金属有机骨架材料 MOFs 简介
- 格式:docx
- 大小:9.68 KB
- 文档页数:6
锰基mofs材料
锰基MOFs(金属有机骨架化合物)材料是一种有机-无机杂化材料,由无
机金属中心(如锰离子)与桥连的有机配体通过自组装相互连接,形成的一类具有周期性网络结构的晶态多孔材料。
这种材料具有结构清晰、比表面积和孔隙率高、孔径可调、易于化学功能化等优点,使其在现代材料研究方面呈现出巨大的发展潜力和令人瞩目的发展前景。
此外,通过预先设计或修改,可以引入特定的功能基团,进一步优化锰基MOFs材料的性能。
以上内容仅供参考,如需获取更多信息,建议查阅相关文献或咨询专业人士。
金属有机骨架的气体吸附性能研究摘要:金属有机骨架材料(metal organic frameworks,MOFs)作为一类新型的多孔材料,具有比表面积高、孔径可调、可功能化修饰等诸多优点,在气体吸附领域具有广泛的潜在用途,研究MOFs材料上的吸附,揭示其吸附机理,对新MOFs材料的设计及其在吸附领域的应用,具有非常重要的理论研究和应用价值。
本文主要介绍了MOFs材料的特点,并讨论了不同MOFs材料对CO2,H2,CH4气体的吸附性能。
关键词:MOFs;气体吸附性1.金属有机骨架(MOFs)的简介金属有机骨架材料是由金属离子或离子簇与有机配体通过分子自组装而形成的一种具有周期性网络结构的晶体材料,组成MOFs的次级结构单(secondary building units,SBUs)是由配位基团与金属离子结合而形成小的结构单元,在一定程度上决定了材料骨架的最终拓扑结构。
这种多孔骨架晶体材料,是一种颇具前途的类沸石(有机沸石类似物)材料,可以通过不同金属离子与各种刚性桥连有机配体进行络合,设计与合成出不同孔径的金属-有机骨架,从而使得MOFs的结构变化无穷,并且可以在有机配体上带上一些功能性的修饰基团,使这种MOFs微孔聚合物可以根据催化反应或吸附等性能要求而功能化[1]。
MOFs材料的研究始于20世纪80年代末90年代初,1989年Hoskins和Robson报道了一类由无机金属团簇和有机配体以配位键方式相互链接而成的新型固体聚合物材料,被认为是MOFs材料研究的开端,但当时普遍存在的问题是用于合成MOFs材料的模板剂除去后结构容易坍塌,而且其骨架出现相互贯穿的现象[2]。
20世纪以来MOFs的研究取得了突破性进展,随着晶体工程学在MOFs研究中的应用,人们可以根据需要通过设计新型的有机配体和控制合成方法来精确调控MOFs的结构,各种高比表面积和孔体积的新型MOFs材料不断被合成出来[3],与此同时,MOFs在气体吸附、分离、催化、药物运输荧光等方面表现出了巨大的应用潜力。
金属有机骨架材料的多孔结构金属有机骨架材料(Metal-Organic Frameworks,简称MOFs)是近年来新兴的一类新型晶态多孔材料,具有特殊的化学和物理性能,尤其在气体存储、分离和催化等领域应用广泛。
其多孔结构具有高度可控性,可以通过改变金属和有机配体的种类、比例、长度、大小等因素来调控多孔结构,从而实现各种性能的优化。
一、基本概念MOFs是由具有“架”状结构的金属中心(如锌、铜、铝等)和有机配体(如芳香族或脂肪族的有机酸)通过配位作用构成的晶态多孔材料。
MOFs的多孔性质来源于其特殊的组成方式,有机配体可以作为桥连分子连接金属中心,形成不同的“架”状结构,从而形成微孔、介孔或超孔道的多孔结构。
MOFs的特点是结构高度可控,可以通过合成条件的调控来实现不同形貌、孔径和孔隙度的MOFs的制备,从而适应不同应用领域的需要。
同时,MOFs具有高度的表面积、孔隙度、吸附选择性和化学稳定性等特点,使其在气体吸附、分离、催化等方面具有广泛的应用前景。
二、多孔结构的调控MOFs的孔结构可以通过控制配体和金属离子的选择、比例和长度、大小等多个因素来调节。
植入功能基团的有机配体和置换金属离子可以进一步提高其吸附、分离和催化性能。
以下介绍几种常见的方法:1. 模板法:利用介孔或微孔的高级别结构作为模板,通过自组装过程形成MOFs,可以得到具有高级别孔结构的MOFs。
2. 气溶胶凝胶法:将沉淀形成的金属有机框架和模板混合,通过喷雾干燥,制备多孔结构清晰的金属有机骨架材料。
3. 前驱物转化法:将前驱物与有机配体混合,同时加热、磁搅拌,制备多孔骨架材料,是近年来广泛使用的制备方法。
4. 溶剂热法:利用有机溶剂和水热等方法,实现金属有机框架的制备。
三、应用前景MOFs在吸附、分离和催化等方面具有广泛的应用前景,以下列举几个例子:1. 气体存储:MOFs的独特多孔结构使其在气体吸附和存储方面表现出色,可以用作氢气和氧气等重要气体的储存材料。
金属有机骨架材料的性质与应用金属有机骨架材料(MOFs)是一类由金属离子或簇合体与有机配体通过配位键构成的晶态物质,其具有可调控的孔径大小和形状、高度有序的孔道结构、高度表面积、可调控的气体吸附和储存性能等特点。
近几年,MOFs在气体分离、催化、光电、传感、能源储存等领域得到了广泛的关注,并显示了极其潜在的应用价值。
1. MOFs的结构特点及制备方法MOFs核心结构单元为金属离子或簇合体,其周围由有机配体构成。
金属离子可以是过渡金属(如Cr、Co、Ni、Cu、Zn)或主族金属(如Al、Ga、In、Sn),与有机配体通过配位键构成一定的连续或离散结构,形成晶体结构。
MOFs的物理化学性质主要体现在孔径大小和形状、孔道结构、表面积和孔道表面的官能化等方面。
MOFs的制备方法包括水热法、溶剂热法、毒死蜜法、溶剂挥发法等。
其中,水热法最常用,它的优点是反应温度低(通常在100摄氏度左右)、操作简单,缺点是制备周期长,可能的后处理步骤也较多。
2. MOFs的应用领域2.1 气体吸附与储存MOFs具有高表面积和可调控的孔径、孔道结构等特点,因此可以作为一种用于气体吸附与储存的高性能材料。
例如,MOFs材料ZIF-8的孔径大小为3.4 nm左右,可用于分离和储存小分子气体(如氢气、二氧化碳或甲烷等)。
MOFs材料MIL-101的孔径为12 nm左右,可用于分离和储存相对较大的分子(如甲苯、笨二酸甲酯等)。
2.2 催化MOFs具有多孔、大表面积的特性,可用于吸附催化剂,增加催化反应的接触表面积和催化活性,促进反应的进行。
例如,MOFs材料UIO-66可用于催化苯与硝酸银的反应,MOFs材料ZIF-8可用于催化柴油脱硫等反应。
2.3 传感器MOFs可以通过改变其物理化学性质(如孔径、孔道结构和表面官能团等)来制备各种传感器。
例如,MOFs材料Cu3(BTC)2可用于氨气、甲醛等有害气体的检测;MOFs材料ZIF-8可用于制备水传感器等。