成条件温和二易获得高质量的单晶材料.此方法常见于生成一定厚度的MO F 膜.将合成薄膜所需的金属盐混入溶胶中,然后在 第45卷 第4期2019年10月 曲阜师范大学学报J o u r n a l o f Q u f u N o r m a l U n i v e r s i t y V o l .45 N o .4 O c t .2019

相关主题
文本预览
相关文档 最新文档