抽屉原理(高中)
- 格式:doc
- 大小:97.50 KB
- 文档页数:6
浅谈抽屉原理在高中数学竞赛中的运用抽屉原理是概率论中的一种基本方法,用来解决一类计数问题。
在高中数学竞赛中,抽屉原理是一个非常重要的工具,经常被用于证明数学问题,寻找解题思路以及辅助解题。
本文将从抽屉原理的基本概念、运用场景和实例等方面进行探讨。
首先,我们来介绍一下抽屉原理的基本概念。
抽屉原理,又称为鸽巢原理,它是由德国数学家戴德金(Dirichlet)在1823年提出的。
该原理的经典表述是“如果有n+1个物体放入n个盒子中,则至少有一个盒子中会放入两个或以上的物体”。
简单来说,就是将若干个物体放入较少数量的容器中,那么至少有一个容器会被装满。
抽屉原理在高中数学竞赛中的应用非常广泛。
下面我们重点介绍一些常见的抽屉原理运用场景。
1.合理安排方案或分配问题在高中数学竞赛中,常常会遇到需要合理安排方案或分配问题的情况。
抽屉原理可以帮助我们找到合理的方案或分配。
例如,假设有n个同学要参加m个活动,每个同学可以参加多个活动,且每个活动的名额有限。
我们需要证明至少有一个活动的报名人数不少于n/m。
这个问题可以使用抽屉原理来解决。
我们可以将n个同学放入m个活动中,根据抽屉原理,至少有一个活动的报名人数不少于n/m。
2.寻找解题思路在高中数学竞赛中,经常会遇到一些复杂的问题,我们不知道从哪里入手。
抽屉原理可以作为解决问题的一个启示,给我们提供思路。
例如,我们要证明一个命题,但我们无法直接证明它,此时我们可以尝试反证法。
假设该命题不成立,然后根据抽屉原理找出矛盾之处,从而达到证明的目的。
3.确定正整数性质在高中数学竞赛中,经常需要证明一些正整数具有一些性质,而这些性质又不易直接证明。
抽屉原理可以通过构造来解决这类问题。
例如,要证明任意n个正整数中至少有2个数的差是10的倍数,我们可以根据抽屉原理,将这些n个数按余数进行分类,然后应用抽屉原理的相关思路进行证明。
下面我们通过一个例子来具体说明抽屉原理在高中数学竞赛中的运用。
抽屉原理在高中数学的应用1. 了解抽屉原理抽屉原理(也称为鸽巢原理)是数学中的一个重要原理,它的核心思想是:如果有n+1个或更多的物体放入n个盒子中,则至少有一个盒子中必定会放有两个或以上的物体。
这一原理是基于数学归纳法的思想而得出的,是数学中非常重要且常用的思维工具。
2. 应用一:鸽巢原理在离散数学中鸽巢原理在离散数学中有广泛的应用。
离散数学是一门研究离散结构的数学学科,它与连续结构相对应。
鸽巢原理是离散数学中最重要的原理之一。
在数学建模、图论、编码理论等领域,鸽巢原理被广泛应用。
例如,在图论中,鸽巢原理可以用来证明存在某个顶点的度数不少于平均度数;在编码理论中,鸽巢原理可以用来证明某种编码方式一定会出现冲突等。
3. 应用二:鸽巢原理在组合数学中组合数学是研究离散结构的数学分支之一,它研究了对象的选择、排列和组合等问题。
鸽巢原理在组合数学中也有广泛的应用。
例如,考虑将n+1个物体放入n个抽屉中,其中物体可以是任意的元素,抽屉可以是某个特定的集合。
根据鸽巢原理,至少有一个抽屉中会放有两个或以上的物体。
这个结论可以推广到更一般的情形,例如将n+1个物体放入k个抽屉中,根据鸽巢原理,至少有一个抽屉中会放有$\\lceil \\frac{n+1}{k} \\rceil$个物体。
4. 应用三:鸽巢原理在概率统计中鸽巢原理在概率统计中也有重要的应用。
概率统计是一门研究随机现象规律的学科,而鸽巢原理可以帮助我们理解和分析一些概率问题。
例如,考虑将n个球随机放入m个盒子中,其中每个球等概率地放入m个盒子之一。
根据鸽巢原理,当n > m时,至少会有一个盒子中放入多个球,而当n ≤m时,有可能每个盒子都只放入一个球。
通过应用鸽巢原理,可以帮助我们理解概率统计中的一些概念,如概率分布、期望值等。
5. 总结抽屉原理(鸽巢原理)是高中数学中常见的数学原理之一,它在离散数学、组合数学和概率统计中都有重要的应用。
理解抽屉原理的概念和思想,可以帮助我们更好地解决和理解各种数学问题,并在实际应用中发挥作用。
高中数学祖暅原理的典型例题
高中数学中,祖暅原理(也称为鸽巢原理或抽屉原理)是一种重要的组合数学思想,用于解决箱子和物品之间的配对问题。
它指出,如果有n个物品要放入m个箱子,而n>m,那么至少有一个箱子中会放置多个物品。
下面是一个典型的例题,用于帮助理解祖暅原理的应用:
例题:假设有8个苹果和4个盘子,要将这些苹果放入盘子中。
按照祖暅原理,至少有一个盘子中会放置多个苹果。
解析:根据祖暅原理,我们可以得出结论,即使每个盘子只放一个苹果,我们也至少需要5个盘子来放置8个苹果。
而这里只有4个盘子,因此至少有一个盘子中会放置多个苹果。
这个例题很好地展示了祖暅原理的应用。
当物品的数量大于箱子的数量时,必然会出现至少一个箱子中装有多个物品的情况。
祖暅原理在实际生活中有很多应用,例如:
1. 生日问题:在一个房间里,至少有多少人才能确保至少两人生日相同?根据祖暅原理,这个数量为23人。
因为一年有365天,所以
至少要有365+1=366人才能确保至少有两人生日相同。
2. 选课问题:如果有50门选修课程,而每个学生只能选择5门课程,那么至少要有多少名学生才能确保每门课程都有学生选择?根据祖暅原理,至少需要11名学生。
因为每个学生可以选择5门课程,所以总共可以选择的组合数为50选5,约为2118760。
而如果学生人数少于11人,就无法满足每门课程都有学生选择的条件。
综上所述,祖暅原理是高中数学中的重要思想,可以帮助我们解决一些组合问题。
在解题过程中,我们需要注意正确理解问题并合理运用祖暅原理,以得出准确的结论。
抽屉原理公式1. 引言抽屉原理(也称为鸽笼原理或鸽巢原理)是数学中的一种基本概念,它在各个领域都有着广泛的应用。
该原理简单地描述了将大量物体放入较少的容器时,必然会出现至少一个容器装有多个物体的情况。
在计算机科学、密码学、概率论等领域,抽屉原理被广泛运用于解决问题。
本文将介绍抽屉原理的概念和基本公式,并展示一些实际应用例子。
2. 抽屉原理的概念抽屉原理基于一个简单的观点:如果有n个物体放入m个容器中,当n>m时,至少有一个容器中必然装有多个物体。
这个观点非常直观,可通过一个简单的例子加以说明。
例如,假设有6只苹果需要放入3个抽屉中。
根据抽屉原理,每个抽屉至少要放入2只苹果,否则必然会有一个抽屉是空的。
同样地,若每个抽屉放入3只苹果,则会至少有一个抽屉放入4只苹果。
这个观察说明了抽屉原理的基本思想。
3. 抽屉原理公式抽屉原理的公式可以被描述为:如果有n个物体放入m个容器中,并且n > m,则至少存在一个容器包含的物体数量大于1。
该公式可以用以下方式表示:n > m => ∃ i, j, (1≤i<j≤m), ai = aj其中,n表示物体的个数,m表示容器的个数,ai表示第i个容器中物体的数量。
这个公式指出,当物体的数量超过容器的数量时,至少有两个容器会包含相同数量的物体。
4. 抽屉原理的应用抽屉原理的应用广泛而深入,下面将介绍几个常见的应用示例。
例子1:生日相同的概率假设有365天的一年和n个人,为了方便计算,忽略闰年的情况。
根据抽屉原理,当n > 365时,至少有两个人将有相同的生日。
我们可以通过计算概率来验证这个结论。
假设我们有一群人,每个人的生日是独立且等概率的。
以n=23为例,我们计算至少有两个人生日相同的概率。
根据抽屉原理的公式,n > 365时,至少存在一个容器(即生日)中包含的物体数量大于1。
这里的容器数为365,物体数为n,我们可以使用概率计算公式来计算此事件的概率。
高中数学抽屉原理容斥原理在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。
这类存在性问题中,“存在”的含义是“至少有一个”。
在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。
这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。
“抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。
这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。
这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。
抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。
(一)抽屉原理的基本形式定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。
证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。
在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。
同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。
“鸽笼原理”由此得名。
例题讲解1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。
证明:至少有两个点之间的距离不大于2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。
第十八章 组合一、方法与例题1.抽屉原理。
例1 设整数n ≥4,a 1,a 2,…,a n 是区间(0,2n)内n 个不同的整数,证明:存在集合{a 1,a 2,…,a n }的一个子集,它的所有元素之和能被2n 整除。
[证明] (1)若n ∉{a 1,a 2,…,a n },则n 个不同的数属于n-1个集合{1,2n-1},{2,2n-2},…,{n-1,n+1}。
由抽屉原理知其中必存在两个数a i ,a j (i ≠j)属于同一集合,从而a i +a j =2n 被2n 整除;(2)若n ∈{a 1,a 2,…,a n },不妨设a n =n ,从a 1,a 2,…,a n -1(n-1≥3)中任意取3个数a i , a j , a k (a i ,<a j < a k ),则a j -a i 与a k -a i 中至少有一个不被n 整除,否则a k -a i =(a k -a j )+(a j -a i )≥2n ,这与a k ∈(0,2n)矛盾,故a 1,a 2,…,a n-1中必有两个数之差不被n 整除;不妨设a 1与a 2之差(a 2-a 1>0)不被n 整除,考虑n 个数a 1,a 2,a 1+a 2,a 1+a 2+a 3,…,a 1+a 2+…+a n-1。
ⅰ)若这n 个数中有一个被n 整除,设此数等于k n ,若k 为偶数,则结论成立;若k 为奇数,则加上a n =n 知结论成立。
ⅱ)若这n 个数中没有一个被n 整除,则它们除以n 的余数只能取1,2,…,n-1这n-1个值,由抽屉原理知其中必有两个数除以n 的余数相同,它们之差被n 整除,而a 2-a 1不被n 整除,故这个差必为a i , a j , a k-1中若干个数之和,同ⅰ)可知结论成立。
2.极端原理。
例2 在n ×n 的方格表的每个小方格内写有一个非负整数,并且在某一行和某一列的交叉点处如果写有0,那么该行与该列所填的所有数之和不小于n 。
2中等数学叙嗲活劫镙歿饼;I抽屉原理在组合数学中的应用刘媛媛石泽晖(长春吉大附中实验学校,130021)中图分类号:〇141.2 文献标识码:A文章编号:1005 - 6416(2021)05 - 0002 - 05(本讲适合高中)抽屉原理也被称为鸽巢原理或狄利克莱 原理,它是组合数学中一个基本且重要的原理,许多存在性问题的证明和极值问题中不等关系的得出都可以用抽屉原理来解决.1知识介绍抽屉原理具体内容在不同的背景下(代 数、几何等)略有不同,常见形式主要有以下几种:抽屉原理(1)若将m个物件放到n个抽屉里,则必有一个抽屉至少有+1n个物件,其中,[a]表示不超过实数a的最大 整数;(2)若将m个物件放到n个抽屉里,则必有一个抽屉内至多有[@1个物件.n证明(1)反证法.若每个抽屉内至多有个物件,则放人71个抽屉内的物件总数至多为n—~- ^n(— ~^=m-l,这 与抽屉内共有m个物件矛盾.故必有一个抽屉内至少有1+ 1个物件.n(2)的证法同样,此处省略.抽屉原理的实质是对物件最多的抽屉内 至少有多少个物件,物件最少的抽屉内至多收稿日期:2021 -01 -11有多少个物件的估计,本质是极端原理.平均值原理(1)设,a2,…,an 6R,h|(a i+a2+...+a n)J l K,a2,…,an 中必有一个数不小于1也必有一个数不大于4;⑵设o^,%,…,an 6R,G= 7ai°2",an*则h,a2,…,an中必有一个数不小于G,也必有一个数不大于C.事实上,平均值原理中的均值可以替换成任何一种均值,结论依然成立.图形重叠原理在平面上有n个面积分别为51,52,一,5…的图形>1132,一,疋,把这«个图形按任意方式放入一个面积为S的固定图形4内.(1) 若& +s2 +…+ s… >5,则存在两个 平面图形卓、4(1A <)矣n),它们有公共内点;(2) 若&+S2 +…+S…<S,则在>4内必 存在一点,不属于U2,…,纪中任意一个•此结论同样适用于一维、三维情况.抽屉原理本身并不难,用其解题关键是如何设计“抽屉”,即题中涉及元素的具体分类方式.2例题选讲2.1合理“划分抽屉”解决组合问题例1设S=l l,2,…,100!.求最大的整数fc,使得S有个互不相同的非空子集,具有性质:对这A个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元2021年第5期3素与这两个子集中的最大元素均不相同.[1] (2014,全国高中数学联合竞赛)解对于有限非空实数集用m in夂 max4分别表示4的最小元素、最大元素.考虑S的所有包含1且至少有两个元素 的子集,共2" - 1个,记为岑,…,七^丨•它们 显然满足要求.因为 min(/!;Di4,+)= 1 < max A-,所以人下面证明A>299时不存在满足要求的友 个子集.将丨1,2,…,100丨按以下方式划分为如 下2"-1个子集:对任意的m 6丨4,5,…,100|,记对于任意的,定义集合对U u |m|;[,A B m t U I mi !,则共有2^2个不同的集合对.将11,2,3丨的非空子集按以下方式分成 三个子集对:{13|;11,3};|2,3|},1|2|;{1,2!|,I H I ;{1,2,3( !.从而,共有£2m—2 +3 =2" -1个不同 的子集对.若非空子集个数多2",则必有两个在同一组中,故它们交集中的最小元素与最大元素相同,矛盾.因此,1.例2甲选了 13个两两不同的三位数,乙从甲选的13个三位数中再挑选几个三位数.若通过四则运算可以使最后的结果属于区间(3,4),则乙获胜;否则,甲获胜.问:谁 有获胜策略?(第34届阿根廷数学奥林匹克)解乙有获胜策略.将所有三位数按如下方式分成八个集合,同一集合中最大数除以最小数的值小于4G\ ={100,101 ,•••,133},G2 =)134,135,---,178!,G3 =j179,180,---,238!,G4 ={239,240,---,318},g5 =j319,320,---,425!,G6 =|426,427,…,567| ,G7 =|568,569,…,757i ,G8 =|758,759,…,999|.因为甲共选取13个三位数,且13 >8,所以,由抽屉原理,知必有两个三位数属于同 一集合,不妨设为A(A > *2 ),显然,,41<^<y-去掉这两个三位数,剩下11个三位数属 于同一集合,由于11 >8,则由抽屉原理,知 必有两个三位数属于同一集合,不妨设为巧、尤4(),显然,X43再去掉这两个三位数,剩下9个三位数属于同一集合,由于9 >8,则由抽屉原理,知必有两个三位数属于同一集合,不妨设为 ■*5、无6($5〉),显然,,*5 41 <—<了.尤63由此得X}X^y1 +1 +1 =3 < — + —+ —丨2 丨4 丨64 4 4 A<了 + 了 + 了=4.故乙有获胜策略.[2]利用抽屉原理,知研究此类问题的关键是构造合适的“抽屉”,即确定恰当的分类规则,将题目中涉及的元素按照一定的性质进行分类.当取出的元素数量足够多时,由抽屉 原理,知至少有某些元素属于同一个集合.从 而,这些元素具有某种性质,进而得出结论. 构造抽屉的原则是与题设密切相关的,常用 方法有:分割区间、分割图形、同余分类、最大 奇因子、划分集合等方式,使用时具体要看题4中等数学设条件所关注的性质.2.2 “计算总量”,用抽屉原理估计最值例3 设5=14,/12,"•,/!…}(〇.多2),其 中,义,/12,…,七是n个互不相同的有限集合,满足对任意次、禹6S,均有6S.若灸=m in丨4丨>2( I Z I表示有限集合Z的1矣i矣n元素个数),证明:存在$ G,使得尤属于次,禹,…人中的至少f个集合.[3](2015,全国高中数学联合竞赛)证明不妨设丨41= 6.设在次,…,人中与々不相交的集合有5个,重新记为A,fi2,…,虼;设包含岑的集合有f个,重新记为C丨,C2,…,C,.由已知条件,知晃U A G S,即B i UA1 6于是,得到一个映射/:\B l ,B2,--,B S\\CX,C2,--,C t\,f(B i)= B i U A l.显然,/是单射.从而,s矣z.i^:Al =在^,七,…,火中除去乂,氏,…,Ci,C2,…,后,在剩下的n-s-t个集合中,设包含a,的集合有个.由于剩下的n-s-f个集合中每个集合与岑的交非空,即包含某个A,于是,x x +x2 + •••+ xk^n- s-1.从而,/i,中的各个元素出现在集合…,火中的次数总和满足T= k t+n-s-t=n+ (k-l)t-s^n.由抽屉原理,知至少存在一个m 6丨i,2,…,M,使得〜彡f.上述问题的特征是:题中所给的元素具有任意性•题设为集合4,4,…,人和所涉及的元素提供的条件均是平等的、任意的.题 目探究的结论是一个存在性命题,证明存在一个元素具有某种性质,且只需说明存在性,并不需要指明具体是哪个集合满足此要求.这类问题考虑用抽屉原理处理,通过计算抽 屉中元素的总量来得出相应结论,是抽屉原 理非常典型的应用.2.3应用“图形重叠原理”解决组合几何问题例4 一农夫在120 m x 100 m的矩形 土地中有九个直径为5 m的圆形菜园.证明: 无论圆形菜园的位置如何设置,农夫总能建 一"t"25 m x35 m的矩形菜园•(2018,越南数学奥林匹克)证明设矩形仙CZ)满足Zlfi = CZ)= 120=5C= 100•将其分割为 10 个 30 x40 的小矩形,如图1.图1考虑九个圆形菜园的圆心.由抽屉原理,知必存在某个小矩形不包含这九个圆心中的任何一个.设这个矩形为;O^T,其中,XY= ZT= 40 ,XT=Y Z=30.考虑矩形x y z r内的矩形z'r r,使 得两个矩形的对应边平行且距离为2. 5.则 矩形z'r z'r为25 x35,且与每个圆形菜园 均无重叠.[2]例5 平面上给定100个半径为1的 圆,使得任意三个圆心所构成的三角形的面积至多为i o a证明:存在一条直线至少与1〇 个圆相交.(2018,中国台湾数学奥林匹克选训营)证明证明一个更一般的命题:平面上给定n个半径为1的圆,使得任三个圆心所构成的三角形面积至多为n,证明:存在一条直线至少与个圆相交.+2令S为这〃个圆心所成的集合.2021年第5期5设S中距离最远的两点间的距离为丄任取S中异于的一点C.因为以,所以,点C到直线仙的距离至多为^.从而,若直线Z丄于点Z),则集合S 中任一点在/上的投影点将落入以Z)为中心、$为长度的区间内.又集合S中两点距离最大值为d,则S 中的点在直线/的投影点必落在一个长度为 d的区间内.故此区间长度至多为y/An .注意到,这n个圆投影到直线/上全是 长度为2的区间,而这些区间均包含在一个长度至多为A+2的区间内.令这个区间为/,C,•为第i(l在n)个圆在直线Z上的投影.由于所有(;的长度总和为2n,且其均落 在/中,依照图形重叠原理,这表明,/中至少要有一个点X同时属于至少个圆C,++2中.故取平行于且过点尤的直线g即可.取n= 100,得200 200 n,___—= —^>9,v^+222即g至少与10个圆相交.[2]用图形重叠原理解决组合几何中的存在 性问题时,题中所给元素条件具有任意性也是一典型特征,如例5中涉及的100个圆,条 件是任意的、平等的,题目的结论是一个存在 性命题,有以上特征的问题通常可以考虑用图形重叠原理去解决.练习题1.设集合S=丨1,2,".,3/1丨为正整数,71为S的子集,满足:对于任意的x、y、z G T (;«、y、z可以相同),均有;+ y+ z备71.求所有这种集合r的元素个数的最大值.[4](第五届中国东南地区数学奥林匹克)提示取T0 = \x\x S H x^n+ \\=|n+ 1,r e+2,•••,3n\ ,此时,i r Qi= 2re,且r Q中任三个数的和大于3心于是,不在r。
高考数学冲刺抽屉原理考点突破在高考数学的复习冲刺阶段,抽屉原理作为一个重要的考点,常常让许多同学感到困惑和棘手。
但其实,只要我们掌握了它的核心概念和解题方法,就能在考试中轻松应对,斩获高分。
首先,我们来了解一下什么是抽屉原理。
简单来说,抽屉原理指的是:假如有 n + 1 个元素放到 n 个集合中去,其中必定有一个集合里至少有两个元素。
举个简单的例子,把 3 个苹果放进 2 个抽屉,无论怎么放,总有一个抽屉里至少有 2 个苹果。
这看起来似乎很简单直观,但在实际的数学问题中,它的应用往往更加复杂和巧妙。
在高考中,抽屉原理的常见题型主要有以下几种:一、最不利原则问题这类问题通常要求我们在最不利的情况下,找出满足条件的最少数量。
例如,有红、黄、蓝三种颜色的球各 10 个,要保证取出的球至少有两种颜色,最少要取出多少个球?我们先考虑最不利的情况,即先把一种颜色的球全部取出,比如先取出 10 个红球,然后再取 1 个球,就一定能保证取出的球至少有两种颜色,所以最少要取出 11 个球。
二、构造抽屉问题此类问题需要我们根据题目条件合理地构造抽屉。
比如,在一个班级中,有 40 名学生,年龄在 16 岁到 18 岁之间,那么至少有几名学生是同年同月出生的?这里我们可以把一年的 12 个月看作 12 个抽屉,把 40 名学生放进这 12 个抽屉中,40÷12 =3……4,所以至少有 4 名学生是同年同月出生的。
三、抽屉原理的综合应用有些题目会将抽屉原理与其他数学知识,如排列组合、概率等结合起来考查。
这就需要我们综合运用各种知识和方法来解决问题。
那么,如何才能突破抽屉原理这个考点呢?第一,要深刻理解原理的本质。
不仅仅是记住它的定义,更要通过大量的实例去体会和领悟其中的逻辑。
第二,多做练习题。
通过练习不同类型的题目,熟悉各种解题思路和方法,提高解题的速度和准确性。
第三,善于总结归纳。
做完题目后,要总结出同类题目的解题规律和技巧,形成自己的解题模板。
抽屉原理一.抽屉原理的各种形式:抽屉原理1:n +1 个元素分成n 类,至少有1类中的元素不止1个.抽屉原理2:n ·m +1个元素分成n 类,至少有1类中的元素不止m +1个.即:k 个元素分成n 类,至少有1类中的元素不止⎣⎡⎦⎤k -1n +1个.(k ,n ∈N*)抽屉原理3:n 个数之和为m ,则其中必有一数≥m n ,也必有一数≤m n .抽屉原理4 把一个无限集A 分成有限个集合的并集,即A i ⊂A ,且i =1∪nA i =A ,A i ∩A j =∅(i ,j =1,2,……,n ;i ≠j ).则至少有一个A 的子集A k (1≤k ≤n ),它有无限多个元素.例1.把大小两个圆盘各划分成2n 个相等的扇形格,在每格都用黑、白两色之一涂色,使两盘总计,黑格与白格都各有2n 格.然后把两个圆盘的圆心固定于同一点,并让小盘在上成为一个转盘.试证:可将小盘转到某一适当位置,使两个圆盘上的格子对齐,并使二盘对应格子颜色不同的不少于n 对.证明:让小盘逐格转动,每次都记下颜色不同的格子对齐的数目,当转动了2n -1次后,小盘转动了一周,共记了2n 次.于是,小盘上每个格子都与大盘上的每个格子对齐一次.设小盘上有k 个黑格,2n -k 个白格,则大盘上有2n -k 个黑格,k 个白格.颜色不同的格子对齐的数目为k 2+(2n -k )2=4n 2+2k 2-4nk =2(k -n )2+2n 2≥2n 2.∴至少有一次转动对齐后,使二盘对应格子颜色不同的数目≥⎣⎡⎦⎤2n 2-12n +1=n .例2.从1,2,3,…,3n (n ≥2)这3n 个正整数中任意取出n +2个数,求证:其中必有两个数,其差大于n 而小于2n .解:设取出的最大的数为k ,则把取出的数都加上 3n -k ,这样做不会影响它们之间的差.此时最大数为3n ,如果在取出的数中有一个在n 与2n 间(满足n+1≤x ≤2n -1的数),则这数与3n 即为所求.若无任何数在此二数之间,则作抽屉(1,2n ),(2,2n +1),(3,2n +2),…,(n ,3n -1),共n 个抽屉,除去3n 这个数外,还有n +1 个数,于是必有两个数落入同一抽屉,此二数即满足要求.例3.任取一个正实数a ,求证:在a ,2a ,3a ,…,(n -1)a 这n -1个数中,至少有一个数,它与最接近的整数之差不超过1n. 解:取这n -1个数的小数部分{a },{2a },{3a },…,{(n -1)a },则此n -1个数都在区间[0,1)内,把区间[0,1)分成n 个小区间,每个区间的长都为1n :[0,1n ),[1n ,2n ),…,[n -1n,1). 若此n -1个数中有某一个落入头尾两个区间之一,则原数即与最近的整数相差不超过1n.此n -1个数不可能没有任何一个落入头尾两个区间中,因若此n -1个数中没有任何一个落入头尾两个区间,则此n -1个数必落入了其余n -2 个区间内,于是必有两个数落入同一区间,设为{ta },{sa },(1≤t <s ≤n -1),此时|(s -t )a |<1n,而0<s -t <n -1,令k =s -t ,于是必有{ka }落入头尾两个区间之一.故证.例4.M 是1985个不同的正整数的集合,M 中每个数的质因数都小于26,求证:从M 中一定可以选出四个不同的数,使它们的积等于一个完全四次方数.解:M 中的任一个数的质因子只能是2、3、5、7、11、13、17、19、23这9个数中的某些数.设a ∈M ,则按这9个质因子的指数为奇或为偶可把所有1985个数分成29=512类,由抽屉原理,任取513个M 中的数必有两个数属于同一类,于是可得(1985-511)÷2=737对数,每对数都属于同一类,于是,这737对数中,每对两数的乘积都是完全平方数,即每个质因子的指数都是偶数.即每个质因子的指数除以4后的余数都只能是0或2,再按这9个质因子的指数是0或2把这737个数分类,又可得512类,现在737个数放入这512类,必有两数同一类,此二数的乘积就是完全四次方数,而乘得此二数的原来4个数即为所求.例5.6个代表队共有1978名运动员,编上号码1,2,3,…,1978号,证明至少有一个运动员,他的号码等于其两个队友号码的和或者等于某一个队友号码的两倍.解:不妨设第1个代表队人数最多,则其人数≥[1978-16]+1=330人,设其中最大的号码为a 1,用a 1减其它329个号码,得到的差如果在此329个数中,则命题已成立.如果这329个差都不是第一个代表队的号码,那么不妨设其中有[329-15]+1=66个号码在第二个队中,同样设这66个号码最大的为b 1,用它减其余65个号码,差b 1-b i =(a 1-a t )-(a 1-a s )=a s -a t 如果在第一或第二个队的号码中,则命题已证,若不在,则此65个数必有[65-14]+1=17人同一队,设为第三队,又设其中最大者为c 1,用c 1减其余16个数,其差c 1-c i =(b 1-b i )-(b 1-b j )=b j -b i ,而b j -b i =(a 1-a t )-(a 1-a s )=a s -a t ,若在第一,二,三队的号码中,则命题可证,依此类推,若无,则[16-13]+1=6,[5-12]+1=3个,其差或是前面某队的号码,或是第6队的号码,问题总能成立.例6.S 是{1,2,3,…,1989}的一个子集,而且S 中任两个数的差不能是4或7,那么S 中最多可有多少个元素?(1989年第七届美国数学邀请赛)解:取前11个自然数1、2、3、4、5、6、7、8、9、10、11,排成一个圈:1、5、9、2、6、10、3、7、11、4、8.这样排好后,任意相邻两数都不能同时被取出,否则其差为4或7.而在这11个数中任取6数,就会在上面这个圈中取出了相邻的两个数,于是这11个数中,最多只能取出5个满足要求的数.例如,取1,3,4,6,9这五个数满足要求.1989=11×180+9,于是把这1989个数从1开始每连续11个数为一组,每组都取出5个数:11k +1,11k +3,11k +4,11k +6,11k +9(k =0,1,2,…,180)共取出181×5=905个数.即S 中最多可有905个元素.当取出的数超过905个时,总有某组数中取出的数超过6个,于是就会出现差为4或7的两个数.从而905为所求.例7.一位棋手参加11周(77天)的集训,每天至少下1盘棋,每周至多下12盘棋,证明这个棋手必在连续的几天内恰好下了21盘棋.解:这名棋手在77天内最多下了11×12=132盘棋.不妨记他从开始起第n 天共下了a n 盘棋,则有a 1<a 2<…<a 77.再取77个数:a 1+21,a 2+21,…,a 77+21,这样共得77×2=154个数.但这些数最大 不超过132+21=153. 于是必有两个数相等,这就是说,必有a i +21=a j (i <j ),即从第i +1天起,到第j 天这连续j -i 天中,这名棋手共下了21盘棋.例8.设有小数A =0.a 1a 2a 3…,如果a i +2是a i +1+a i 的个位数字(i =1,2,3,…),求证:A 是有理数. 解:把a i ,a i +1组成一组:(a i ,a i +1),(i =1,2,3,…),则所有这些组只有以下100种可能的取法:(0,0),(0,1),(0,2),…,(0,9);(1,0),(1,1),(1,2),…,(1,9);…(9,0),(9,1),(9,2),…,(9,9).而取(a 1,a 2),(a 2,a 3),…,(a 100,a 101),(a 101,a 102)这101组,于是必有两组相同,设为(a i ,a i+1),(a i ,a j+1),(i <j ).于是可得a i +2=a j +2,a i +3=a j +3,…,即A 为循环小数,故A 为有理数.例9.已知菲波拉契数列0,1,1,2,3,5,8,13,21,……(从第三项起,每项都等于它的前面两项的和).试问,它的前100000001项中,是否有某一项的末四位数字全为0?(不算第1项)分析:添一项可以看作0000,考虑每一项的末四位数字,末四位数字共有104种,(从0000到9999),而每项的末四位数字都是由其前面两项的末四位数字求和而得出.解:记每一项a i 的末四位数字为x i ,由于该数列的每一项都是其前两项的和,由于x i 有104种,x i+1也有104种,所以有序数对(x i ,x i+1)共有108种,但对于每一项都有一个有序数对(x i ,x i +1)与之对应:(x 0,x 1),(x 1,x 2),…,(x 100000000,x 100000001),共有100000001个数对,从而必有两个数对完全一样,设(x i ,x i +1)与(x j ,x j +1)相同(i <j ).则有x i = x j ,x i +1= x j +1,由于x i -1= x i +1- x i , x j -1= x j +1- x j ,故又有x i -1=x j -1,这样又有(x i -1,x i )=(x j -1,x j ),(x i -2,x i -1)=(x j -2,x j -1),…,直至(x 0,x 1)与(x j -i ,x j -i +1),即x j -i 与x 0相同,即a j -i 的末四位数字全是0.事实上该数列的7501项的末四位全是0.当两项相邻时的情况.例10.设m 、n 都是自然数,任给一个有nm +1项的数列(该数列各项互不相等)a 1,a 2,……,a nm +1证明可以从中选出m +1项,按原来的顺序组成递增数列或选出n +1项按原来的顺序组成递减数列. 说明:先举一个例说明:m =n =2,在一个5项的数列1,8,3,2,5中,可以选出一个3项的递增数列:1,3,5;但未能选出3项的递减数列来.解:对于mn +1项的数列a 1,a 2,…,a nm +1中每一项a i ,都可以从这项开始向后找出以该项为首项的项数最多的递增数列来,设这样的数列有x i 项,同时也能找出以该项为首项的项数最多的递减数列来,设这样的数列有y i 项,这样,对于每一项a i ,都有一对数(x i ,y i )与之对应,这就得到了mn +1个数对(可以看成是mn +1个坐标).如果所有x i 都不大于m ,所有y i 都不大于n ,即x i =1,2,…,m ;且y i =1,2,…,n .于是这样的数对只能有nm 种,将每一种都看成是一个抽屉,但共有nm +1个数对,于是根据抽屉原理,必有2个数对落入同一抽屉.设为a i 与a j ,(i <j ),它们都对应着坐标(h ,k ),这表示从这两个数中的任一个开始,可以向后找出h 项组成递增数列,也可向后找出k 项组成递减数列.若a i <a j ,则从a j 起共有h 项组成递增数列,但加上a i 后应有h +1项,即与a i 对应的数不应为h ,同样若a i >a j ,也将引出矛盾.这说明必有某个x i 满足x i >m ,或者某个y i 满足y i >n 命题得证.例11.设实数x 1,x 2,x 3,…,x n 满足x 12+x 22+x 32+…+x n 2=1证明对每一个整数k ≥2,存在不全为0的整数a 1,a 2,…,a n ,满足|a i |≤k -1,(i =1,2,…,n )使|a 1x 1+a 2x 2+…+a n x n |≤(k -1)n k n -1. 证明:对于|a i |≤k -1,有(a 1x 1+a 2x 2+…+a n x n )2≤(a 12+a 22+…+a n 2)(x 12+x 22+…+x n 2)≤a 12+a 22+…+a n 2≤(k -1)2+(k -1)2+…+(k -1)2=n (k -1)2.所以, |a 1x 1+a 2x 2+…+a n x n |≤(k -1)n . ⑴现在取{a 1,a 2,…,a n } {0,1,2,…,k -1},则共可有k n 种取法,其每一种取法都满足⑴式.把区间[0,(k -1)n ]分成k n -1等份,每份长为(k -1)n k n -1.则k n 个数落入此区间内,必有二数落入同一份内.设为a '1x 1+a '2x 2+…+a 'n x n 与a "1x 1+a "2x 2+…+a "n x n ,则它们的差:(a '1-a "1)x 1+(a '2-a "2)x 2+…+(a 'n -a "n )x n = a 1x 1+a 2x 2+…+a n x n .必满足|a i |≤k -1 (i =1,2,…,n ),且|a 1x 1+a 2x 2+…+a n x n |≤(k -1)n k n -1. 例12.一个棱柱以五边形A 1A 2A 3A 4A 5及B 1B 2B 3B 4B 5分别为上下底,这两个多边形的每一条边及线段A i B j (i ,j =1,2,3,4,5)均涂上红色与绿色,每个以棱柱的顶点为顶点,以涂色线段为边的三角形都有两边颜色不同.求证:上底与下底10条边的颜色相同.证明:首先证明此棱柱的上底面的棱颜色相同.否则必有两条相邻边颜色不同.不妨设A 1A 5为红,A 1A 2为绿.5条线段A 1B i (i =1,2,3,4,5)中必有3条同色.设有3条同为红色.这3条红色的线段中,总有两条是向相邻的两个顶点引出的,例如A 1B 1、A 1B 2都为红色.于是在△A 1B 1B 2中B 1B 2必为绿色.又在△A 1A 5B 1及△A 1A 5B 2中,A 5B 1及A 5B 2均必为绿色.这样就得△A 5B 1B 2全为绿色.矛盾.这说明上底面的5条棱同色.同理,下底面的5棱也同色. 下面再证明,上下底面10条棱颜色全同.反设上底面5条棱钱红,下底面5条棱全绿.由上证,A 1B 1、A 1B 2不能全红,但也不能全绿,故必一红一绿,设A 1B 1红,则A 1B 2绿,同理得,A 1B 3红,A 1B 4绿,A 1B 5红,此时,△A 1B 1B 5又出现上证情况.故得证.练习题 1. 在3×4(cm )的长方形中,放置6个点,试证:可以找到两点,其距离不超过 5 cm .解 先把长方形分成5个区域(如图),根据抽屉原理,必有两个点在同一个区域内,因而它们的距离不超过 5 cm .2.⑴ 是否存在由10个正整数组成的集合A ,使A 的任一6元子集的元素和都不能被6整除?⑵ 对于任一由11个正整数组成的集合A ,证明:一定可以找到它的一个6元子集,其和能被6整除.⑴解:取A ={1,7,13,19,25,6,12,18,24,30},则A 的任一六元子集的元素和都不能被6整除.⑵证明:对于任一元素都是正整数的11元集A ,总可以把这11个元配成5组,每组二个数的奇偶性相同,于是同组两数的和为偶数,这样就得到5个偶数和.这5个偶数mod 3后,如果有3个数mod 3互不同余,则此三数的和被3整除;如果这样的3个数不存在,即mod 3后只有至多两个剩余类,则其中必有1类中至少有3个数,则此三个数的和被3整除.于是取加得这三个数的原来的六个数,其和被6整除.3.把大小圆盘各划分成n 个相等的扇形格,各依次填上实数a 1、a 2、…、a n 及b 1、b 2、…、b n ,然后把把两圆盘圆心重叠做成转盘,试证:若a 1+a 2+…+a n <0,b 1+b 2+…+b n <0,则必可以使转盘转到某个适当位置,使大小圆盘对应扇形上两个数的乘积的和为一个正数.证明:让小盘逐格转动,每次都记下大小圆盘对应扇形上两个数的乘积的和,这样转过n 次后,共得B 1B 2B 3B 4B 5A 5A 4A 3A 2A 1B 1B 2B 3B 4B 5A 5A 4A 3A 2A1到了n 个和.由于大盘上的每个数字都要与小盘上的每个数字对应一次,故乘积a i b j (i ,j =1,2,3,…,n )在这n 个和中都出现一次且只出现一次,故这n 个和的总和=(a 1+a 2+…+a n )( b 1+b 2+…+b n )>0.∴这n 个和不可能都小于≤0,即其中至少有一个和为正数.4.已知自然数n (n >1),用小于n 的自然数组成两个数组,每组内的数都各自两两不同,但两组间的数不一定全不同.证明:若两组数的总个数不小于n ,那么,一定可以从每一组中各选一个数,其和为n .证明:设所组成的两个数组分别为A ={a 1、a 2、…、a k }及B ={b 1、b 2、…、b h }.其中各个a i 互不相同,各个b j 也互不相同.且k +h ≥n .现取一数组C ={c 1,c 2,…,c h },使c j =n -b j ,于是各c j 均为小于n 的正数,也互不相同.由于数组{ a 1、a 2、…、a k ,c 1,c 2,…,c h }的元素都为小于n 的正整数,但k +h ≥n .从而必有某个c j =a i ,于是a i +b j =n .5.给定13个不同的实数a 1,a 2,…,a 13,求证:存在两个实数a i ,a j ,(i ≠j ),满足0< a i -a j 1+a i a j <2- 3 2+ 3. 证明:令tan θi =a i (-π2 <θi <π2,i =1,2,…,13), 则有tan(θi -θj )= a i -a j 1+a i a j <2- 3 2+ 3 =1- 3 2 1+ 3 2 = 1-cos π6 1+cos π6 =tan π12 . 故只要把这13个角按从大到小排列,并把区间(-π2 ,π2)分成12等分,则总有一个区间内落入了二个所给的角θi ,θj ,(θi >θj ),这两个角对应的实数即为所求.6.在[1,1000]内任取n 个互不相等的数a 1,a 2,…,a n ,为了总可以找到两个数a i ,a j (1≤i <j ≤n ),使得0<a i -a j <1+3∛____a i a j成立,试确定n 的最小值并证明之.解:设a i >a j ,且 0<∛__a i -∛__a j <1,于是,立方之,得0<a i -a j -3∛____a i a j (∛__a i -∛__a j )<1.∴ 0< a i -a j <1+3∛____a i a j (∛__a i -∛__a j )<1+∛____a i a j .如果取n =10,可令a i =i 3,此时当i >j 时,a i -a j =i 3-j 3=(i -j )3+3ij (i -j )≥1+3ij =1+∛____a i a j 当取n =11,及区间[i 3,(i +1)3],(i =1,2,…,9).于是这11个数中必有两个数落入同一区间.由于这些区间共有10个端点,故这11个数不可能只取这9个区间的端点值i 3,于是必存在两个数落入同一区间且其中至少有一个数不是区间的端点.则此二数满足要求.7.证明:存在着绝对值都小于一百万,不全为0的三个整数a ,b ,c ,使|a + 2 b + 3 c |<10-11.证明:令A ={x ∈N |0≤x <106}.M ={ r +s 2 +t 3 | r ,s ,t ∈A }.d =(1 + 2 + 3 )·106.若x ∈M ,则x ∈[0,d ].把区间[0,d ]分成1018-1个长度为l =d 1018-1 的子区间. 由抽屉原理,M 中1018个数中必有两个数同在某个子区间内,此二数之差<l <1071018-1 <10-11. 即此二数之差满足要求.8.我们称A 1,A 2,…,A n 为集合A 的一个n 划分,如果⑴ A 1∪A 2∪…∪A n =A ;⑵ A i ∩A j =Ø,1≤i <j ≤n .求最小的正整数m ,使得对A ={1,2,…,m }的任意一个14划分A 1,A 2,…,A 14,一定存在某个集合A i (1≤i ≤14),在A i 中有两个元素a ,b 满足b <a ≤43b .(中国西部2001数学奥林匹克) 分析:14个集合相当于14个抽屉,取15个数,则必有一个抽屉中有两个数.若15个数中任意两个的数都满足b <a ≤43b ,则可求出最小的m 值. 解:取b ,b +1,b +2,…,b +14,共15个数.若b +14b ≤43,即得b ≤42.即至少取42+14=56个数,就可保证对A 的任一划分满足要求.当m ≥56时,取出其中42,43,…,56,共15个数,则根据抽屉原理,必有两数b ,a (42≤b <a ≤56)在同一划分中,由于1<a b ≤5642 = 43 ,即b <a ≤43b 成立. 若m <56.取A i ={a |a ≡i (mod 14),0<a <56},则对于A i 中任意两个数c ,d (c <d ),显然,c ≤42.故d c≥c +14c =1+14c >1+1442 =43,即此时不存在满足要求的划分.。