当前位置:文档之家› 抽屉原理

抽屉原理

抽屉原理
抽屉原理

抽屉模型的综合运用

导入

1、把98个苹果放到10个抽屉中,无论怎么放,我们一定能找到一个含苹果最多的抽屉,它里面至少含有多少个苹果?

2、一个袋子里有一些球,这些球仅有颜色不同。其中红球 10 个,白球 9 个,黄球 8 个,蓝球 2 个。某人闭着眼睛从中取出若干个,试问他至少要取多少个球,才能保证至少有4个球颜色相同?

知识精讲

抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.

1、抽屉原理的定义

(1)举例

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义

一般情况下,把n+1或多于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。

2、抽屉原理的解题方案

(1)利用公式进行解题

苹果÷抽屉=商……余数

余数:

①余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里

②余数=x ()()11x n -p p , 结论:至少有(商+1)个苹果在同一个抽屉里

③余数=0, 结论:至少有“商”个苹果在同一个抽屉里

(2)利用最值原理解题

将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想,“任我意”方法、特殊值方法.

【例1】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.

【巩固】

1、五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.

例题精讲

2、在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?

【例2】学校组织2006名同学去春游,现有解放公园、野生动物园、水族公园三个景点,规定每人至少去一处,最多去两处游览,那么至少有多少个同学游览的地方相同?

【巩固】

1、“六一”儿童节老师买来一些铅笔、橡皮和直尺,奖给全班40名同学,每人都得到其中的一、二或三种,那么,他们当中至少有几个同学得到的学习用具相同?

2、100个苹果最多分给多少个学生,能保证至少有一个学生所拥有的苹果数不少于12个.

3、五(1)班的同学要从10名候选人中投票选举班干部,如果每个同学只能投票选举两名候选人,那么,这个班至少应有多少个同学,才能保证必有两个以上的同学投相同的两名候选人的票?

【例3】从1,2,3,…,1988,1989这些自然数中,最多可以取出多少个数,使得其中每两个数的差不等于4?

【巩固】

1、从1至1993这1993个自然数中最多能取出多少个数,使得其中任意的两数都不连续且差不等于4?

2、从1,3,5,7,…,97,99中最多可以选出多少个数,使得选出的数中,每一个数都不是另一个数的倍数?

【例4】一次数学竞赛出了10道选择题,评分标准为:基础分10分,每道题答对得3分,答错扣1分,不答不得分。问:要保证至少有4人得分相同,至少需要多少人参加竞赛?

【巩固】

1、《潇湘北大杯》数学竞赛决赛,一次测验共有10道问答题,每题的评分标准是:回答完全正确,得5分;回答不完全正确,得3分,回答完全错误或不回答,得0分.至少多少人参加这次测验,才能保证至少有3人的得分相同.

2、一次考试有20道题,有20分基础分,答对一题加3分,不答不加分也不减分,答错一题减1分,若有100人参加考试,至少有多少人得分相同?

【例5】黑色、白色、黄色的筷子各有8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的两双筷子。问至少要取多少根才能保证达到要求?

【巩固】

1、在100张卡片上不重复地编写上1~100,请问至少要随意抽出几张卡片才能保证所抽出卡片上的数相乘后之乘积可被4整除?

2、从1,2,3,…,49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?

【例6】某班有16名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里?

【巩固】

一个车间有一条生产流水线,由5台机器组成,只有每台机器都开动时,这流水线才能工作。总共有8个工人在这条流水线上工作。在每一个工作日内,这些工人中只有5名到场。为了保证生产,要对这8名工人进行培训,每人学一种机器的操作方法称为一轮。问:最少要进行多少轮培训,才能使任意5个工人上班而流水线总能工作?

课外练习

1、篮子里有苹果,梨,桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿2

个水果,那么至少有多少个小朋友拿的水果是相同的?

2、说明:在任意的8个自然数中,是否其中必有两个数,它们的差能被7整除?

3、某班学生去买语文书、数学书、外语书、美术书、自然书。买书的情况是:有买一

本的、二本的、三本或四本的。,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?

4、80个桃子最多分给多少个学生,能保证至少有一个学生所拥有的桃子数不少于7个.

5、从1,2,3,…,198,199,200这些自然数中,最多可以取出多少个数,使得其

中每两个数的差不等于4?

6、把1、2、3、……、10这十个自然数以任意顺序排成一圈,试说明一定有相邻三个

数之和不小于17。

7、一次数学竞赛,有75人参加,满分20分,参赛者得分都是整数,75人的总分是

980分,问至少有几个人得分相同?

8、某班一次数学课上老师出了2道题,规定做对一道题得2分,不做得1分,做错得0分,老师说:可以肯定全班同学中至少有6名同学每题的得分数都相同。那么,这个班最少有多少人,最多有多少人?

抽屉原理1

“抽屉原理”教学设计 【教学内容】 《义务教育课程标准实验教科书·数学》六年级下册第70-71页。例题1、例题2 【教学目标】 1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。 3. 通过“抽屉原理”的灵活应用感受数学的魅力。 【教学重点】 经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 【教学难点】 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教具、学具准备】 每组都有相应数量的盒子、铅笔。 【教学过程】 一、课前游戏引入。 师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后) 师:听清要求 ,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。 师:开始。 师:都坐下了吗? 生:坐下了。 师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗? 生:对! 师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。 二、通过操作,探究新知 (一)教学例1 1.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法? 师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况 (3,0) (2,1) 师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3支笔放进2个盒子里呢? 生:不管怎么放,总有一个盒子里至少有2枝笔? 是:是这样吗?谁还有这样的发现,再说一说。 师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导) 师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各

五年级简单的抽屉原理练习题及答案【五篇】

【第一篇方格涂色】把一个长方形画成 3 行 9 列共 27 个小方格, 然后用红、蓝铅笔任意将每个小方格涂上红色或蓝色。
是否一定有两列小方格涂色的方式相同? 将 9 列小方格看成 9 件物品,每列小方格不同的涂色方式看成不 同的抽屉。 如果涂色方式少于 9 种,那么就可以得到肯定的答案。 涂色方式共有下面 8 种 9 件物品放入 8 个抽屉,必有一个抽屉的物品数不少于 2 件,即 一定有两列小方格涂色的方式相同。 【第二篇相同的四位数】用 1,2,3,4 这 4 个数字任意写出一 个 10000 位数,从这个 10000 位数中任意截取相邻的 4 个数字,可以 组成许许多多的四位数。 这些四位数中至少有多少个是相同的? 猛一看,谁是物品,谁是抽屉,都不清楚。 因为问题是求相邻的 4 个数字组成的四位数有多少个是相同的, 所以物品应是截取出的所有四位数,而将不同的四位数作为抽屉。 在 10000 位数中,共能截取出相邻的四位数 10000-3=9997 个, 即物品数是 9997 个。 用 1,2,3,4 这四种数字可以组成的不同四位数,根据乘法原 理有 4×4×4×4=256 种,这就是说有 256 个抽屉。 9997÷256=3913,所以这些四位数中,至少有 40 个是相同的。 【第三篇取数字】从 1,3,5,7,,47,49 这 25 个奇数中至少

任意取出多少个数,才能保证有两个数的和是 52。 首先要根据题意构造合适的抽屉。 在这 25 个奇数中,两两之和是 52 的有 12 种搭配 {3,49},{5,47},{7,45},{9,43}, {11,41},{13,39},{15,37},{17,35}, {19,33},{21,31},{23,29},{25,27}。 将这 12 种搭配看成 12 个抽屉,每个抽屉中有两个数,还剩下一
个数 1,单独作为一个抽屉。 这样就把 25 个奇数分别放在 13 个抽屉中了。 因为一共有 13 个抽屉,所以任意取出 14 个数,无论怎样取,至
少有一个抽屉被取出 2 个数,这两个数的和是 52。 所以本题的答案是取出 14 个数。 【第四篇班级人数】 把 125 本书分给五 2 班学生,如果其中至少有 1 人分到至少 4 本
书,那么,这个班最多有多少人? 这道题一下子不容易理解,我们将它变变形式。 因为是把书分给学生,所以学生是抽屉,书是物品。 本题可以变为 125 件物品放入若干个抽屉,无论怎样放,至少有
一个抽屉中放有 4 件物品,求最多有几个抽屉。 这个问题的条件与结论与抽屉原理 2 正好相反,所以反着用抽屉
原理 2 即可。 由 125÷4-1=412 知,125 件物品放入 41 个抽屉,至少有一个

小学奥数:抽屉原理(含答案)

教案 抽屉原理 1、概念解析 把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到: 抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。 比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。 应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。 2、例题讲解 例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的? 例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

抽屉原理教案(1)

《抽屉原理》教案 仓山镇中心小学校伍莉 教学内容:教材P70-71页 教学目标: 1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2、通过操作发展学生的类推能力,形成比较抽象的数学思维。 通过“抽屉原理”的灵活应用,感受数学的魅力。 教学重点:认识“抽屉原理” 教学难点:灵活运用“抽屉原理”解决实际问题。 教学关键:结合具体事例,认真分析发生的现象,揭示内在规律。 教学方法:小组合作,自主探究 教学准备:吸管若干,4个纸杯 教学过程: 一、创设情境,导入新知 抽扑克牌的游戏导入新课 二、自主学习,初步感知 1、合作探究:出示3根吸管放入2个杯子里,摆一摆,想一想,共有几种放法?有什么发现。

学生带着问题展开小组活动 2、汇报展示: (1)、指名代表到台上展示成果。边放边说,教师同时在黑板上板书几种放法: (2)、引导学生口述所发现的结果。 (3)、引导学生理解“不管怎么分”和“至少”的含义。 (4)、小组带着问题再次展开探究:4根吸管放入3个杯子里结果会怎样?(方法同上) 教师引导学生说出摆法,并口述结果: 3、比较优化: 如果把6根吸管放在4个杯子里,同学们猜一猜,会有什么结果,如果把各种放法一一列举,需要花很多时间,同学们能找到一种更简便的方法吗? 引导学生理解需要“平均放”。 4、总结规律 (1)、探究把5根吸管放进2个杯子里,不管怎么放总有一个杯里至少有几根吸管? a、先同桌说一说 b、指名口答,你是怎么分的? (2)、探究把15根吸管放进4个杯子里的结论。

(3)、引导学生观察、讨论,说说自己的发现。 教师板书:平均分——商+1 5、介绍原理:揭示课题 你们的这一发现在数学里被称为“抽屉原理”,也叫“鸽巢原理”最先是由19世纪德国数学家锹里克雷提出来的,所以,又称为“锹里克雷”原理,这一原理在解决实际问题中有广泛的应用。 解决问题的关键: (1)、确定待分物体和抽屉数 (2)、“平均分” (3)、总有一个抽屉至少有“商+1”个物体。 三、应用原理,解决问题 1、8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里,为什么? 2、94件玩具分给30个小朋友,总有一个小朋友至少分得( )几件玩具。 3、把25个苹果放入10个盘子中,总有一个盘子放进( )个苹果。 4、在370名学生中至少有( )名学生在同一天过生日,在49名学生中至少有( )名学生在同一个月过生日。 5、给一个正方体木块的6个面分别涂上红、黄两种颜色。

六年级抽屉原理2

第三十周抽屉原理(二) 专题简析: 在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式: 元素总数=商X抽屉数+余数 如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。 例题1: 幼儿园里有120 个小朋友,各种玩具有364 件。把这些玩具分给小朋友,是否有人会得到 4 件或 4 件以上的玩具? 把120个小朋友看做是120个抽屉,把玩具件数看做是元素。则364=120X 3+4, 4V 120。根据抽屉原理的第(2)条规则:如果把m X x X k (x> k > 1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。可知至少有一个抽屉里有3+1=4个元素,即有人会得到 4 件或 4 件以上的玩具。 练习1: 1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。把这些玩具分给小朋友, 是否有人会得到 4 件或4 件以上的玩具? 2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。这是为什么? 3、把25 个球最多放在几个盒子里,才能至少有一个盒子里有7 个球? 例题2: 布袋里有 4 种不同颜色的球,每种都有10 个。最少取出多少个球,才能保证其中一定 有 3 个球的颜色一样? 把 4 种不同颜色看做 4 个抽屉,把布袋中的球看做元素。根据抽屉原理第(2)条,要 使其中一个抽屉里至少有3个颜色一样的球, 那么取出的球的个数应比抽屉个数的2倍多1。即 2X 4+1=9(个)球。列算式为 (3—1)X 4+1=9(个) 练习2: 1、布袋里有组都多的5种不同颜色的球。最少取出多少个球才能保证其中一定有3个颜色一样的球? 2、一个容器里放有10 块红木块、10 块白木块、10 块蓝木块,它们的形状、大小都一样。当你被蒙上眼睛去容器中取出木块时, 为确保取出的木块中至少有4块颜色相同, 应至少取出多少块木块? 3、一副扑克牌共54张, 其中1—13点各有4张,还有两张王的扑克牌。至少要取出几张牌,才能保证其中必有 4 张牌的点数相同? 例题3: 某班共有46 名学生,他们都参加了课外兴趣小组。活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。问班级中至少有几名学生参加的项目完全相同? 参加课外兴趣小组的学生共分四种情况, 只参加一个组的有4种类型, 只参加两个小组的有6个类型, 只参加三个组的有4种类型, 参加四个组的有 1 种类型。把4+6+4+1=15(种)

四年级奥数抽屉原理

一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 三、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()1 1x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. 四、应用抽屉原理解题的具体步骤 知识框架 抽屉原理 发现不同

第二步:构造抽屉。这是个关键的一步,这一步就是如何设计抽屉,根据题目的结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的“苹果”及其个数,为使用抽屉铺平道路。第三步:运用抽屉原理。观察题设条件,结合第二步,恰当运用各个原则或综合几个原则,将问题解决。 例题精讲 【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业. 【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天? 【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

小学六年级简单的抽屉原理

一、抽屉原理定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 二、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n -,结论:至少有(商+1)个苹果在同一个抽屉 里 (3)余数=0,结论:至少有“商”个苹果在同一个抽屉里 例1.A 、3个苹果放到2个抽屉里,那么一定有1个抽屉里至少有2个苹果。 B 、5块手帕分给4个小朋友,那么一定有1个小朋友至少拿了( )块手帕。 C 、6只鸽子飞进5个鸽笼,那么一定有一个鸽笼至少飞进( )只鸽子。 例2、 三个小朋友在一起玩,请说明其中必有两个小朋友是同性别。 例 3. 三年一班有13名女生,她们的年龄都相同,请说明,至少有两个小朋友在一个相同的月份内出生。 例4. 任意三个整数中,总有两个整数的差是偶数。 例5. 有10个鸽笼,为保证每个鸽笼中最多住1只鸽子(可以不住鸽子),那么鸽子总数最多能有几只?请用抽屉原理加以说明。 例6. 某班有37个学生,最大的10岁,最小的8岁,问:是否一定有4个学生,他们是同年同月出生的?

例7、有红袜2双,白袜3双,黑袜4双,黄袜5双,(每双袜子包装在一起)若取出9双,证明其中必有黑袜或黄袜2双. 1.6只鸽子飞进了5个鸟巢,则总有一个鸟巢中至少有()只鸽子; 2.把三本书放进两个书架,则总有一个书架上至少放着()本书;

抽屉原理 (2)

抽屉原理 教学内容:教材第70、71页的例1、例2 教学目标: 1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 2、会用“抽屉原理”解决简单的实际问题。 3、通过操作发展学生的类推能力,形成比较抽象的数学思维。 教学重点:认识“抽屉原理”。 教学难点:灵活运用“抽屉原理”解决实际问题。 教学方法:小组合作,自主探究。 教学准备:若干根小棒,4个纸杯。 教学过程: 一、创设情境,导入新知 老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。 师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。 二、自主学习,初步感知 (一)出示例1:4枝铅笔,3个文具盒。 1、观察猜测 猜猜把4枝铅笔放进3个文具盒中会存在什么样的结果? 2、自主探究 (1)提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。 (2)小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。(3)交流讨论,汇报。可能如下: 第一种:枚举法。 用实物摆一摆,把所有的摆放结果都罗列出来。 第二种:假设法。 如果每个文具盒中只放1枝铅笔,最多放3枝。剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进枝同一个文具盒。 第三种:数的分解。 把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。 (4)、比较优化。

请学生继续思考:如果把5枝铅笔放进4个文具盒,结果是否一样呢?把100 枝铅笔放进99个盒子里呢?怎样解释这一现象? 师:为什么不采用枚举法来验证呢? 数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。 3、引导发现 只要放的铅笔数比盒子的数量多1[https://www.doczj.com/doc/c518979327.html,3] ,不管怎么放,总有一个盒子里至少放进2枝铅笔。 (二)出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?7本书会怎样呢?9本呢? 1、学生尝试自已探究。 2、交流探究的结果,可能如下: 1)枚举法。 共有3种情况。在任何一种结果中,总有一个抽屉至少放进3本书 2)假设法。 把5本书“平均分成2份”,5÷2=2…1,如果每个抽屉放进2本书,还剩下1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。 由此可见,把5本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进3本书。 同样,7÷2=3…1把7本书放进放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进4本书。 9÷2=4…1把9本书放进放进2个抽屉中,有一个抽屉里至少放进5本书。 3、观察发现 学生讨论交流,发现“总有一个抽屉里至少有几本”只要用“商+1”就可以得到。 4、介绍原理。 师:同学们,你们知道吗?你们的这一发现,在数学里被称之为“抽屉原理”,也叫做“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称为“狄利克雷原理”。这一原理在解决实际问题中有着广泛的应用,可以用它来解决很多有趣的问题呢。 三、应用原理,解决问题 完成教材第72页“做一做”第1题 四、全课总结,回归生活 1、通过今天的学习你有什么收获?

抽屉原理优秀教案

《数学广角——抽屉原理》 实验小学 潘聪聪

《数学广角——抽屉原理》 【教学内容】: 我说讲课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2。 【教学目标】: 知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。 过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 【教学重点】: 1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 2、“总有”“至少”具体含义,以及为什么商+1而不是加余数。【教学难点】: 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教法和学法】: 以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。 【教学准备】:一定数量的笔、铅笔盒、课件。 【教学过程】: 一、游戏激趣,初步体验 师:同学们喜欢做游戏吗?学习新课之前,我们先做个游戏,老师这里准备了2张凳子,请3个同学上来,(找生)听清要求,老师说“请坐”时,每个同学必须都坐下,谁没坐下谁犯规,(师背对)听明白了吗?好“请坐!”告诉老师他们都坐下了吗?老师不用看,就知道一定有一张凳

子上至少坐了两名同学,对吗?假如请这3位同学再反复坐几次,老师还敢肯定地说:“不管怎么坐,总有一张凳子上至少坐2名同学,你们相信吗?其实这个游戏里面蕴藏着一个非常有趣的数学原理,想不想通过自己动手实践来发现它? 【设计意图:在课前进行的游戏激趣,一是激发学生的兴趣,引起探究的愿望;二为今天的探究埋下伏笔。】 二、操作探究,发现规律 1、小组合作,初步感知。 师:下面我们先从简单的情况入手,请看大屏幕(出示例1:4只铅笔放入3个盒子中),有几种不同的放法?你能得到什么结论?下面我们小组合作(出示合作要求,请生读要求),看哪组动作最快? (1)、学生动手操作,讨论交流,老师巡视,指导; (2)、全班交流。 师:哪个小组愿意汇报一下你们的研究成果?(找生展示,师板书:(3,1,0)(2,2,0)(4,0,0)(1,1,2)。 师:老师也是这样摆的,我们一起看一下(课件演示)观察这几种放法,你能得到什么结论?(课件出示:不管怎么放,总有一个文具盒中至少有2枝铅笔)。 师:刚才我们把所有情况都一一列举出来,想一想不用一一列举,我们能不能只要一种情况,也能得到这个结论?(生答“平均分”的方法时,课件演示)每个盒子先放1枝,还剩几枝?(1枝)这1枝怎么摆?(放哪个里面都行)你有什么发现?(无论怎么放,总有1个盒子至少放2枝铅笔)。师:既然是平均分,能用算式表示吗?(生答,师板书:4÷3=1……1) 师:这里的4指的是什么?3呢?商1呢?余数1呢? 师:看来解决这个问题时,用平均分的方法比较简便。

小学抽屉原理

《数学广角—抽屉原理》教学设计 【教学目标】 1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2.通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。 3、经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 4、通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 【教学重、难点】经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教学准备】 1、教学ppt课件 2、铅笔120支 (小棒代替) ,笔盒100个(杯子代替),每个小组3个杯子,5支小棒;扑克牌1副,凳子4把。 【教学流程】 一、问题引入。 师:在上课前,老师特别想和同学们做个游戏,谁愿来?老师准备了4把椅子,请5 位同学上来。

1.游戏要求:老师喊“准备”,你们5位同学围着椅子走动,等老师喊“开始”后请你们5个都坐在椅子上,每个人都必须坐下。 2.师:“准备”,“开始”,他们都坐好了吗?老师不用看就知道总有一把椅子上至少坐着两名同学,是这样的吗?如果反复再做,还会是这样的结果吗? (游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。) 3、引入:看来,不管怎么坐,总有一把椅子上至少坐两个同学。你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。 4、明确学习目标与任务: 师:看到这个课题,你能想到这节课我们将要学习哪些知识吗?(学生表达想法) 课件出示学习目标与要求 1)、了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2)通过实验操作、自主探究、小组合作发现抽屉原理。 3)感受数学文化的魅力,提高对数学的兴趣。 二、探究新知 (一)教学例1 为了研究这个原理,我们做一组实验。 1、观察猜测 课件出示例1:把4支铅笔放进3个文具盒中,不管怎么放总有一个文具盒至少放 进____支铅笔。 猜一猜:不管怎么放,总有一个文具盒至少放进 ____支铅笔。

简单抽屉原理

简单抽屉原理 把3 个苹果放进2个抽屉中,无论怎么放,一定能找到一个抽屉,里面至少有2

个苹果.这个现象,在数学中我们把它称作抽屉原理。 抽屉原理I 把一些苹果随意放入若干个抽屉,如果苹果个数多于抽屉个数,那么 一定能找到一个抽屉,里面至少有2 个苹果. 抽屉原理II 把m 个苹果放入n 个抽屉(m 大于n),结果有两种可能: (1)如果m ÷n没有余数,那么就一定有抽屉至少放了“m ÷n”个苹果; (2)如果m ÷n有余数,那么就一定有抽屉至少放了“m ÷n的商再加1” 个苹果. 例1 一个鱼缸里有4 个品种的鱼,每种鱼都有很多条.至少要捞出多少条鱼,才能保证其中有5 条相同品种的鱼? 练习1. 一个布袋里有7 种不同颜色的彩球,每种颜色的彩球都有很多,那么至少要拿出多少个彩球,才能保证其中有6 个相同颜色的彩球?

例2 一个布袋里有大小相同颜色不同的一些木球,其中红色的有10 个,黄色的有8 个,蓝色的有3 个,绿色的有1 个.现在闭着眼睛从中摸球,请问:(1)至少要取出多少个球,才能保证取出的球至少有三种颜色? (2)至少要取出多少个球,才能保证其中必有红球和黄球? 练习2. 爷爷给小明买了一盒糖,这些糖分为苹果味、桔子味和菠萝味三种口味,每种口味各30 颗.小明特别喜欢吃苹果味的,他闭着眼睛,至少需要摸出多少颗糖,才能保证一定能拿到1 颗苹果味的?至少需要摸出多少颗糖,才能保证能拿到两种口味的糖? 例3将1 只白袜子、2 只黑袜子、3 只红袜子、8 只黄袜子和9 只绿袜子放入一个布袋里.请问: (1)一次至少要摸出多少只袜子才能保证一定有颜色相同的两双袜子? (2)一次至少要摸出多少只袜子才能保证一定有颜色不同的两双袜子? (两只袜子颜色相同即为一双) 练习3. 袋子里白袜子、黑袜子、红袜子各10 只,现在闭着眼睛从袋子中摸袜子,请问: (1)至少要摸出多少只袜子才能保证一定有颜色相同的两双袜子? (2)至少要摸出多少只袜子才能保证一定有颜色不同的两双袜子?(两只袜子颜色相同即为一双)

小学奥数专题—抽屉原理(二)

小学奥数专题—抽屉原理(二) 这一讲我们讲抽屉原理的另一种情况。先看一个例子:如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子。道理很简单。如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子。剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。这个例子所体现的数学思想,就是下面的抽屉原理2。 抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。 说明这一原理是不难的。假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样,n个抽屉中可放物品的总数就不会超过m×n件。这与多于m×n 件物品的假设相矛盾。这说明一开始的假定不能成立。所以至少有一个抽屉中物品的件数不少于m+1。 从最不利原则也可以说明抽屉原理2。为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n个抽屉中每个都放入m件物品,共放入(m×n)件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m+1)件物品。这就说明了抽屉原理2。 不难看出,当m=1时,抽屉原理2就转化为抽屉原理1。即抽屉原理2是抽屉原理1的推广。 例1某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具? 分析与解:将40名小朋友看成40个抽屉。今有玩具122件, 122=3×40+2。应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。 例2一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块? 分析与解:将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 例3六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同?分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情

抽屉原理(中)

一、抽屉原理 美国一家杂志上曾刊登这样一副漫画:三只鸽子同时往两个鸽笼里飞。这是一副含义深刻的漫画,它有趣的揭示了抽屉原理:三只鸽子同时飞进两个鸽笼里,则一定有一只鸽笼里至少飞进两只鸽子。抽屉原理俗称鸽笼原理,最先是由19世纪的德国数学家狄利克雷(P.G.Dirichlet 1805--1859)运用于解决数学问题的,所以抽屉原理又叫狄利克雷原理。 1.抽屉原理 (1)第一抽屉原理 设有m 个元素分属于n 个集合(其两两的交集可以非空),且m kn >(m n k ,,均为正整数),则必有一个集合中至少有1k +个元素。 (2)第二抽屉原理 设有m 个元素分属于n 个两两不相交的集合,且m kn <(m n k ,,均为正整数),则必有一个集合中至多有1k -个元素。 (3)无限的抽屉原理 设有无穷多个元素分属于n 个集合,则必有一个集合中含有无穷多个元素。 2.平均值原理 设12n a a a ∈R ,, ,,且 ()12121 ||n n n A a a a G a a a n = +++ , 则12n a a a , ,,中必有一个不大于A ,亦必有一个不小于A ;12||||||n a a a ,,,中必有一个不大于G ,亦有一个不小于G 。 3.面积重叠原理 n 个平面图形12n A A A ,, ,的面积分别为12n S S S ,,,,将它们以任意方式放入一个面积为S 的平面图形A 内。 7 抽屉原理与极端原理

(1)若12n S S S S +++> ,则存在1i j n <≤≤,使图形i A 与j A 有公共内点; (2)若12n S S S S +++< , 则A 存在一点,不属于图形12n A A A ,,,中的任意一个。 以上命题用反证法很容易证明,大家可以自行完成。 一般来说,适合应用抽屉原理解决的数学问题具有如下特征:新给的元素具有任意性.如1n +个苹果放入n 个抽屉,可以随意地一个抽屉放几个,也可以让抽屉空着. 问题的结论是存在性命题,题目中常含有“至少有……”、“一定有……”、“不少于……”、“存在……”、“必然有……”等词语,其结论只要存在,不必确定,即不需要知道第几个抽屉放多少个苹果. 对一个具体的可以应用抽屉原理解决的数学问题还应搞清三个问题: (1)什么是“苹果”? (2)什么是“抽屉”? (3)苹果、抽屉各多少? 用抽屉原理解题的本质是把所要讨论的问题利用抽屉原理缩小范围,使之在一个特定的小范围内考虑问题,从而使问题变得简单明确. 用抽屉原理解题的基本思想是根据问题的自身特点和本质,弄清对哪些元素进行分类,找出分类的规律.关键是构造适合的抽屉,抽屉之间可以有公共部分,亦可以没有公共部分。一般说来,数的奇偶性、剩余类、数的分组、染色、线段与平面图形的划分等,都可作为构造抽屉的依据。这一简单的思维方式在解题过程中却可以演变出很多奇妙的变化和颇具匠心的运用。抽屉原理常常结合几何、整除、数列和染色等问题出现,从小学奥数、中学奥数、IMO 到Putnam 都可以见到它的身影。实际应用中,抽屉原理常常与反证法结合在一起。 二、极端原理 让我们先看一个有趣的放硬币游戏. 两人相继轮流往一张圆桌上平放一枚同样大小的硬币,条件是后放的硬币不能压在先放的硬币上,直到桌子上再也放不下一枚硬币为止。谁放入了最后一枚硬币谁获胜。问:先放的人有没有必定取胜的策略? 这是一个古老而值得深思的难题.当有人向一位确有才能的数学家提出这个难题时,引出了如下一段意味深长的对话: 数学家:这有什么难?如果圆桌小到只能容纳一枚硬币,那么先放的人当然能够取胜。 提问者:这还用你讲?简直废话! 数学家:不!这是一个很重要的特殊情况,它的解决将导致一般问题的解决. 提问者:怎么解决? 数学家:我先将第一枚硬币放在桌子的中心,利用圆桌的对称性,我就可以获胜.不管是圆桌还是方桌,也不管是桌子有多大,只要有一个对称中心就行. 数学家独具慧眼,能从一般性问题中一下子找到一个极易求解的极端情形,并能将极端情形下的解法推向一般,轻而易举地解决了上述难题,而且还作了推广. 这位数学家大概是这样思考的: 一般性的问题比较复杂,先将其极端化,注意到所放硬币总数1n ≥,取其极端情形1n =即假设桌子小到只能放下一枚硬币,得出特殊问题的解,即先占中心者为胜.然后根据圆桌的对称性,先放者把硬币放在中心位置O ,若后放者把硬币放在C 处,则先放者把硬币放在中心位置O 的对称点'C 处,这样只要后放者能放下硬币,先放者总能根据对称性,放下硬币,最后获胜. 这种思考问题的方法称为极端原理.

抽屉原理(一)

抽屉原理 抽屉原理(1) 把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 1.游泳队有13名队员,教练说你们当中至少有两个人在同一个月过生日,为什 么? 2.某校的小学生年龄最小的6岁,最大的13岁,从这个学校中至少任选几位同学 就一定保证其中有两位同学的年龄相同? 3.布袋中装有红、黄、蓝三色小木棒若干根,至少摸出多少根,就一定保证有两 根小木棒的颜色相同? 4.布袋中装有红、黄、蓝三色小木棒若干根,每次取出两根,至少摸出多少次, 就一定保证有两次摸出的两根小木棒的颜色组合相同? 5.布袋中装有红、黄、蓝三色小木棒若干根,每人取出三根,至少需要多少人, 就一定保证有两人摸出的小木棒的颜色组合相同? 6.为了欢迎来宾,学校准备了红、黄、蓝三色小旗,每个同学两手各拿一面小旗 列队欢迎,试证明:任意8名同学中,至少有两人不但所拿小旗的颜色一样,而且左右顺序也相同。 7.体育器材室里有许多足球、排球和篮球,体育课学生来拿球。如果每人至少拿 1个球,至多拿2个球,至少来多少名学生,就能保证一定有两名学生所拿的球种类完全一样。 8.学校食堂中午有6种不同的菜和5种不同的主食。每人只能买一种菜和一种主 食,请你证明32名同学中,一定至少有两名学生所买的菜和主食是一样的。 9.证明:任取7个自然数,必有两个数的差是6的倍数。 10.从2、4、6、8……、24、26这13个偶数中,任取8个数,证明其中一定有两个数 之和是28。 11.求证:任意互异的8个整数中,一定存在6个整数A 、A2、A3、A4、A5、A6,使 1 得(A1-A2)×(A3-A4)×(A5-A6)恰是105的倍数。 12.从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍 数。

抽屉原理(二)— 数论中的抽屉原理

数论中的抽屉原理(组合) 一、数论中的抽屉原理& 最不利原则——“和差倍” 1. 题型 (1)两数之和或两数之差是m (2)两数之和或两数之差是m的倍数 2. 解题思路 题型(1)根据题意构造抽屉 题型(2)根据余数的特征进行分组,构造抽屉 二、注意事项 1. 相邻两数必互质。 题型一:根据题意构造抽屉 1.从2、4、6、…、30这15个偶数中,至少选出多少个数,才能保证其中一定有两个数之和 是34 . 2.从1 ~ 11这11个自然数中,至少选出多少个数,才能保证其中一定有两个数之和是12 . 3.从1 ~ 99这99个自然数中,最多选出多少个数,使得其中每两个数之和都不等于100? 4.从1,2,3,4,5,6,7,8,9,10,11,12中最多能选出几个数,使得在选出的数中, 每一个数都不是另一个数的2倍。

5.从1 ~ 21这21个自然数中,至少取出多少个数,才能保证其中必有两数的差等于4? 6.从1 ~ 99这99个自然数中,最多可以取出多少个数,使得其中每两个数之差都不等于5? 7.如果在1,2,… …,n中任取19个数,都可以保证其中必有两个数的差是6,那么n最大 是多少? 8.从1 ~ 50这50个自然数中,至少选出多少个数,才能保证其中必有两个数互质? 题型二:根据余数构造抽屉 1.在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除。 2.至少取几个数,才能保证一定有两个数的差是7的倍数? 3. 1 ~ 17中,至少拿出多少个数才能保证: (1)里面一定有5的倍数?(2)一定有两个数的和是5的倍数?

4. 1 ~ 35中,至少拿出多少个数才能保证一定有两个数的和是8的倍数? 5.从1至17这17个自然数中取出若干个数,使其中任意两个数的和都不能被5整除.请问: 最多能取出多少个数? 6.任选7个不同的数,请说明:其中必有2个数的和或者差是10的倍数。 巩固练习 1.从1 ~ 19这19个自然数中,至少取出多少个数,才能保证其中必有两数的差等于4? 2.从1 ~ 19这19个自然数中,至少取出多少个数,才能保证其中必有两数的差是4的倍数? 3.从1 ~ 25这25个自然数中,至少取出多少个数,才能保证其中必有两数的和是6的倍数? 4.从1至30这30个自然数中取出若干个数,使其中任意两个数的和都不能被7整除.请问: 最多能取出多少个数? 5.在任意的五个自然数中,是否其中必有三个数的和是3的倍数?

抽屉原理的经典解题思路

抽屉原理的经典解题思路 抽屉原理在公务员考试中的数字运算部分时有出现。抽屉原理是用最朴素的思想解决组合数学问题的一个范例,我们可以从日常工作中的实例来体会抽屉原理的应用。抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 先来看抽屉原理的一般叙述: 抽屉原理(1):讲多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于2。抽屉原理(1)可以进行推广,把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。 抽屉原理(2):将多于件的物品任意放到抽屉中,那么至少有一个抽屉中的物品的件数不少m+1。也可以表述成如下语句:把m个物品任意放入n(n≤m)个抽屉中,则一定有一个抽屉中至多要有k件物品。其中k=〔m/n 〕,这里〔m/n 〕表示不大于m/n的最大整数,即m/n的整数部分。 掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。一般来讲,首先得分析题意,分清什么是“物品”,什么是“抽屉”,也就是什么作“物品”,什么可作“抽屉”。接着制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。最后运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。 下面两个典型例题的解题过程充分展现了抽屉原理的解题过程,希望读者能有所体会。 例1:证明任取6个自然数,必有两个数的差是5的倍数。 证明:考虑每个自然数被5除所得的余数。即自然数可以作为物品,被5除所得余数可以作为抽屉。显然可知,任意一个自然数被5除所得的余数有5种情况:0,1,2,3,4。所以构造5个抽屉,每个抽屉中所装的物品就是被5除所得余数分别为0,1,2,3,4的自然数。运用抽屉原理,考虑“最坏” 的情况,先从每个抽屉中各取一个“物品”,共5个,则再取一个物品总能在先取的5个中找到和它出自于同一抽屉的“物品”,即它们被5除余数相同,所以它们的差能整除5。

抽屉原理(二)教案

数学广角——抽屉原理(二) 执教人:刘梦悦六(三)班 教学内容:《义务教育课程标准实验教科书数学》六年级下册教材第71页例2教学目标: (一)理解“抽屉原理”的一般形式 (二)采用枚举法和假设法解决抽屉问题,通过分析、推理,理解并总结这一类 “抽屉问题”的一般规律 (三)经历“抽屉原理”的推理过程,体会比较、归纳的学习方法 (四)感受数学与生活的密切联系,激发学生学习兴趣,培养学生的探究精神教学重点:理解“抽屉原理”的推理过程 教学难点:正确理解这一类“抽屉问题”的一般规律 教学方法:质疑引导 教学准备:PPT课件 教学过程: 一、复习回顾 师:上节课我们共同学习探讨了一类较简单的抽屉问题,解答时可以采用哪几种方法?谁来说说? 学生举手汇报,根据学生的汇报总结:只要铅笔数比文具盒的数量多,就存在总有一个文具盒里至少放进2枝铅笔。今天,我们来探究稍复杂的抽屉问题。 教师:大家听过“而逃啥三士”的故事吗?(学生知道就让学生讲述,否则教师讲述) 二、探究新知 (1)自主探索 PPT展示例2:把5本书放进2两抽屉中,结果会怎样呢? 引导学生运用上节课所学的两种方法:枚举法和假设法,组织学生动手探究,分组讨论,互相交流

学生汇报结果:有三种情况(5,0)(4,1)(3,2) 教师在黑板上板书:[(5,0)(4,1)(3,2)] 教师:你能得出怎样的结论? 学生可能汇报:不管怎么放,总有一个抽屉至少放进3本书。 教师:能否用假设法来解决这一问题呢? 组织学生思考、讨论、交流。 学生交流后可能会说出:假设把5本书平均放进2个抽屉,那么没一个抽屉放进2本书,还剩一本,把剩下的这一本书放进任何一个抽屉,该抽屉里就有三本书了。(最后定要引导学生完整地说出结果)所以把5本书放进2个抽屉中,有一个抽屉至少有三本书。 教师:能否用数学算式写出解题过程呢? 学生汇报可能说出:5÷2=2……1 2+1=3 教书板书:[5÷2=2……1 2+1=3] PPT课件展示:如果有7本书放进两个抽屉中,结果会怎样?9本书呢?能列式解答吗? 组织学生分组讨论、相互交流 学生汇报时可能会说出:7本书放进2个抽屉里,总有一个抽屉至少放进4本,9本书放进2个抽屉里,总有一个抽屉至少放进5本。列式如下: 7÷2=3……1 3+1=4 9÷2=4……1 4+1=5 教师板书:[7÷2=3……1 3+1 =4,9÷2=4……1 4+1=5] (2)发现规律 教师:从上面几个问题有什么共同特点?有什么不同之处呢? 学生可能汇报:都是把(大于2本)几本书放进2个抽屉中,不同之处是上面三个问题中书的本数(教师强调分别是5、7、9本书) 教师:现在你从上面的列式中发现什么没有? 组织学生交流,然后汇报 引导学生说出:要把ɑ(ɑ是奇数)本书放进2个抽屉中,如果ɑ÷2=b……1,那么总有1个抽屉至少有(b+1)本书。

抽屉原理问题(公务员考试数学运算基础详解)

抽屉原理问题——基础学习 一、解答题 2、抽屉原理1例1:400人中至少有几个人的生日相同? 【解题关键点】将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同. 【结束】 3、抽屉原理1例2:五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同? 【答案】至少有3名学生的成绩是相同的。

【解题关键点】关键是构造合适的抽屉。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。 44÷21= 2……2, 根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。 【结束】 5、抽屉原理2例1:某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具? 【答案】至少会有一个小朋友得到4件或4件以上的玩具。 【解题关键点】将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。 【结束】 6、抽屉原理2例2:一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块? 【答案】一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 【解题关键点】将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 【结束】 7、抽屉原理2例3:六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同? 【答案】至少有15人所订阅的报刊种类是相同的。 【解题关键点】首先应当弄清订阅杂志的种类共有多少种不同的情况。 订一种杂志有:订甲、订乙、订丙3种情况;

相关主题
文本预览
相关文档 最新文档