金属有机骨架材料(MOFs)简介
- 格式:docx
- 大小:9.86 KB
- 文档页数:2
金属有机骨架材料金属有机骨架材料(Metal-Organic Frameworks, MOFs)是一种由金属离子或金属团簇和有机配体组成的晶态材料。
它们以其巨大的表面积、多孔性和可调控性而受到广泛关注。
金属有机骨架材料的结构特点是由金属离子或金属团簇作为骨架连接节点,有机配体作为连接辅助剂,通过配体和金属之间的配位键连接形成三维结构。
这种特殊的结构使得MOFs具有高度可调控性,可以通过合成不同的金属和配体来制备具有不同结构和性质的MOFs材料。
MOFs具有非常大的比表面积,可达到几百到几千平方米/克,远远超过传统多孔材料。
这是由于其高度结构化的孔道和大量的微孔结构。
这种特殊的结构使得MOFs具有出色的储气、储能和气体分离等领域的应用潜力。
以气体分离为例,由于MOFs具有可调控的孔道尺寸和化学环境,可以通过选择合适的MOFs材料来实现对特定气体的高选择性吸附和分离。
另外,MOFs还具有较高的储氢能力和催化性能,因此在储能和催化领域也有广泛应用。
MOFs的孔道结构可以实现高度集成和固定化的催化活性中心,从而提高催化反应效率。
此外,MOFs还可以通过调节金属和配体的种类和比例来调控其催化性能,使其具备优异的催化活性和选择性。
此外,MOFs材料还广泛应用于氢气储存、吸附降解有害气体、药物递送、光电器件等领域。
由于其多样的结构和功能,MOFs成为了材料科学和化学领域的研究热点,并在实际应用中取得了一些重要的突破。
总而言之,金属有机骨架材料作为一种新型晶态材料,具有巨大的表面积、多孔性和可调控性,可以应用于储气、储能、气体分离、催化、药物递送、光电器件等领域。
随着对其研究的深入,相信MOFs将会在更多领域展现出其独特的优势和应用潜力。
材料科学中的金属有机骨架材料研究现状随着人们对环境保护意识的不断提高,新型材料的研究更受到人们的关注。
金属有机骨架材料(Metal organic frameworks,MOFs)作为一种新型多孔材料,具有重要的应用前景。
在CO2吸附、催化、氢能源相关领域等方面,MOFs也展现了无限的潜力。
那么,在金属有机骨架材料领域的研究现状又是如何呢?1. MOFs的定义和结构MOFs是由金属离子和有机配体通过化学键结合而成的多孔晶体材料。
严格来说,MOFs应该是具有晶胞的金属有机骨架,但因化学反应等原因,部分MOFs也退化成了非晶态或类晶态的多孔材料。
MOFs的结构特点就是由大量的趋向于八面体配位的金属离子和柔性的有机配体组成,这些组成元素构成了三维框架,水箱状的结构让其具有较大的表面积和丰富的孔结构,使其在吸附、分离、催化等领域有着潜在应用。
2. MOFs的合成方法MOFs的合成方法主要有溶液法、气相法和固相法等几种方式。
其中,溶液法和气相法是最常用的合成方法。
溶液法需要控制反应溶剂的种类和质量,以及温度、压力等反应条件,同时保证配体中心金属离子的连通性。
气相法的优点就是可以不受溶剂污染,且高温下反应热力学稳定性高,但反应难度较大。
在固相法中,可以采用单晶生长法,其形成晶体的条件更严苛,但得到的产品具有较好的晶态性。
此外,近年来,类似于绿色化学合成的绿色合成法,也成为了MOFs合成的研究热点之一。
3. MOFs的应用MOFs作为一个全新的多孔材料,具有广泛的应用前景。
在能环领域,MOFs可以被用于氢能源、光电转化、电池、储氢、催化等多个方面。
在环境保护领域,MOFs的应用范围更是较为广泛,如空气净化、水质净化等。
在超分子化学、有机金属化学领域,MOFs也显示出了它的巨大潜力。
此外,MOFs的生物医学领域的应用也吸引了越来越多的研究人员的关注,例如抗菌、基因转移等方面。
4. MOFs的局限性和展望随着MOFs研究的不断深入,人们逐渐认识到MOFs这种材料的局限性。
金属有机骨架的气体吸附性能研究摘要:金属有机骨架材料(metal organic frameworks,MOFs)作为一类新型的多孔材料,具有比表面积高、孔径可调、可功能化修饰等诸多优点,在气体吸附领域具有广泛的潜在用途,研究MOFs材料上的吸附,揭示其吸附机理,对新MOFs材料的设计及其在吸附领域的应用,具有非常重要的理论研究和应用价值。
本文主要介绍了MOFs材料的特点,并讨论了不同MOFs材料对CO2,H2,CH4气体的吸附性能。
关键词:MOFs;气体吸附性1.金属有机骨架(MOFs)的简介金属有机骨架材料是由金属离子或离子簇与有机配体通过分子自组装而形成的一种具有周期性网络结构的晶体材料,组成MOFs的次级结构单(secondary building units,SBUs)是由配位基团与金属离子结合而形成小的结构单元,在一定程度上决定了材料骨架的最终拓扑结构。
这种多孔骨架晶体材料,是一种颇具前途的类沸石(有机沸石类似物)材料,可以通过不同金属离子与各种刚性桥连有机配体进行络合,设计与合成出不同孔径的金属-有机骨架,从而使得MOFs的结构变化无穷,并且可以在有机配体上带上一些功能性的修饰基团,使这种MOFs微孔聚合物可以根据催化反应或吸附等性能要求而功能化[1]。
MOFs材料的研究始于20世纪80年代末90年代初,1989年Hoskins和Robson报道了一类由无机金属团簇和有机配体以配位键方式相互链接而成的新型固体聚合物材料,被认为是MOFs材料研究的开端,但当时普遍存在的问题是用于合成MOFs材料的模板剂除去后结构容易坍塌,而且其骨架出现相互贯穿的现象[2]。
20世纪以来MOFs的研究取得了突破性进展,随着晶体工程学在MOFs研究中的应用,人们可以根据需要通过设计新型的有机配体和控制合成方法来精确调控MOFs的结构,各种高比表面积和孔体积的新型MOFs材料不断被合成出来[3],与此同时,MOFs在气体吸附、分离、催化、药物运输荧光等方面表现出了巨大的应用潜力。
金属有机框架材料在催化反应中的应用金属有机框架材料(MOFs)是一类由金属离子或金属簇与有机配体组成的晶态材料。
因其独特的结构和多样的孔道特性,MOFs在催化反应中展现出了广泛的应用潜力。
本文将从催化反应的原理、MOFs的结构特点以及其在不同催化反应中的应用等方面进行探讨。
一、催化反应的原理催化反应是一种经过催化剂促进的化学反应过程。
催化剂通过提供新的反应路径,降低反应的活化能,加速反应速率,从而促进化学反应的进行。
常见的催化剂包括酶、金属氧化物、贵金属等。
MOFs作为一种新型的催化剂,在催化反应中展现出了独特的优势。
二、MOFs的结构特点MOFs的结构特点决定了其在催化反应中的应用潜力。
首先,MOFs 具有高度可控的孔道结构,可用于调控催化剂的反应活性和选择性。
其次,MOFs具有大的比表面积和孔体积,提供了丰富的活性位点,有助于催化剂与反应物之间的相互作用。
此外,MOFs还具有可调控的骨架结构,可用于调控催化剂的稳定性和可重复使用性。
三、MOFs在催化反应中的应用1. MOFs在氢气储存与释放中的应用MOFs具有高度可控的孔道结构和大的比表面积,可用于储存和释放氢气。
通过在MOFs的孔道中引入金属催化剂,可以有效提高氢气的储存和释放速率,实现可控的氢气储存与释放。
2. MOFs在有机合成中的应用MOFs作为固定相催化剂,可以在有机合成中发挥重要作用。
其丰富的活性位点和可调控的孔道结构,有助于调控催化剂的反应活性和选择性。
此外,MOFs还可以作为载体材料,载载药物或催化剂,提高其稳定性和可重复使用性。
3. MOFs在环境污染治理中的应用MOFs具有高度可控的结构和孔道特性,可用于吸附和催化降解环境中的污染物。
通过调控MOFs的结构和孔道特性,可以实现对特定污染物的高效吸附和催化降解,有助于环境污染的治理。
四、MOFs在催化反应中的挑战与展望尽管MOFs在催化反应中展现出了广泛的应用潜力,但其在实际应用中仍存在一些挑战。
金属有机骨架材料的研究进展金属有机骨架材料(Metal-organic frameworks, MOFs)是一种由金属离子/团簇和有机配体组成的多孔晶体材料。
自上世纪90年代中期MOFs被发现以来,由于其极大的比表面积、调控孔径大小和组成、可控的化学反应等优点,MOFs得到了广泛关注。
MOFs在气体分离、催化、负载等领域有着广泛的应用,其中,许多MOFs已经在实际生产中使用。
I. MOFs的基本结构和合成方法MOFs采用亲电性的金属离子和具有多个配位位点的多种有机配体通过配位键形成一维、二维、三维的网状结构。
MOFs的孔结构由金属/配体之间的非共价键交互所决定,孔径大小由配体或金属的不同选择和配比控制。
MOFs合成方法主要分为溶剂热法、水热法、气相反应法、电化学法、机械球磨法等几种。
其中,溶剂热法以及水热法是主流的制备MOFs的方法。
由于 MOFs 的合成方法相对灵活,可以通过调整反应条件、配体的结构等来实现目的性的调控,从而开发出多种性能上的优秀 MOFs。
II. MOFs在气体分离和储存领域中的应用MOFs具有大比表面积、可控的孔径大小和分子筛效应等特性,因此在气体分离和储存领域中有广泛应用。
例如,由于透过性和选择性的功能,MOFs被广泛应用于CO2捕获和气体存储。
MOFs中CO2分子的吸附量大、速率快,选择性高,可以有效地实现碳捕获。
相对于传统的分离技术,在CO2的分离、提纯方面,MOFs具有更加灵活的分离选择,因此在实际应用中有着广泛的应用前景。
III. MOFs在催化领域中的应用MOFs不仅在气体分离和储存领域中有着广泛的应用,而且在催化领域中也有着重要的地位。
MOFs具有多样性和可调性,可实现有效的精细调控,从而在催化反应中发挥出优秀的性能。
目前,MOFs在氢化、氧化、烷基化、氢氧化等反应中应用广泛,并在催化反应方面展现出许多优势,如高催化效率、强催化活性、选择性好等。
IV. MOFs在负载领域中的应用MOFs的高分子性质和可控性使其成为了优秀的载体材料。
金属一有机骨架材料1.金属一有机骨架(Metal-Organic Framework, MOF )是指有机配体与金属离子通过自组装形成的具有周期性网络结构的金属一有机骨架材料,又称为金属一有机配位聚合物(Metal-Organic Coordination Polymer,MOCP)或无机一有机杂化材料( Inorganic-Organic Hybrid Materials )。
MOFs 属于配位聚合物中的一个分支,它具有高结晶度、多孔性以及存在强的金属—配体的相互作用等特性。
同时,由于其具有特殊的周期性结构、高比表面积、高吸附性高孔隙率等特性,已经在吸附、电化学、催化等力而显示了广泛的应用前景。
2.金属一有机骨架材料的分类:(1)按骨架结构可分为:一维链状化合物、二维层状化合物以及三维网状化合物;(2)按金属中心离子类别可分为:过渡金属配位聚合物、稀土金属配位聚合物、碱金属配位聚合物和碱土金属配位聚合物等;(3)按金属中心离子数目可分:单核、双核、三核、四核等多核;按功能来分:可分为发光,磁性,导电,微孔等类;(4)按配体的类别可分为含梭酸类配体、含氮杂环类配体、含梭酸及氮杂环混合类配体等类。
3.金属一有机骨架材料制备方法金属一有机骨架材料的合成方法通常有:溶液挥发法、扩散法、水热/溶剂热法及超声、微波和紫外光技术等。
这几种方法相互补充,有时采用不同的方法可以生成不同结构和功能的化合物。
(1)溶液挥发法将选择的金属盐、配体溶解在适当的溶剂中,静置使其缓慢自组装生成金属一有机骨架晶体材料。
此方法适用于配体前体和配位产物溶解性较好,且产物在所选溶剂中的溶解性较差。
(2)扩散法扩散法包括气相扩散,液相扩散和凝胶扩散,此法适用于配合产物溶解性差,直接混合一般会以粉末的形式生成,且生成物溶解性差,难以找到合适的溶剂对产物进行重结晶。
(3)水热或溶剂热法水热与溶剂热合成是指在一定温度和压强下利用溶剂中物质的化学反应进行的合成。
第一部分MOFS结构材料
一,MOFS结构材料简单介绍:金属-有机骨架材料(Metal-Organic Frameworks)是指过渡金属离子与有机配体通过自组装形成的具有周期性网络结构的晶体多空材料。
它具有高孔隙率、低密度、大比表面积、孔道规则、孔径可调以及拓扑结构多样性和可裁剪性等优点。
主要包括两个重要组分:结点(connectors)和联接桥(linkers)
即MOFs是由不同连接数的有机配体(联接桥)和金属离子结点组合而成的框架结构。
MOFs又名配位聚合物或杂合化合物,是利用有机配体与金属离子间的金属.配体络合作用自组装形成的具有超分子微孔网络结构的类沸石(有机沸石类似物)材料[1] 。
二,MOFS结构材料的制备:
1,原位溶剂热法[2]
2, 晶种法[3]
3, 微波法[4] 4,分层法[5]
三,应用领域
MOFS 材料由于其特殊的的结构性质和其内部结构的改变使其在气体储存,小分子分离,催化等领域具有重要作用。
随着人们对有机和无机部分连接的逐步理解,MOFs的潜在应用价值逐步得到体现。
MOFs已经由一种新奇物质转化成了一种功能材料。
这不仅仅是因为它们具备了常规多孑L 物质具备的性能(分子筛、吸附、存储),更重要的是它的应用正深入到其他众多领域:因其压缩性而涉及到了固体化学和物理化学;因其存储和运载药物的能力涉及到了生命科学;因其能提供单层分散的纳米粒子而涉及到了纳米科学;因其聚合性还涉及到了聚合科学等等。
金属—有机骨架(MOFs)材料代表了一类杂合的有机—无机超分子材料,是通过有机桥联配体和无机的金属离子的结合构成的有序网络结构。
MOFs呈现出目前最高的比表面积,最低的晶体密度以及可调节的孔尺寸和功能结构,使MOFs可以实现一些特殊的应用,包括气体的存储和分离,催化以及药物缓释等。
通过在有机配体中引入功能基团或者利用MOFs作为主体环境引入活性组分,合成功能化的MOFs材料,可以大大拓宽其应用范围。
-华南理工-袁碧贞金属有机骨架(Metal-OrganicFrameworksMOFs)材料是利用含氧、氮等多齿有机配体与金属离子通过自组装形成的具有周期性网络结构的一种类沸石材料[1]。
—华南理工-袁碧贞MoF材料是由含氧!氮等的多齿有机配体(大多是芳香多酸和多碱)与过渡金属离子自组装而成的配位聚合物,是一种比表面积大!孔隙率高!热稳定性好!其发展历程大致可以分为三代],一[22构型多样化的类沸石材料.㈱崮如图1一1所示最早的MoF材料是由Kattagawa/J!组在20世纪90年代中期合成的,但其合成的材料在客体分子去除后,骨架坍塌,晶体结构遭到破坏,未形成永久性的孔隙率这也是第一代MOF材料随后科学家们开始研究新型的阳离子!阴离子以及中性的有机配体链接形成的配位聚合物第二代材料在客体分子移走后能够留下空位形成永久性的孔隙率MOF材料在受到压力!光!化学刺激或者除去溶剂分子时,材料骨架的形状会发生变化,这就是第三代MOF材料含有梭基的阴离子配体和金属离子链接构成的MOF材料属于我们所说的第二代MOF材料,然而含有氮杂环的有机中性配体构建的MOF材料属于我们所说的第三代MOF。
——北化-安晓辉金属-有机骨架(metal-organicframeworks,MOFs)材料是由金属离子与有机配体通过自组装过程杂化生成的一类具有周期性多维网状结构的多孔晶体材料,具有纳米级的骨架型规整的孔道结构,大的比表面积和孔隙率以及小的固体密度,在吸附、分.离、催化等方面均表现出了优异的性能,已成为新材材料的出现可以料领域的研究热点与前沿。
mofs材料MOFs材料。
MOFs材料(金属有机骨架材料)是一类由金属离子与有机配体构建而成的多孔晶体材料,具有高度可调控性、大比表面积、多种结构拓扑等优点,因此在气体吸附、分离、储能、催化等领域具有广泛的应用前景。
MOFs材料的研究与应用已成为当今材料科学领域的热点之一。
首先,MOFs材料具有高度可调控性。
通过选择不同的金属离子和有机配体,可以构建出具有不同结构和性质的MOFs材料,从而满足不同领域的需求。
例如,选择具有不同孔径和孔体积的有机配体,可以实现对气体分子的选择性吸附和分离,为气体储存和分离提供了新的途径。
其次,MOFs材料具有大比表面积。
由于MOFs材料具有多孔结构,其比表面积通常可以达到几百到几千平方米每克,这为其在气体吸附、催化反应等领域的应用提供了良好的基础。
大比表面积不仅可以增加材料与气体分子的接触面积,提高气体吸附和分离性能,还可以提高催化反应的活性和选择性。
另外,MOFs材料具有多种结构拓扑。
MOFs材料的结构可以通过调整金属离子和有机配体的配比和配位方式来实现多种结构拓扑,如三维网状结构、一维链状结构、二维层状结构等。
这些多样的结构拓扑为MOFs材料的性能调控和功能设计提供了丰富的可能性,使其在不同领域具有广泛的应用前景。
总之,MOFs材料作为一类新型的多孔晶体材料,具有高度可调控性、大比表面积、多种结构拓扑等优点,为其在气体吸附、分离、储能、催化等领域的应用提供了广阔的空间。
随着MOFs材料研究的深入和应用的拓展,相信MOFs材料将在材料科学领域发挥越来越重要的作用,为解决能源、环境等重大问题提供新的思路和途径。
金属有机骨架材料,聚天冬氨酸金属有机骨架材料(Metal-Organic Frameworks,MOFs),是一种由金属离子或金属离子簇、有机配体以及无机配体等有机和无机构建单元组成的晶态多孔材料。
自1999年首次合成以来,MOFs已经成为材料科学中备受瞩目的研究领域。
MOFs拥有大的比表面积、高度可调的孔径以及丰富的功能化基团,使其在气体吸附、分离纯化、催化反应、光学和电学等领域具有广泛的应用前景。
聚天冬氨酸,又称为聚谷氨酸,是一种重要的有机配体,属于聚合酰胺类化合物。
它具有良好的稳定性、丰富的孔道和可调控的空间结构,因此在MOFs的制备中得到了广泛应用。
聚天冬氨酸具有天然界的广泛分布,如麦糠、棉籽皮等物质中都富含聚谷氨酸。
此外,通过化学合成方法也可以获得不同孔径和形态的聚天冬氨酸。
MOFs最大的特点就是具有高度可调的孔径和表面积。
MOFs的孔径大小可以通过选择合适的金属离子和有机配体进行设计和合成,可以在纳米到微米尺度范围内进行调节。
这种可调节性使得MOFs具备了一定的选择性,能够对不同大小和性质的气体、溶质和离子进行吸附和分离,因此在吸附分离纯化领域具有很大的潜力。
MOFs对气体存储和传感也有广泛的应用。
由于其孔道的特殊结构和可调整性,MOFs可以高效地吸附和储存气体,如氢气、氧气、二氧化碳等。
这对于节能环保和新能源技术的发展具有重要意义。
同时,MOFs还可以用作气体传感材料,通过吸附不同气体后的表面性质变化进行检测和分析,可以应用于空气质量监测、环境污染控制等领域。
此外,MOFs还具有优异的催化性能。
通过合成不同结构和组成的MOFs,可以调控其催化活性、选择性和稳定性,因此MOFs在有机合成和催化领域得到了广泛的应用。
利用MOFs作为催化剂载体,可以提高反应的效率、提高产物的选择性,并且可以减少催化剂的用量和废物的生成,有利于实现绿色化学。
此外,MOFs还可以应用于光学和电学领域。
MOFs具有丰富的可调变基团,通过改变有机配体的结构可以实现MOFs在可见光和红外光波段的吸收和发射。
金属一有机骨架(MOFs)材料代表了一类杂合的有机一无机超分子材料,是通过有机桥联配体和无机的金属离子的结合构成的有序网络结构。
MOFs呈现出目前最高的
比表面积,最低的晶体密度以及可调节的孔尺寸和功能结构,使MOFs可以实现一些特
殊的应用,包括气体的存储和分离,催化以及药物缓释等。
通过在有机配体中引入功能基团或者利用MOFs作为主体环境引入活性组分,合成功能化的MOFs材料,可以大大
拓宽其应用范围。
-华南理工-袁碧贞
金属有机骨架(Metal-Organic Frameworks MOFs )材料是利用含氧、氮等多齿有机配体与金属离子通过自组装形成的具有周期性网络结构的一种类沸石材料
[1]。
一华南理工-袁碧贞
MoF材料是由含氧!氮等的多齿有机配体(大多是芳香多酸和多碱)与过渡金属离子自组装而成的配位聚合物,是一种比表面积大!孔隙率高!热稳定性好!
构型多样化的类沸石材料[22 —],其发展历程大致可以分为三代12.]"如图1 一1所示"
最早的MoF材料是由Kattagawa/J!组在20世纪90年代中期合成的,但其合成的材料在客体分子去除后,骨架坍塌,晶体结构遭到破坏,未形成永久性的孔隙率” 这也是第一代MOF材料"随后科学家们开始研究新型的阳离子!阴离子以及中
性的有机配体链接形成的配位聚合物"第二代材料在客体分子移走后能够留下空位形成永久性的孔隙率"MOF材料在受到压力!光!化学刺激或者除去溶剂分子时,材料骨架的形状会发生变化,这就是第三代MOF材料"含有梭基的阴离子配体和金属离子链接构成的MOF材料属于我们所说的第二代MOF材料,然而
含有氮杂环的有机中性配体构建的MOF材料属于我们所说的第三代MOF。
一一北化-安晓
辉
金属-有机骨架(metal-organic frameworks,MOFs)材料是由金属离子与有机配体通过自组装过程杂化生成的一类具有周期性多维网状结构的多孔晶体材料,具有纳米级的骨架型规整的孔道结构,大的比表面积和孔隙率以及小的固体密度,在吸附、分离、催化等方面均表现出了优异的性能,已成为新材料领域的研究热点与前沿。
MOFs材料的出现可以
追溯到1989年以Robson和Hoskins为主要代表的工作,他们通过4, 4', 4〃,4 -四氰基苯基甲烷和正一价铜盐]Cu( CH
3 CN)
4
:• BF 4
在硝基甲烷中反应,制备出了具有类似金刚石结构的三维网状配位聚合物
[1 :
,同时预测了该材料可能产生出比沸石分子筛更大的孔道和空穴,从此开始了MOFs材料的研究
热潮。
但早期合成的MOFs材料的骨架和孔结构不
够稳定,容易变形。
直到1995年Yaghi等合成出了
具有稳定孔结构的MOFs
[2]
,才使其具有了实用
价值。
由于MOFs 材料具有大的比表面积和规整的孔道结构,并且孔尺寸的可调控性强,骨架金属离子和有机配体易实现功能化,因此在催化研究
[3—9]
、气体
吸附
[10]
、磁学性能
[11]
、生物医学
[12]
以及光电材
料
[13]
等领域得到了广泛应用。
这些特性貌似与现有的沸石和介孔分子筛很相似,但实际上却有较大的差别
[14]
: 如在孔尺寸方面,沸石的孔尺寸通常小
于 1 nm ,介孔分子筛的孔尺寸通常大于 2 nm ,而
MOFs 的孔尺寸可以从微米到纳米不等; 在比表面积方面,沸石通常小于600 m
2
/ g ,介孔分子筛小于
2 000 m
2
/ g ,而MOFs 的比表面积可达
10 400 m
2
/ g
[15]。
不但如此,MOFs 可以通过对有机配体的设计来实现更多的结构,如在MOFs 中嵌入立体手性的配体,来实现不对称催化反应
[16]
等。
因
此MOFs 可以应用在一些沸石和介孔分子筛无法应
用的方面。
—北化-李庆远
金属一有机骨架材料(metal 一"笔anieframework,MOF) 通常是指由无机簇(ino 嗯anie cluster) 同有机配体(linker) 相连接形成的具有周期网格结构的晶体材料=.]" 不同于传
统的无机一有机杂化材料,通过选择不同的金属簇和有机配体,科学家们可以对其进行结
构的设计和修饰"—吉大-徐进
MOFs 材料主要由金属中心和有机配体两个部分组成。
金属中心被视为无
机次级结构单元(SBU),而有机配体被视为有机SBU,两个部分通过配位键
以及其他分子间作用力相互联接,从而构成具有周期性网络结构的晶体材料
[8,9]。
在文献中,MOFs材料还常见其他的表述,如:有机-无机杂化晶体材料
(Organic - Inorganic Hybrid Materials )、多孔配位网络结构(Porous Coordination Networks )、多孔配位聚合物( Porous Coordination Polymers )等等。
--吉大-吴蕾
金属有机骨架材料,是指无机金属中心与有机官能团通过共价键或离子-共价键
相互链接,共同构筑的具有规则孔道或者孔穴结构的晶态多孔材料[6,71 。