【小初高学习】山西省平遥县高中数学第三章函数的应用3.2函数模型及其应用3教案新人教A版必修1
- 格式:doc
- 大小:22.50 KB
- 文档页数:2
3.2 函数模型及其应用3.2.1 几类不同增长的函数模型预习课本P95~101,思考并完成以下问题(1)函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)在(0,+∞)上的单调性是怎样的?图象的变化规律是什么?(2)函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)的增长速度有什么不同?[新知初探]指数函数、对数函数和幂函数的增长差异一般地,在区间(0,+∞)上,尽管函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,使得当x>x0时,就有log a x<x n<a x(a>1,n>0).[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)函数y=x2比y=2x增长的速度更快些.( )(2)当a>1,n>0时,在区间(0,+∞)上,对任意的x,总有log a x<x n<a x成立.( )答案:(1)×(2)×2.下列函数中随x的增大而增大且速度最快的是( )A.y=e x B.y=ln xC.y=x2D.y=e-x答案:A3.某种产品每件80元,每天可售出30件,如果每件定价120元,则每天可售出20件,如果售出件数是定价的一次函数,则这个函数解析式为_________________________.答案:y=-14x +50(0<x<200)[例1] 四个变量y1,y2,y3,y4随变量x变化的数据如表:x 151015202530y1226101226401626901y2232 1 02432 768 1.05×106 3.36×107 1.07×109y32102030405060y42 4.322 5.322 5.907 6.322 6.644 6.907[解析] 从表格观察函数值y1,y2,y3,y4的增加值,哪个变量的增加值最大,则该变量关于x呈指数函数变化.以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,变量y1,y2,y3,y4都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数函数变化.故填y2.[答案] y2常见的函数模型及增长特点(1)线性函数模型线性函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型指数函数模型y=a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y=log a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.(4)幂函数模型幂函数y=x n(n>0)的增长速度介于指数增长和对数增长之间.[活学活用]几类函数模型增长差异的比较1.有一组数据如下表:t 1.99 3.0 4.0 5.1 6.12v 1.5 4.047.51218.01现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( )A.v=log2t B.v=log12tC.v=t2-12D.v=2t-2解析:选C 从表格中看到此函数为单调增函数,排除B,增长速度越来越快,排除A 和D,选C.[例2] 某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且奖金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但奖金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2x,y=log5x,y=1.02x,其中哪个模型符合该校的要求?[解] 作出函数y=3,y=0.2x,y=log5x,y=1.02x的图象(如图所示).观察图象可知,在区间[5,60]上,y=0.2x,y=1.02x的图象都有一部分在直线y=3的上方,只有y=log5x的图象始终在y=3和y=0.2x的下方,这说明只有按模型y=log5x进行奖励才符合学校的要求.不同函数模型的选取标准(1)线性函数增长模型适合于描述增长速度不变的变化规律;(2)指数函数增长模型适合于描述增长速度急剧的变化规律;(3)对数函数增长模型适合于描述增长速度平缓的变化规律;(4)幂函数增长模型适合于描述增长速度一般的变化规律.因此,需抓住题中蕴含的数学信息,恰当、准确地建立相应变化规律的函数模型来解决实际问题.2.某地区植被被破坏,土地沙漠化越来越严重,测得最近三年沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加值y万公顷关于年数x的函数关系式大致可以是( )函数模型的选择问题A.y=0.2x B.y =110(x2+2x)C.y=2x10D.y=0.2+log16x解析:选C 对于A,x=1,2时,符合题意,x=3时,y=0.6,与0.76相差0.16;对于B,x=1时,y=0.3;x=2时,y=0.8;x=3时,y=1.5,相差较大,不符合题意;对于C,x=1,2时,符合题意,x=3时,y=0.8,与0.76相差0.04,与A比较,符合题意;对于D,x=1时,y=0.2;x=2时,y=0.45;x=3时,y≈0.6<0.7,相差较大,不符合题意.[例3] 函数f(x)=2x和g(x)=x3的图象如图所示.设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.(1)请指出图中曲线C1,C2分别对应的函数.(2)结合函数图象,判断f(6),g(6),f(2 016),g(2 016)的大小.[解] (1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.(2)因为f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),所以1<x1<2,9<x2<10,所以x1<6<x2,2 016>x2.从图象上可以看出,当x1<x<x2时,f(x)<g(x),所以f(6)<g(6).当x>x2时,f(x)>g(x),所以f(2 016)>g(2 016).又因为g(2 016)>g(6),所以f(2 016)>g(2 016)>g(6)>f(6).[一题多变]1.[变条件]若将本例中“函数f(x)=2x”改为“f(x)=3x”,又如何求解(1)呢?解:由图象的变化趋势以及指数函数和幂函数的增长速度可知:C1对应的函数为g(x)=x3,C2对应的函数为f(x)=3x.2.[变设问]本例条件不变,(2)中结论若改为:试结合图象,判断f(8),g(8),f(2 015),g(2 015)的大小.解:因为f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),所以1<x1<2,9<x2<10,所以x1<8<x2,2 015>x2.从图象上可以看出,当x1<x<x2时,f(x)<g(x),所以f(8)<g(8).当x>x2时,f(x)>g(x),所以f(2 015)>g(2 015).又因为g(2 015)>g(8),所以f(2 015)>g(2 015)>g(8)>f(8).由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快指数函数、对数函数与幂函数模型的慢,即随着自变量的增大,图象最“陡”的函数是指数函数;图象趋于平缓的函数是对数函数.层级一 学业水平达标1.在一次数学试验中,采集到如下一组数据:x -2.0 -1.0 0 1.00 2.00 3.00 y0.240.5112.023.988.02则x ,y ) A .y =a +bx B .y =a +b xC .y =ax 2+bD .y =a +b x解析:选B 在坐标系中描出各点,知模拟函数为y =a +b x. 2.下列函数中,随着x 的增大,增长速度最快的是( ) A .y =50 B .y =1 000x C .y =0.4·2x -1D .y =11 000e x解析:选D 指数函数y =a x,在a >1时呈爆炸式增长,而且a 越大,增长速度越快,选D.3.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与时间x 的关系,可选用( )A .一次函数B .二次函数C .指数型函数D .对数型函数解析:选D 由于一次函数、二次函数、指数函数的增长不会后来增长越来越慢,只有对数函数的增长符合.4.有一组实验数据如下表所示:x 1 2 3 4 5 y1.55.913.424.137A .y =log a x (a >1)B .y =ax +b (a >1)C .y =ax 2+b (a >0)D .y =log a x +b (a >1)解析:选C 通过所给数据可知y 随x 增大,其增长速度越来越快,而A 、D 中的函数增长速度越来越慢,而B 中的函数增长速度保持不变,故选C.5.y 1=2x ,y 2=x 2,y 3=log 2x ,当2<x <4时,有( ) A .y 1>y 2>y 3 B .y 2>y 1>y 3 C .y 1>y 3>y 2D .y 2>y 3>y 1解析:选B 在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y 2=x 2,y 1=2x,y 3=log 2x ,故y 2>y 1>y 3.6.小明2015年用7 200元买一台笔记本.电子技术的飞速发展,笔记本成本不断降低,每过一年笔记本的价格降低三分之一.三年后小明这台笔记本还值________元.解析:三年后的价格为7 200×23×23×23=6 4003元.答案:6 40037.函数y =x 2与函数y =x ln x 在区间(1,+∞)上增长较快的一个是________. 解析:当x 变大时,x 比ln x 增长要快, ∴x 2要比x ln x 增长的要快. 答案:y =x 28.已知某工厂生产某种产品的月产量y 与月份x 满足关系y =a ·(0.5)x+b ,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品的产量为________万件.解析:∵y =a ·(0.5)x+b ,且当x =1时,y =1,当x =2时,y =1.5,则有⎩⎪⎨⎪⎧1=a ×0.5+b ,1.5=a ×0.25+b ,解得⎩⎪⎨⎪⎧a =-2,b =2.∴y =-2×(0.5)x+2.当x =3时,y =-2×0.125+2=1.75(万件). 答案:1.759.画出函数f (x )=x 与函数g (x )=14x 2-2的图象,并比较两者在[0,+∞)上的大小关系.解:函数f (x )与g (x )的图象如图所示. 根据图象易得:当0≤x <4时,f (x )>g (x ); 当x =4时,f (x )=g (x ); 当x >4时,f (x )<g (x ).10.燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)求燕子静止时的耗氧量是多少个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少? 解:(1)由题知,当燕子静止时,它的速度v =0, 代入题中所给公式可得:0=5log 2Q10,解得Q =10.即燕子静止时的耗氧量是10个单位. (2)将耗氧量Q =80代入题给公式得:v =5log 28010=5log 28=15(m/s).即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.层级二 应试能力达标1.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x 倍,需经过y 年,则函数y =f (x )的图象大致为( )解析:选D 设该林区的森林原有蓄积量为a ,由题意可得ax =a (1+0.104)y,故y =log 1.104x (x ≥1),函数为对数函数,所以函数y =f (x )的图象大致为D 中图象,故选D.2.三个变量y 1,y 2,y 3,随着变量x 的变化情况如下表:x 1 3 5 7 9 11 y 1 5 135 625 1 715 3 645 6 655 y 2 5 29 245 2 189 19 685 177 149 y 356.106.616.9857.27.4则关于x A .y 1,y 2,y 3 B .y 2,y 1,y 3 C .y 3,y 2,y 1D .y 1,y 3,y 2解析:选C 通过指数函数、对数函数、幂函数等不同函数模型的增长规律比较可知,对数函数的增长速度越来越慢,变量y 3随x 的变化符合此规律;指数函数的增长速度成倍增长,y 2随x 的变化符合此规律;幂函数的增长速度介于指数函数与对数函数之间,y 1随x 的变化符合此规律,故选C.3.四人赛跑,假设他们跑过的路程f i (x )(其中i ∈{1,2,3,4})和时间x (x >1)的函数关系分别是f 1(x )=x 2,f 2(x )=4x ,f 3(x )=log 2x ,f 4(x )=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是( )A .f 1(x )=x 2B .f 2(x )=4xC.f3(x)=log2x D.f4(x)=2x解析:选D 显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f4(x)=2x,故选D.4.以下四种说法中,正确的是( )A.幂函数增长的速度比一次函数增长的速度快B.对任意的x>0,x n>log a xC.对任意的x>0,a x>log a xD.不一定存在x0,当x>x0时,总有a x>x n>log a x解析:选D 对于A,幂函数与一次函数的增长速度受幂指数及一次项系数的影响,幂指数与一次项系数不确定,增长幅度不能比较;对于B、C,当0<a<1时,显然不成立.当a>1,n>0时,一定存在x0,使得当x>x0时,总有a x>x n>log a x,但若去掉限制条件“a >1,n>0”,则结论不成立.5.以下是三个变量y1,y2,y3随变量x变化的函数值表:x 12345678…y1248163264128256…y21491625364964…y301 1.5852 2.322 2.585 2.8073…其中,关于x呈指数函数变化的函数是________.解析:从表格可以看出,三个变量y1,y2,y3都是越来越大,但是增长速度不同,其中变量y1的增长速度最快,画出它们的图象(图略),可知变量y1呈指数函数变化,故填y1.答案:y16.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在下图中请选择与容器相匹配的图象,A对应______;B对应_____;C对应______;D对应______.解析:A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快—慢—快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C 容器细,D 容器粗,故水高度的变化为:C 容器快,与(3)对应,D 容器慢,与(2)对应.答案:(4) (1) (3) (2)7.函数f (x )=1.1x,g (x )=ln x +1,h (x )=x 12的图象如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,a ,b ,c ,d ,e 为分界点).解:由指数爆炸、对数增长、幂函数增长的差异可得曲线C 1对应的函数是f (x )=1.1x,曲线C 2对应的函数是h (x )=x 12,曲线C 3对应的函数是g (x )=ln x +1.由题图知,当x <1时,f (x )>h (x )>g (x ); 当1<x <e 时,f (x )>g (x )>h (x ); 当e <x <a 时,g (x )>f (x )>h (x ); 当a <x <b 时,g (x )>h (x )>f (x ); 当b <x <c 时,h (x )>g (x )>f (x ); 当c <x <d 时,h (x )>f (x )>g (x ); 当x >d 时,f (x )>h (x )>g (x ).8.某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58.为了预测以后各月的患病人数,甲选择了模型y =ax 2+bx +c ,乙选择了模型y =p ·q x+r ,其中y 为患病人数,x 为月份数,a ,b ,c ,p ,q ,r 都是常数.结果4月,5月,6月份的患病人数分别为66,82,115,你认为谁选择的模型较好?解:依题意,得⎩⎪⎨⎪⎧ a ·12+b ·1+c =52,a ·22+b ·2+c =54,a ·32+b ·3+c =58,即⎩⎪⎨⎪⎧a +b +c =52,4a +2b +c =54,9a +3b +c =58,解得⎩⎪⎨⎪⎧a =1,b =-1,c =52,所以甲:y 1=x 2-x +52,又⎩⎪⎨⎪⎧p ·q 1+r =52 ①,p ·q 2+r =54 ②,p ·q 3+r =58 ③,②-①,得p ·q 2-p ·q 1=2, ④ ③-②,得p ·q 3-p ·q 2=4, ⑤ ⑤÷④,得q =2.将q =2代入④式,得p =1. 将q =2,p =1代入①式,得r =50,所以乙:y2=2x+50.计算当x=4时,y1=64,y2=66;当x=5时,y1=72,y2=82;当x=6时,y1=82,y2=114.可见,乙选择的模型较好.3.2.2 函数模型的应用实例预习课本P101~106,思考并完成以下问题(1)一、二次函数的表达形式分别是什么?(2)指数函数模型、对数函数模型的表达形式是什么?其中待定系数有哪些限制条件?(3)解决实际问题的基本过程是什么?[新知初探]几类常见函数模型名称解析式条件一次函数模型y=kx+b k≠0反比例函数模型y=kx+b k≠0二次函数模型一般式:y=ax2+bx+c顶点式:y=a⎝⎛⎭⎪⎫x+b2a2+4ac-b24aa≠0指数函数模型y=b·a x+ca>0且a≠1,b≠0对数函数模型y=mlogax+na>0且a≠1,m≠0幂函数y=axn+b a≠0,n≠1模型[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)在一次函数模型中,系数k的取值会影响函数的性质.( )(2)在幂函数模型的解析式中,a的正负会影响函数的单调性.( )答案:(1)√(2)√2.某自行车存车处在某一天总共存放车辆4 000辆次,存车费为:电动自行车0.3元/辆,普通自行车0.2元/辆.若该天普通自行车存车x辆次,存车费总收入为y元,则y与x的函数关系式为( )A.y=0.2x(0≤x≤4 000) B.y=0.5x(0≤x≤4 000)C.y=-0.1x+1 200(0≤x≤4 000) D.y=0.1x+1 200(0≤x≤4 000)答案:C3.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……现有2个这样的细胞,分裂x次后得到细胞的个数y与x的函数关系是( )A.y=2x B.y=2x-1C.y=2x D.y=2x+1答案:D4.某物体一天内的温度T是时间t的函数T(t)=t3-3t+60,时间单位是h,温度单位为℃,t=0时表示中午12:00,则上午8:00时的温度为________℃.答案:8[例1] 某商场经营一批进价是每件30元的商品,在市场销售中发现此商品的销售单价x元与日销售量y件之间有如下关系:销售单价x(元)30404550日销售量y(件)6030150(1)在所给坐标系中,根据表中提供的数据描出实数对(x,y)对应的点,并确定x与y 的一个函数关系式y=f(x);(2)设经营此商品的日销售利润为P元,根据上述关系式写出P关于x的函数关系式,二次函数模型并指出销售单价x 为多少时,才能获得最大日销售利润.[解] (1)如图:设f (x )=kx +b ,则⎩⎪⎨⎪⎧60=30k +b ,30=40k +b ,解得⎩⎪⎨⎪⎧k =-3,b =150.所以f (x )=-3x +150,30≤x ≤50,检验成立.(2)P =(x -30)·(-3x +150)=-3x 2+240x -4 500,30≤x ≤50. 因为对称轴x =-2402×-3=40∈[30,50],所以当销售单价为40元时,所获日销售利润最大.二次函数模型应用题的4个步骤(1)审题:理解题意,设定变量x ,y .(2)建模:建立二次函数关系,并注明定义域. (3)解模:运用二次函数相关知识求解.(4)结论:回归到应用问题中去,给出答案. 1.据市场分析,烟台某海鲜加工公司,当月产量在10吨至25吨时,月生产总成本y (万元)可以看成月产量x (吨)的二次函数;当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元,为二次函数的顶点.(1)写出月总成本y (万元)关于月产量x (吨)的函数关系.(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润? 解:(1)由题可设y =a (x -15)2+17.5,将x =10,y =20代入上式, 得20=25a +17.5. 解得a =110.所以y =0.1x 2-3x +40(10≤x ≤25). (2)设最大利润为Q (x ),则Q (x )=1.6x -y =1.6x -()0.1x 2-3x +40=-0.1(x -23)2+12.9(10≤x ≤25). 因为x =23∈[10,25],所以月产量为23吨时,可获最大利润12.9万元.[例2] 提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时)[解] (1)由题意,当0≤x ≤20时,v (x )=60; 当20≤x ≤200时,设v (x )=ax +b ,再由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,13200-x ,20<x ≤200.(2)依题意并结合(1)可得f (x )=⎩⎪⎨⎪⎧60x ,0≤x ≤20,13x 200-x ,20<x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200; 当20<x ≤200时,f (x )=13x (200-x )=-13(x -100)2+10 0003≤10 0003,当且仅当x=100时,等号成立.所以,当x =100时,f (x )在区间(20,200]上取得最大值10 0003.综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333. 分段函数模型即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/小时.构建分段函数模型的关键点建立分段函数模型的关键是确定分段的各边界点,即明确自变量的取值区间,对每一区间进行分类讨论,从而写出函数的解析式.[活学活用]2.某医疗研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y (μg)与时间t (h)之间近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式;(2)据测定:每毫升血液中含药量不少于4 μg 时治疗疾病有效,假若某病人一天中第一次服药为上午7:00,问一天中怎样安排服药时间(共4次)效果最佳?解:(1)依题意得y =⎩⎪⎨⎪⎧6t ,0≤t ≤1,-23t +203,1<t ≤10.(2)设第二次服药时在第一次服药后t 1小时,则-23t 1+203=4,解得t 1=4,因而第二次服药应在11:00.设第三次服药在第一次服药后t 2小时,则此时血液中含药量应为前两次服药后的含药量的和,即有-23t 2+203-23(t 2-4)+203=4,解得t 2=9小时,故第三次服药应在16:00.设第四次服药在第一次服药后t 3小时(t 3>10),则此时第一次服进的药已吸收完,血液中含药量应为第二、第三次的和-23(t 3-4)+203-23(t 3-9)+203=4,解得t 3=13.5小时,故第四次服药应在20:30.[例3] 一种放射性元素,最初的质量为500 g ,按每年10%衰减. (1)求t 年后,这种放射性元素的质量w 的表达式;(2)由求出的函数表达式,求这种放射性元素的半衰期(结果精确到0.1). [解] (1)最初的质量为500 g.经过1年,w =500(1-10%)=500×0.9; 经过2年,w =500×0.92;指数、对数型函数模由此推知,t 年后,w =500×0.9t. (2)由题意得500×0.9t=250,即 0.9t=0.5,两边取以10为底的对数,得 lg 0.9t=lg 0.5,即t lg 0.9=lg 0.5, ∴t =lg 0.5lg 0.9≈6.6.即这种放射性元素的半衰期为6.6年.指数函数模型的应用在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常可以用指数函数模型表示.通常可以表示为y =N (1+p )x(其中N 为基础数,p 为增长率,x 为时间)的形式.[活学活用]3.某种产品的年产量为a ,在今后m 年内,计划使产量平均每年比上年增加p %. (1)写出产量y 随年数x 变化的函数解析式; (2)若使年产量两年内实现翻两番的目标,求p . 解:(1)设年产量为y ,年数为x ,则y =a (1+p %)x, 定义域为{x |0≤x ≤m ,且x ∈N *}. (2)y =a (1+p %)2=4a ,解得p =100.层级一 学业水平达标1.一家旅社有100间相同的客房,经过一段时间的经营实践,旅社经理发现,每间客房每天的价格与住房率之间有如下关系:每间每天定价 20元 18元 16元 14元 住房率65%75%85%95%A .20元B .18元C .16元D .14元解析:选C 每天的收入在四种情况下分别为20×65%×100=1 300(元),18×75%×100=1 350(元),16×85%×100=1 360(元),14×95%×100=1 330(元).2.若等腰三角形的周长为20,底边长y 是关于腰长x 的函数,则它的解析式为( ) A .y =20-2x (x ≤10) B .y =20-2x (x <10) C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)解析:选D 由题意,得2x +y =20,∴y =20-2x .∵y >0,∴20-2x >0,∴x <10.又∵三角形两边之和大于第三边,∴⎩⎪⎨⎪⎧2x >y ,y =20-2x ,解得x >5,∴5<x <10,故选D.3.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为y =⎩⎪⎨⎪⎧4x ,1≤x ≤10,x ∈N ,2x +10,10<x <100,x ∈N ,1.5x ,x ≥100,x ∈N ,其中,x 代表拟录用人数,y 代表面试人数,若面试人数为60,则该公司拟录用人数为( )A .15B .40C .25D .130解析:选C 若4x =60,则x =15>10,不合题意;若2x +10=60,则x =25,满足题意;若1.5x =60,则x =40<100,不合题意.故拟录用25人.4.某种动物的数量y (单位:只)与时间x (单位:年)的函数关系式为y =a log 2(x +1),若这种动物第1年有100只,则第7年它们的数量为( )A .300只B .400只C .500只D .600只解析:选A 由题意,知100=a log 2(1+1),得a =100,则当x =7时,y =100log 2(7+1)=100×3=300.5.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本(单位:万元)为C (x )=12x 2+2x +20.已知1万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为( )A .36万件B .22万件C .18万件D .9万件解析:选C ∵利润L (x )=20x -C (x )=-12(x -18)2+142,∴当x =18时,L (x )取最大值.6.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是______年.解析:由题意可知,第一年产量为a 1=12×1×2×3=3;以后各年产量为a n =f (n )-f (n-1)=12n (n +1)(2n +1)-12n ·(n -1)(2n -1)=3n 2(n ∈N *),令3n 2≤150,得1≤n ≤52⇒1≤n ≤7,故生产期限最长为7年.答案:77.某商人购货,进价已按原价a 扣去25%,他希望对货物定一新价,以便按新价让利20%销售后仍可获得售价25%的利润,则此商人经营这种货物的件数x 与按新价让利总额y 之间的函数关系式是______________.解析:设新价为b ,则售价为b (1-20%).∵原价为a ,∴进价为a (1-25%).依题意,有b (1-20%)-a (1-25%)=b (1-20%)×25%,化简得b =54a ,∴y =b ×20%·x =54a ×20%·x ,即y =a 4x (x ∈N *). 答案:y =a4x (x ∈N *)8.某商店每月按出厂价每瓶3元购进一种饮料,根据以前的统计数据,若零售价定为每瓶4元,每月可销售400瓶;若零售价每降低(升高)0.5元,则可多(少)销售40瓶,在每月的进货当月销售完的前提下,为获得最大利润,销售价应定为________元/瓶.解析:设销售价每瓶定为x 元,利润为y 元,则y =(x -3)⎝ ⎛⎭⎪⎫400+4-x 0.5×40=80(x -3)(9-x )=-80(x -6)2+720(x ≥3),所以x =6时,y 取得最大值.答案:69.为了保护学生的视力,课桌椅的高度都是按一定的关系配套设计的.研究表明:假设课桌的高度为y cm ,椅子的高度为x cm ,则y 应是x 的一次函数,下表列出了两套符合条件的课桌椅的高度:(1)(2)现有一把高42.0 cm 的椅子和一张高78.2 cm 的课桌,它们是否配套?为什么? 解:(1)根据题意,课桌高度y 是椅子高度x 的一次函数,故可设函数解析式为y =kx +b (k ≠0).将符合条件的两套课桌椅的高度代入上述函数解析式,得⎩⎪⎨⎪⎧40k +b =75,37k +b =70.2,所以⎩⎪⎨⎪⎧k =1.6,b =11,所以y 与x 的函数解析式是y =1.6x +11.(2)把x =42代入(1)中所求的函数解析式中,有y =1.6×42+11=78.2.所以给出的这套桌椅是配套的.10.某租车公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加60元时,未租出的车将会增加一辆,租出的车每月需要维护费160元,未租出的车每月需要维护费40元.(1)当每辆车的月租金定为3 900元时,能租出多少辆车?(2)当每辆车的月租金为多少元时,租车公司的月收益最大?最大月收益是多少? 解:(1)租金增加了900元,900÷60=15,所以未租出的车有15辆,一共租出了85辆.(2)设租金提高后有x 辆未租出,则已租出(100-x )辆. 租赁公司的月收益为y 元,y =(3 000+60x )(100-x )-160(100-x )-40x ,其中x ∈[0,100],x ∈N ,整理,得y =-60x 2+3 120x +284 000 =-60(x -26)2+324 560, 当x =26时,y =324 560, 即最大月收益为324 560元.此时,月租金为3 000+60×26=4 560(元).层级二 应试能力达标1.某地固定电话市话收费规定:前三分钟0.20元(不满三分钟按三分钟计算),以后每加一分钟增收0.10元(不满一分钟按一分钟计算),那么某人打市话550秒,应支付电话费( )A .1.00元B .0.90元C .1.20元D .0.80元解析:选B y =0.2+0.1×([x ]-3),([x ]是大于x 的最小整数,x >0),令x =55060,故[x ]=10,则y =0.9.故选B.2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如下图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )A .3 100元B .3 000元C .2 900元D .2 800元解析:选B 设函数解析式为y =kx +b (k ≠0), 函数图象过点(1,8 000),(2,13 000),则⎩⎪⎨⎪⎧k +b =8 000,2k +b =13 000,解得⎩⎪⎨⎪⎧k =5 000,b =3 000,∴y =5 000x +3 000,当x =0时,y =3 000,∴营销人员没有销售量时的收入是3 000元.3.用长度为24的材料围一个中间有两道隔墙的矩形场地,要使矩形的面积最大,则隔墙的长度为( )A .3B .4C .6D .12解析:选A 设隔墙长度为x ,如图所示,x 则与隔墙垂直的边长为24-4x 2=12-2x ,∴矩形面积S =x ·(12-2x )=-2x 2+12x,0<x <6,∴当x =3时,S max =18. 4.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t 天后体积V 与天数t 的关系式为:V =a ·e-kt .已知新丸经过50天后,体积变为49a .若一个新丸体积变为827a ,则需经过的天数为( )A .125B .100C .75D .50解析:选C 由已知,得49a =a ·e -50k ,∴e -k=⎝ ⎛⎭⎪⎫49150.设经过t 1天后,一个新丸体积变为827a ,则827a =a ·e -1kt , ∴827=(e -k ) t 1=⎝ ⎛⎭⎪⎫49 150t , ∴t 150=32,t 1=75. 5.如图所示,折线是某电信局规定打长途电话所需要付的电话费y (元)与通话时间t (分钟)之间的函数关系图象,根据图象填空:(1)通话2分钟,需付的电话费为________元; (2)通话5分钟,需付的电话费为________元;(3)如果t ≥3,则电话费y (元)与通话时间t (分钟)之间的函数关系式为________. 解析:(1)由图象可知,当t ≤3时,电话费都是3.6元. (2)由图象可知,当t =5时,y =6,即需付电话费6元.(3)当t ≥3时,y 关于x 的图象是一条直线,且经过(3,3.6)和(5,6)两点,故设函数关系式为y =kt +b ,则⎩⎪⎨⎪⎧3k +b =3.6,5k +b =6,解得⎩⎪⎨⎪⎧k =1.2,b =0.故y 关于t 的函数关系式为y =1.2t (t ≥3).答案:(1)3.6 (2)6 (3)y =1.2t (t ≥3)6.在不考虑空气阻力的情况下,火箭的最大速度v 米/秒和燃料的质量M 千克、火箭(除燃料外)的质量m 千克的函数关系式是v =2 000·l n ⎝⎛⎭⎪⎫1+M m .当燃料质量是火箭质量的________倍时,火箭的最大速度可达12千米/秒.解析:当v =12 000时,2 000·ln ⎝⎛⎭⎪⎫1+M m =12 000, ∴ln ⎝⎛⎭⎪⎫1+M m=6,∴M m=e 6-1.答案:e 6-17.一片森林原来面积为a ,计划每年砍伐一些树,且使森林面积每年比上一年减少p %,10年后森林面积变为a 2.已知到今年为止,森林面积为22a .(1)求p %的值;(2)到今年为止,该森林已砍伐了多少年?解:(1)由题意得a (1-p %)10=a 2,即(1-p %)10=12,解得p %=1-⎝ ⎛⎭⎪⎫12110.(2)设经过m 年森林面积变为22a ,则a (1-p %)m=22a ,即⎝ ⎛⎭⎪⎫1210m=⎝ ⎛⎭⎪⎫1212,m 10=12,解得m =5,故到今年为止,已砍伐了5年.8.某种新产品投放市场的100天中,前40天价格呈直线上升,而后60天其价格呈直线下降,现统计出其中4天的价格如下表:时间 第4天 第32天 第60天 第90天 价格(千元)2330227(1)*); (2)销售量g (x )与时间x 的函数关系式为g (x )=-13x +1093(1≤x ≤100,x ∈N *),则该产品投放市场第几天的销售额最高?最高为多少千元?解:(1)当0<x ≤40时,设f (x )=kx +b ,则有⎩⎪⎨⎪⎧4k +b =23,32k +b =30⇒⎩⎪⎨⎪⎧k =14,b =22,∴f (x )=14x +22(0<x ≤40,x ∈N *).同理可得f (x )=-12x +52(40<x ≤100,x ∈N *),故f (x )=⎩⎪⎨⎪⎧14x +22,0<x ≤40,-12x +52,40<x ≤100其中x ∈N *.(2)设日销售额为S (x )千元,则当0<x ≤40,x ∈N *时,S (x )=f (x )g (x )=⎝ ⎛⎭⎪⎫14x +22⎝ ⎛⎭⎪⎫-13x +1093 =-112(x +88)(x -109).其图象的对称轴为x =109-882=10.5,∴当x =10,11时,S (x )取最大值,S (x )max =808.5.当40<x ≤100,x ∈N *时,S (x )=⎝ ⎛⎭⎪⎫-12x +52⎝ ⎛⎭⎪⎫-13x +1093 =16(x -104)(x -109).其图象的对称轴为x =104+1092=106.5,∴当40<x ≤100,x ∈N *时,S (x )<S (40)=736<808.5.综上可得,该产品投放市场第10天和第11天的销售额最高,最高销售额为808.5千元.(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题40分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=lg|x |的零点是( ) A .(1,0) B .(1,0)和(-1,0) C .1D .1和-1解析:选D 由f (x )=0,得lg|x |=0,所以|x |=1,x =±1.故选D. 2.函数f (x )=2x+3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:选B 因为f (-1)=12-3<0,f (0)=1>0,所以f (x )在区间(-1,0)上存在零点.3.以半径为R 的半圆上任意一点P 为顶点,直径AB 为底边的△PAB 的面积S 与高PD =x 的函数关系式是( )A .S =RxB .S =2Rx (x >0)C .S =Rx (0<x ≤R )D .S =πR 2。
高中数学第三章函数的应用3.2 函数模型及其应用互动课堂学案新人教A 版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章函数的应用3.2 函数模型及其应用互动课堂学案新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章函数的应用3.2 函数模型及其应用互动课堂学案新人教A版必修1的全部内容。
3.2 函数模型应用举例互动课堂疏导引导一、函数的应用1。
数学建模的地位和作用数学来源于生活,又服务于生活。
在生活中的形形色色的数据处理需要数学模型,对于事物的发展和预测也离不开数学模型的建立,所以数学建模是提出问题和解决问题的必由之路.掌握函数的基础知识是学好本节的前提.例如函数概念、指数函数和性质、对数函数和性质.反过来,通过函数建模的学习,又能加深对上述知识的理解和认识,还能提高同学们学习数学的积极性。
在实际建模过程中,要学会化整为零,分步骤、有层次地完成,要求掌握计算器的使用。
2.数学模型的种类第一类是以数学课本上的知识为探究内容.如利用图形计算器展现数学知识的形成过程、知识的应用过程.第二类探究的内容来源于物理、化学等学科。
主要是利用CBL(基于图形计算器的掌上实验室)和各种探讨开展物理和化学实验,对物理现象和化学反应进行观察、收集数据、处理数据,完成定性和定量的分析.第三类探究的内容主要来源于生活,是那些看似与数学无关或与数学有关但关系不明显的问题。
如节约能源(怎样烧开一壶水更省天然气)、储蓄问题(怎样存钱能获得更多利息)、绿化问题(控制栽树和伐树的比例保护环境)、生态问题(草食动物和肉食动物的平衡)等等,这样的问题可以由我们自己发现和提出,也可以由老师提供原始材料,我们对材料进行筛选、组织,选取关键的特征和关系,用数学的语言表达,建立数学模型,利用图形\,计算器对数学模型处理,从而解决问题.3。
函数模型及其应用【教学目标】函数模型及其进一步的应用【重点难点】恰当选择数学模型解决实际问题【教学过程】一、情景设置二、教学精讲例1.课本习题3.2A 组第4题例2.某厂生产一种机器的固定成本(即固定投入)为0.5万元,但每生产一台,需要增加可变成本(即另增加投入)0.25万元.市场对此产品的年需求量为500台,销售的收入函数为R(x)=5x -x 22(0≤x≤5)(单位:万元),其中x 是产品售出的数量(单位:百台).(1) 把利润表示为年产量的函数;(2) 年产量是多少时,工厂所得利润最大?(3) 年产量是多少时,工厂才不亏本? 解:(1)利润 y=R(x)-C(x)(固定成本+可变成本)=⎩⎪⎨⎪⎧-0.5+4.75x -x 22 0≤x≤512-0.25x x>5(2)若0≤x≤5,则y=-0.5+4.75x -x 22=-12(x -4.75)2+12⨯4.752-0.5, ∴当x=5时,y 有最大值10.75;若x>5,则y=12-0.25x 是减函数,∴当x=6时,y 有最大值10.50.综上可得,年产量为500台时,工厂所得利润最大.(4) 当0≤x≤5时,由y ≥0,即-0.5+4.75x -x 22≥0,解得0<x≤5,x ∈Z ; 当x>5时,y ≥0,即12-0.25x ≥0,解得5<x≤48.综上可得,当年产量x 满足1≤x≤48,x ∈Z 时,工厂不亏本.例3.某医药研究所开发一种新药,如果成人按规定的剂量使用,据检测,服药后每毫升血液中的含药量y 与时间t 之间近似值满足如图所示曲线.(1) 写出服药后y 与t 之间的函数关系;(2) 据测定,每毫升血液中的含药量不少于4微克时小时)治疗疾病有效,假若某病人一天中第一次服药时间为7:00,第二次应在什么时间服药效果最佳?解:由题意得,当0≤t<0.5时,y=6;当0.5≤t≤8时,函数图象是直线,则可设y=kx+b(k ≠0).由图象得⎩⎨⎧6=0.5k+b 0=8k+b ,解得⎩⎨⎧k=-45b=325,即此时y=-45t+325. 综上所得,y 与t 之间的函数关系为y=⎩⎪⎨⎪⎧6 0≤t<0.5-45t+3250.5≤t≤8. (2)设在第一次服药t 1小时后第二次服药,则-45t 1+325=4,解得t 1=3,即第二次服药应在10:00. 三、探索研究四、课堂练习1.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15%,并可用本和利再投资其它商品,到月末又可获利10%;如果月末出售,可获利30%,但要付出仓储费用700元,请根据商场情况,如何购销获利较多?解:设商场投资x 元,在月初出售,到月末可获y 1元,在月末出售,可获利y 2元,则 y 1=15%+10%(x+15%x)=0.265x ,y 2=0.3x -700.当x>20000时,y 2>y 1;当x=20000时,y 2y 1;当x<20000时,y 2<y 1.∴当投资小于20000时,月初出售;当投资等于20000时,月初、月末出售均可;当投资大于20000时,月末出售.2.光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为k ,通过 x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2) 通过 多少块玻璃后,光线减弱到原来的13以下?(lg3≈0.4771) 解:(1)y=0.9xk(x ∈N*)(2)由题意:0.9x k<k 3,∴0.9x <13,两边取对数,xlg0.9 <lg 13.∵lg0.9 <0, ∴x>lg 13 lg0.9=lg31-2lg3≈10.4,∴x min =11.∴通过 11块玻璃后光线强度减弱到原来的13以下小结:建立数学模型的要领可概括为:(1)收集数据,画图提出假设;(2)依据图表,理顺数量关系;(3)抓住关键,建立函数模型;(4)精确计算,求解数学问题;回到实际,检验问题结果.精美句子1、善思则能“从无字句处读书”。
3.2.2 函数模型的应用实例[导入新知]1.常见的函数模型(1)正比例函数模型:f(x)=kx(k为常数,k≠0);(2)反比例函数模型:f(x)=kx(k为常数,k≠0);(3)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(4)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(5)指数函数模型:f(x)=ab x+c(a,b,c为常数,a≠0,b>0,b≠1);(6)对数函数模型:f(x)=m log a x+n(m,n,a为常数,m≠0,a>0,a≠1);(7)幂函数模型:f(x)=ax n+b(a,b,n为常数,a≠0,n≠1).2.建立函数模型解决问题的框图表示[化解疑难]求解函数应用题的程序[例1] 已知某种商品涨价x 成(1成=10%)时,每天的销售量减少45x (其中x >0)成.(1)应该涨价多少,才能使每天的营业额(售出的总金额)最大? (2)如果适当涨价,能使每天的营业额增加,求x 的取值范围.[解] 设商品原价格为m ,每天的原销售量为n ,则每天的原营业额为m ·n ,涨价后每天的营业额为y =m ·⎝ ⎛⎭⎪⎫1+x 10·⎝ ⎛⎭⎪⎫1-45·x 10·n . (1)y =m ·⎝ ⎛⎭⎪⎫1+x 10·⎝ ⎛⎭⎪⎫1-45·x 10·n =⎣⎢⎡⎦⎥⎤-1125⎝ ⎛⎭⎪⎫x -542+8180·m ·n . 当x =54,即涨价125%时,每天的营业额最大.(2)要使涨价后每天的营业额比原来增加,则需m ·⎝ ⎛⎭⎪⎫1+x 10·⎝ ⎛⎭⎪⎫1-45·x 10·n >m ·n , 即2x 2-5x <0,变形得x (2x -5)<0. 又x >0,故0<x <52.∴x 的取值范围为⎝ ⎛⎭⎪⎫0,52. [类题通法]利用二次函数模型解决问题的方法在函数模型中,二次函数模型占有重要的地位.根据实际问题建立二次函数解析式后,可以利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的利润最大、用料最省等问题.[活学活用] [活学活用]如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE =4米,CD =6米.为合理利用这块钢板,在五边形ABCDE 内截取一个矩形BNPM ,使点P 在边DE 上.(1)设MP =x 米,PN =y 米,将y 表示成x 的函数,求该函数的解析式及定义域; (2)求矩形BNPM 面积的最大值. 解:(1)作PQ ⊥AF 于Q ,所以PQ =(8-y )米,EQ =(x -4)米. 又△EPQ ∽△EDF ,所以EQ PQ =EF FD ,即x -48-y =42.所以y =-12x +10,定义域为{x |4≤x ≤8}.(2)设矩形BNPM 的面积为S 平方米,则S (x )=xy =x ⎝⎛⎭⎪⎫10-x 2=-12(x -10)2+50,S (x )是关于x 的二次函数,且其图象开口向下,对称轴为x =10,所以当x ∈[4,8]时,S (x )单调递增.所以当x =8时,矩形BNPM 的面积取得最大值,为48平方米.[例2] 桥上的车流速度v (单位:千米/时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f (x )=x ·v (x )可以达到最大,并求出最大值(精确到1辆/时).[解] (1)由题意,当0≤x ≤20时,v (x )=60; 当20<x ≤200时,设v (x )=ax +b (a ≠0),再由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,13-x ,20<x ≤200.(2)依题意并结合(1)可得f (x )=⎩⎪⎨⎪⎧60x ,0≤x ≤20,13x -x ,20<x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200; 当20<x ≤200时,f (x )=13x (200-x )=-13(x -100)2+10 0003≤10 0003,当且仅当x=100时,等号成立.所以,当x =100时,f (x )在区间(20,200]上取得最大值10 0003.综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333. 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/时. [类题通法]构建分段函数模型的关键点建立分段函数模型的关键是确定分段的各边界点,即明确自变量的取值区间,对每一区间进行分类讨论,从而写出函数的解析式.[活学活用]某医疗研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y 与时间t 之间近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式;(2)据测定:每毫升血液中含药量不少于4 μg 时治疗疾病有效,假若某病人一天中第一次服药为上午7:00,问:一天中怎样安排服药时间(共4次)效果最佳?解:(1)依题意得y =⎩⎪⎨⎪⎧6t ,0≤t ≤1,-23t +203,1<t ≤10.(2)设第二次服药时在第一次服药后t 1小时,则-23t 1+203=4,解得t 1=4,因而第二次服药应在11:00.设第三次服药在第一次服药后t 2小时,则此时血液中含药量应为前两次服药后的含药量的和,即有-23t 2+203-23(t 2-4)+203=4,解得t 2=9,故第三次服药应在16:00.设第四次服药在第一次服药后t 3(t 3>10)小时,则此时第一次服进的药已吸收完,血液中含药量应为第二、第三次的和-23(t 3-4)+203-23(t 3-9)+203=4,解得t 3=13.5,故第四次服药应在20:30.[例3] 少p %,10年后森林面积变为a 2.为保护生态环境,所剩森林面积至少要为原面积的14.已知到今年为止,森林面积为22a . (1)求p %的值.(2)到今年为止,该森林已砍伐了多少年? (3)该森林今后最多还能砍伐多少年? [解] (1)由题意得a (1-p %)10=a2,即(1-p %)10=12,解得p %=1-⎝ ⎛⎭⎪⎫12110.(2)设经过m 年森林面积为22a , 则a (1-p %)m=22a ,即⎝ ⎛⎭⎪⎫1210m=⎝ ⎛⎭⎪⎫1212, m10=12,解得m =5. 故到今年为止,已砍伐了5年. (3)设从今年开始,n 年后森林面积为 22a ·(1-p %)n . 令22a (1-p %)n ≥14a , 即(1-p %)n≥24, ⎝ ⎛⎭⎪⎫1210n≥⎝ ⎛⎭⎪⎫1232,得n 10≤32,解得n ≤15, 故今后最多还能砍伐15年. [类题通法]指数函数模型的应用在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常可以用指数函数模型表示.通常可以表示为y =N (1+p )x(其中N 为基础数,p 为增长率,x 为时间)的形式.[活学活用]某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,问:至少应过滤几次才能使产品达到市场要求?(已知: lg 2=0.301 0,lg 3=0.477 1)解:依题意,得2100·⎝ ⎛⎭⎪⎫23n ≤11 000,即⎝ ⎛⎭⎪⎫23n ≤120.则n (lg 2-lg 3)≤-(1+lg 2),故n ≥1+lg 2lg 3-lg 2≈7.4,考虑到n ∈N ,即至少要过滤8次才能达到市场要求.8.构建函数模型解应用题[典例] (12分)甲、乙两人连续6年对某县农村甲鱼养殖业的规律(总产量)进行调查,提供了两个方面的信息,分别得到如下两图.甲调查表明:每个甲鱼池平均出产量从第一年1万只甲鱼上升到第六年2万只; 乙调查表明:甲鱼池个数由第一年30个减到第六年10个. 请你根据提供的信息说明:(1)第二年甲鱼池的个数及全县出产甲鱼总数.(2)到第六年,这个县的甲鱼养殖业的规模比第一年是扩大了还是缩小了?说明理由.(3)哪一年的规模最大?说明理由.[解题流程][活学活用]某商场经营一批进价是每件30元的商品,在市场销售中发现此商品的销售单价x元与日销售量y件之间有如下关系:(1)x与y的一个函数关系式y=f(x);(2)设经营此商品的日销售利润为P元,根据上述关系式写出P关于x的函数关系式,并指出销售单价x 为多少时,才能获得最大日销售利润.解:实数对(x ,y )对应的点如图所示,由图可知y 是x 的一次函数.(1)设f (x )=kx +b ,则⎩⎪⎨⎪⎧60=30k +b ,30=40k +b ,解得⎩⎪⎨⎪⎧k =-3,b =150.∴f (x )=-3x +150,30≤x ≤50,检验成立. (2)P =(x -30)·(-3x +150) =-3x 2+240x -4 500,30≤x ≤50, ∴对称轴x =-240-=40∈[30,50].答:当销售单价为40元时,才能获得最大日销售利润.[随堂即时演练]1.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x (1≤x ≤4,x ∈N *)之间关系的是( )A .y =100xB .y =50x 2-50x +100 C .y =50×2xD .y =100x解析:选C 当x =4时,A 中,y =400;B 中,y =700;C 中,y =800;D 中,y =1004.故选C.2.已知A ,B 两地相距150千米,某人开汽车以60千米/时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/时的速度返回A 地,则汽车离开A 地的距离x 关于时间t (时)的函数解析式是( )A .x =60tB .x =150-50tC .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5150-50t ,t >3.5D .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5150,2.5<t ≤3.5150-t -,3.5<t ≤6.5解析:选D 显然出发、停留、返回三个过程中行车速度是不同的,故应分三段表示函数.3.由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低13,则现在价格为8 100元的计算机15年后的价格应降为________元.解析:y =a ·⎝ ⎛⎭⎪⎫1-135x,所以当x =15时,y =8 100×⎝ ⎛⎭⎪⎫1-133=8 100×827=2 400(元).答案:2 4004.如图所示,折线是某电信局规定打长途电话所需要付的电话费y (元)与通话时间t (分)之间的函数关系图象,根据图象填空:(1)通话2分钟,需付的电话费为________元; (2)通话5分钟,需付的电话费为________元;(3)如果t ≥3,则电话费y (元)与通话时间t (分)之间的函数关系式为________. 解析:(1)由题图可知,当t ≤3时,电话费都是3.6元. (2)由题图可知,当t =5时,y =6,即需付电话费6元.(3)当t ≥3时,y 关于x 的图象是一条直线,且经过(3,3.6)和(5,6)两点,故设函数关系式为y =kt +b ,则⎩⎪⎨⎪⎧ 3k +b =3.6,5k +b =6,解得⎩⎪⎨⎪⎧k =1.2,b =0.故y 关于t 的函数关系式为y =1.2t (t ≥3). 答案:(1)3.6 (2)6 (3)y =1.2t (t ≥3)5.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销量价格P (元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每百件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫? 解:设该店月利润余额为L 元,则由题设得L =Q (P -14)×100-3 600-2 000,① 由销量图易得Q =⎩⎪⎨⎪⎧-2P +50,14≤P ≤20,-32P +40,20<P ≤26,代入①式得L =⎩⎪⎨⎪⎧-2P +P --5 600,14≤P ≤20,⎝⎛⎭⎪⎫-32P +40P --5 600,20<P ≤26,(1)当14≤P ≤20时,L max =450元,此时P =19.5元; 当20<P ≤26时,L max =1 2503元,此时P =613元.故当P =19.5元时,月利润余额最大,为450元.(2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20.即最早可望在20年后脱贫.[课时达标检测]一、选择题1.一个模具厂一年中12月份的产量是1月份产量的m 倍,那么该模具厂这一年中产量的月平均增长率是( )A.m 11 B.m12C.12m -1 D.11m -1解析:选D 设每月的产量增长率为x,1月份产量为a ,则a (1+x )11=ma ,所以1+x =11m ,即x =11m -1.2.某自行车存车处在某一天总共存放车辆4 000辆次,存车费为:电动自行车0.3元/辆,普通自行车0.2元/辆.若该天普通自行车存车x 辆次,存车费总收入为y 元,则y 与x 的函数关系式为( )A .y =0.2x (0≤x ≤4 000)B .y =0.5x (0≤x ≤4 000)C .y =-0.1x +1 200(0≤x ≤4 000)D .y =0.1x +1 200(0≤x ≤4 000)解析:选C 由题意得y =0.3(4 000-x )+0.2x =-0.1x +1 200. 3.下面是一幅统计图,根据此图得到的以下说法中,正确的个数是( )(1)这几年生活水平逐年得到提高;(2)生活费收入指数增长最快的一年是2013年; (3)生活价格指数上涨速度最快的一年是2014年;(4)虽然2015年生活费收入增长缓慢,但生活价格指数也略有降低,因而生活水平有较大的改善.A .1B .2C .3D .4解析:选C 由题意知,“生活费收入指数”减去“生活价格指数”的差是逐年增大的,故(1)正确;“生活费收入指数”在2013~2014年最陡;故(2)正确;“生活价格指数”在2014~2015年比较平缓,故(3)不正确;“生活价格指数”略呈下降,而“生活费收入指数”呈上升趋势,故(4)正确.4.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为y =⎩⎪⎨⎪⎧4x ,1≤x <10,x ∈N , 2x +10,10≤x <100,x ∈N ,1.5x ,x ≥100,x ∈N ,其中,x 代表拟录用人数,y 代表面试人数,若面试人数为60,则该公司拟录用人数为( )A .15B .40C .25D .130解析:选C 若4x =60,则x =15>10,不合题意;若2x +10=60,则x =25,满足题意;若1.5x =60,则x =40<100,不合题意.故拟录用25人.5.某城市出租汽车的收费标准是:起步价为6元,行程不超过2千米者均按此价收费;行程超过2千米,超过部分按3元/千米收费(不足1千米按1千米计价);另外,遇到堵车或等候时,汽车虽没有行驶,但仍按6分钟折算1千米计算(不足1千米按1千米计价).陈先生坐了一趟这种出租车,车费24元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程的取值范围是( )A .[5,6)B .(5,6]C .[6,7)D .(6,7]解析:选B 若按x (x ∈Z)千米计价,则6+(x -2)×3+2×3=24,得x =6.故实际行程应属于区间(5,6].二、填空题6.在不考虑空气阻力的情况下,火箭的最大速度v (米/秒)和燃料的质量M (千克)、火箭(除燃料外)的质量m (千克)的函数关系式是v =2 000·ln ⎝⎛⎭⎪⎫1+M m.当燃料质量是火箭质量的________倍时,火箭的最大速度可达12千米/秒.解析:当v =12 000时,2 000·ln ⎝⎛⎭⎪⎫1+M m =12 000, ∴ln ⎝⎛⎭⎪⎫1+M m=6,∴M m=e 6-1.答案:e 6-17.一水池有2个进水口、1个出水口,2个进水口的进水速度如图甲、乙所示,出水口的排水速度如图丙所示,某天0点到6点,该水池的蓄水量如图丁所示.给出以下3个论断: ①0点到3点只进水不出水; ②3点到4点不进水只出水;③4点到6点不进水不出水.其中一定正确的论断序号是________.解析:从0点到3点,两个进水口的进水量为9,故①正确;由排水速度知②正确;4点到6点可以是不进水,不出水,也可以是开一个进水口(速度快的)、一个排水口,故③不正确.答案:①②8.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是________年.解析:由题意知,第一年产量为a 1=12×1×2×3=3;以后各年产量分别为a n =f (n )-f (n -1)=12n (n +1)(2n +1)-12n (n -1)(2n -1) =3n 2(n ∈N *),令3n 2≤150,得1≤n ≤52⇒1≤n ≤7, 故生产期限最长为7年. 答案:7 三、解答题9.某租车公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加60元时,未租出的车将会增加一辆,租出的车每月需要维护费160元,未租出的车每月需要维护费40元.(1)当每辆车的月租金定为3 900元时,能租出多少辆车?(2)当每辆车的月租金为多少元时,租车公司的月收益最大?最大月收益是多少? 解:(1)租金增加了900元,900÷60=15, 所以未租出的车有15辆,一共租出了85辆.(2)设租金提高后有x 辆未租出,则已租出(100-x )辆. 租赁公司的月收益为y 元,y =(3 000+60x )(100-x )-160(100-x )-40x ,其中x ∈[0,100],x ∈N ,整理,得y =-60x 2+3 120x +284 000 =-60(x -26)2+324 560, 当x =26时,y =324 560, 即最大月收益为324 560元.此时,月租金为3 000+60×26=4 560(元).10.某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产1百件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为5百件,产品销售数量为t (百件)时,销售所得的收入为⎝⎛⎭⎪⎫5t -12t 2万元.(1)该公司这种产品的年生产量为x 百件,生产并销售这种产品得到的利润为当年产量x 的函数f (x ),求f (x );(2)当该公司的年产量为多大时当年所获得的利润最大.解:(1)当x ≤5时,f (x )=5x -12x 2-(0.25x +0.5)=-x 22+194x -12;当x >5时,f (x )=5×5-12×52-(0.25x +0.5)=12-14x ;所以f (x )=⎩⎪⎨⎪⎧-x 22+194x -12,0<x ≤5,12-14x ,x >5.(2)当0<x ≤5时,f (x )=-x 22+194x -12=-12⎝⎛⎭⎪⎫x -1942+34532,故当x =194百件=475件时,f (x )max =34532(万元);当x >5时,f (x )=12-14x <12-54<34532.故当该公司的年产量为475件时,当年获得的利润最大.11.国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,飞机票价格为900元;若旅行团人数多于30人,则给予优惠:每多1人,飞机票价格就减少10元,直到达到规定人数75人为止.旅行团乘飞机,旅行社需付给航空公司包机费15 000元.(1)写出飞机票的价格关于人数的函数;(2)旅行团人数为多少时,旅行社可获得最大利润? 解:(1)设旅行团人数为x ,飞机票价格为y 元,则y =⎩⎪⎨⎪⎧900,0<x ≤30,900-x -,30<x ≤75,即y =⎩⎨⎧900,0<x ≤30,1 200-10x ,30<x ≤75.(2)设旅行社获利S 元,则S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,x -10x -15 000,30<x ≤75.即S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,-x -2+21 000,30<x ≤75.因为S =900x -15 000在区间(0,30]上单调递增,当x =30时,S 取最大值12 000, 又因为S =-10(x -60)2+21 000在区间(30,75]上, 当x =60时,S 取最大值21 000. 故当x =60时,旅行社可获得最大利润.。
3.2.1 几类不同增长的函数模型学习目标:1.理解直线上升、指数爆炸、对数增长的含义.(重点)2.区分指数函数、对数函数以及幂函数增长速度的差异.(易混点)3.会选择适当的函数模型分析和解决一些实际问题.(难点)[自主预习·探新知]三种函数模型的性质y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞)上的增减性增函数增函数增函数图象的变化趋势随x增大逐渐近似与y轴平行随x增大逐渐近似与x轴平行随n值而不同增长速度①y=a x(a>1):随着x的增大,y增长速度越来越快,会远远大于y=x n(n>0)的增长速度,y=log a x(a>1)的增长速度越来越慢②存在一个x0,当x>x0时,有a x>x n>log a x[基础自测]1.思考辨析(1)函数y=x2比y=2x增长的速度更快些.( )(2)当a>1,n>0时,在区间(0,+∞)上,对任意的x,总有log a x<x n<a x成立.( )(3)函数y=log x衰减的速度越来越慢.( )12[答案] (1)× (2)× (3)√2.下列函数中随x的增大而增大且速度最快的是( )A.y=e x B.y=ln xC.y=x2D.y=e-xA [结合指数函数,对数函数及一次函数的图象变化趋势可知A正确.]3.某工厂8年来某种产品总产量C与时间t(年)的函数关系如图321所示.图321以下四种说法:①前三年产量增长的速度越来越快;②前三年产量增长的速度越来越慢;③第三年后这种产品停止生产;④第三年后产量保持不变.其中说法正确的序号是________.【导学号:37102371】②④ [结合图象可知②④正确,故填②④.][合 作 探 究·攻 重 难]几类函数模型的增长差异 (1)下列函数中,增长速度最快的是( ) A .y =2 018x B .y =x 2 018 C .y =log 2 018xD .y =2 018x(2)下面对函数f (x )=log x ,g (x )=x与h (x )=x在区间(0,+∞)上的递减情况说12(12)-12法正确的是( )A .f (x )递减速度越来越慢,g (x )递减速度越来越快,h (x )递减速度越来越慢B .f (x )递减速度越来越快,g (x )递减速度越来越慢,h (x )递减速度越来越快C .f (x )递减速度越来越慢,g (x )递减速度越来越慢,h (x )递减速度越来越慢D .f (x )递减速度越来越快,g (x )递减速度越来越快,h (x )递减速度越来越快(1)A (2)C [(1)指数函数y =a x ,在a >1时呈爆炸式增长,并且随a 值的增大,增长速度越快,应选A.(2)观察函数f (x )=log x ,g (x )=x与h (x )=x在区间(0,+∞)上的图象(如图)可12(12)-12知:函数f (x )的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢,同样,函数g (x )的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h (x )的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢.][规律方法] 常见的函数模型及增长特点 线性函数模型线性函数模型y =kx +b k >0 的增长特点是直线上升,其增长速度不变 指数函数模型指数函数模型y =a x a >1 的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸” 对数函数模型对数函数模型y =log a x a >1 的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓幂函数模型幂函数y=x n n>0 的增长速度介于指数增长和对数增长之间[跟踪训练]1.四个变量y1,y2,y3,y4随变量x变化的数据如表:x 151015202530y1226101226401626901 y2232 1 02437 768 1.05×106 3.36×107 1.07×109 y32102030405060y42 4.322 5.322 5.907 6.322 6.644 6.907关于x呈指数函数变化的变量是________.【导学号:37102372】y2 [以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.故填y2.]指数函数、对数函数与幂函数模型的比较 函数f(x)=2x和g(x)=x3的图象如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.(1)请指出图322中曲线C1,C2分别对应的函数;图322(2)结合函数图象,判断f(6),g(6),f(2 016),g(2 016)的大小.[解] (1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.(2)∵f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),∴1<x1<2,9<x2<10,∴x1<6<x2,2 016>x2.从图象上可以看出,当x1<x<x2时,f(x)<g(x),∴f(6)<g(6);当x>x2时,f(x)>g(x),∴f(2 016)>g(2 016).又g(2 016)>g(6),∴f(2 016)>g(2 016)>g(6)>f(6).[规律方法] 由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数;图象趋于平缓的函数是对数函数.[跟踪训练]2.函数f(x)=lg x,g(x)=0.3x-1的图象如图323所示.图323(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).【导学号:37102373】[解] (1)C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lg x.(2)当x<x1时,g(x)>f(x);当x1<x<x2时,f(x)>g(x);当x>x2时,g(x)>f(x);当x=x1或x=x2时,f(x)=g(x).需选择函数模型的实际问题[探究问题]1.一次函数模型、指数函数模型、对数函数模型的增长速度各有什么特点?提示:一次函数模型的增长速度不变,是均匀的;指数函数模型的增长速度最快,呈爆炸式;对数函数模型的增长速度先快后慢.2.在选择函数模型时,若随着自变量的变大、函数值增加得速度急剧变化,应选择哪个函数模型?若变化的速度很平缓,应选择哪个函数模型?提示:前者应选择指数函数模型,后者选择对数函数模型. (1)某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用( )A.一次函数B.二次函数C .指数型函数D .对数型函数(2)某皮鞋厂今年1月份开始投产,并且前4个月的产量分别为1万双,1.2万双,1.3万双,1.37万双.由于产品质量好、款式新颖,前几个月的销售情况良好.为了推销员在推销产品时,接受订单不至于过多或过少,需要估计以后几个月的产量.厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程.厂里也暂时不准备增加设备和工人.假如你是厂长,就月份为x ,产量为y 给出三种函数模型:y =ax +b ,y =ax 2+bx +c ,y =ab x +c ,你将利用哪一种模型去估算以后几个月的产量?思路探究:结合函数模型的增长速度选择合适的模型求解.(1)D [结合“直线上升,对数增长,指数爆炸”可知,对数型函数符合题设条件,故选D.] (2)由题意知,将产量随时间变化的离散量分别抽象为A (1,1),B (2,1.2),C (3,1.3),D (4,1.37)这4个数据.①设模拟函数为y =ax +b 时, 将B ,C 两点的坐标代入函数式, 得Error!解得Error!所以有关系式y =0.1x +1.由此可得结论为:在不增加工人和设备的条件下,产量会每月上升1 000双,这是不太可能的. ②设模拟函数为y =ax 2+bx +c 时,将A ,B ,C 三点的坐标代入函数式,得 Error!解得Error!所以有关系式y =-0.05x 2+0.35x +0.7.结论为:由此法计算4月份的产量为1.3万双,比实际产量少700双,而且由二次函数性质可知,产量自4月份开始将每月下降(图象开口向下,对称轴为x =3.5),不合实际. ③设模拟函数为y =ab x +c 时, 将A ,B ,C 三点的坐标代入函数式, 得Error!由1),得ab =1-c ,代入2)3), 得Error!则Error!解得Error!则a ==-0.8.1-cb所以有关系式y =-0.8×0.5x +1.4.结论为:当把x =4代入得y =-0.8×0.54+1.4=1.35.比较上述三个模拟函数的优劣,既要考虑到误差最小,又要考虑生产的实际,如:增产的趋势和可能性.经过筛选,以指数函数模拟为最佳,一是误差小,二是由于厂房新建,随着工人技术和管理效益逐渐提高,一段时间内产量会明显上升,但经过一段时间之后,如果不更新设备,产量必然趋于稳定,而指数型函数模型恰好反映了这种趋势. 因此选用指数型函数y =-0.8×0.5x +1.4,模拟比较接近客观实际.[规律方法] 此类问题求解的关键是首先利用待定系数法求出相关函数模型,也就是借助数据信息,得到相关方程,进而求出待定参数。
小初高教案试题导学案集锦
K12资源汇总,活到老学到老
函数模型及其应用
【教学目标】
①借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异。
②恰当运用函数的三种表示方法(解析式、表格、图象)并借助信息技术解决一些实际问题。
【重点难点】
重点:认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与
对数增长的不同。
难点:应用函数模型解决一些实际问题。
【教学过程】
一、情景设置
①一张纸的厚度大约为0.01cm,一块砖的厚度大约为10cm,请同学们计算将一张纸对折n次的
厚度和n块砖的厚度,列出函数关系式,并计算n=20时它们的厚度。你的直觉与结果一致吗?
②在同一坐标系中作出y=log2x,y=2x,y= x2的图象。
③请在图象上分别标出使不等式log2x<2x< x2和log2x< x2<2x成立的自变量的取值范围。
④由以上问题你能得出怎样结论?
小初高教案试题导学案集锦
K12资源汇总,活到老学到老
⑤你能得出更一般的结论吗?
二、教学精讲
例1.见课本104页练习第1题。
例2.见课本97页例2。
三、探索研究
四、课堂练习
(1)某池塘中野生水葫芦的面积与时间的函数关系的图象如图所示,假设其关系为指数函数,
并给出下列说法:
①此指数函数的底数为2;
②在第5个月时,野生水葫芦的面积就会超过30cm2;
③野生水葫芦从4cm2蔓延到12cm2只需1.5个月;
④设野生水葫芦蔓延到2m2、3m2、6m2所需的时间分别为t1、t2、t3,则有t1+t2=t3;
⑤野生水葫芦在第1期到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均
速度。
哪些说法是正确的?
解:①说法正确。∵关系为指数函数
∴可设y=ax(a>0,a≠1).∴a1=2∴a=2
②说法正确∵25=32>30
③∵4=2x,x=2; 12=2x,x=log212≈3.6 3.62>1.5
∴说法不正确
④∵t1=1,t2=log23,t3=log26∴说法正确
⑤∵指数函数增加速度越来越快
∴说法不正确
(2)某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么它会在下一轮病毒发作时传
播一次病毒,并感染其它20台计算机.现有10台计算机被第一轮病毒感染,问被第5轮病毒感染的计算机有多少台?
y
x
1 2 1 o 4 3
16
8
4
2
面积/m
2
时间/月