时间最优控制
- 格式:ppt
- 大小:5.60 MB
- 文档页数:43
输入饱和的双积分系统的复合时间最优控制张义超;黄晨;陆浩然;孙戎【摘要】针对典型的有输入饱和的双积分环节或系统的时间最优控制问题,建立了双积分环节的传递函数和状态空间方程两种数学模型,设计双积分环节的闭环时间最优控制律;对时间最优控制在系统存在干扰和不确定性存在条件下出现的振颤现象进行分析;基于对振颤问题的分析,提出一种对时间最优控制的改进,即一种复合控制方法,当输入作用时,系统先由时间最优控制律控制,当误差达到预定值限,控制律由时间最优控制律切换到另一种线性控制律.采用了比例微分控制律,来解决时间最优控制的振颤问题,响应时间达到最优,并解决振颤问题.%To the issue of time optimal control of double integrating systems with input saturation,the transferring function model and state-space model of double integrating systems are established,and the time optimal controller (TOC) is designed.Unfortunately,it is well known that the classical TOC is not robust with respect to the system uncertainties and measurementnoises.Thus,we,in the paper,study the chatter problem by simulation and introduces a nonlinear composite control,method,i.e.,a combination of time optimal control (TOC) and PID control,for double integrating systems with input saturation.The TOC part is designed to enable the time optimization.In order to solve the drawback of TOC,when the error is small to a certain level,it will switch to the PD part to overcome the chatter problem caused by the TOC.Finally,the simulation results,approximate time optimization and fair robustness demonstrate the effectiveness and feasibility of the proposed method.【期刊名称】《计算机测量与控制》【年(卷),期】2017(025)004【总页数】4页(P51-53,57)【关键词】双积分环节;时间最优控制;振颤;复合控制【作者】张义超;黄晨;陆浩然;孙戎【作者单位】北京宇航系统工程研究所,北京100076;北京宇航系统工程研究所,北京100076;北京宇航系统工程研究所,北京100076;北京宇航系统工程研究所,北京100076【正文语种】中文【中图分类】TP273我们周围的很多实际系统,都可以看作双积分系统,并且具有显著的非线性。
最优控制理论及其应用最优控制理论是现代控制理论中的一种重要分支,它的主要研究内容是在一定约束条件下,确定一个系统的最优控制策略,使得系统能够在最短时间或最小代价内达到所要求的状态或性能指标。
最优控制理论的发展和应用,在许多领域中都发挥着极为重要的作用,特别是在工业自动化、航空航天、经济管理、生态环保等方面,都有广泛的应用。
最优控制理论的基本思想是,通过建立数学模型,将实际系统抽象为一种数学形式,而后再在此基础上,建立最优控制问题的数学模型,并采用数学方法对问题进行求解。
但是,对于实际系统的复杂性,很难将所有的因素都纳入到数学模型中,同时,由于各种因素的交互作用,数学模型的求解也是一项十分复杂的任务。
因此,在最优控制理论的应用中,还需要依赖于模拟实验、仿真计算以及其他工程手段进行辅助。
最优控制理论的应用之一是自动驾驶车辆技术。
随着人工智能、物联网等技术的发展,自动驾驶车辆已经成为一个备受关注的热点。
而最优控制理论在自动驾驶车辆技术中的应用,主要是通过建立数学模型,优化车辆的控制策略,实现车辆在各种不同路况下的自主行驶。
例如,在车辆在高速公路上行驶时,为了保障安全,必须让车辆保持一定的速度,并在有必要时进行刹车操作。
此时,最优控制理论可以通过建立车辆的数学模型,并考虑各种因素的交互作用,建立车辆的最优控制策略,使车辆能够在最短时间内安全驶入某个车道或进行紧急停车等操作。
另一个应用最优控制理论的领域是空间控制技术。
在空间探索和利用中,最优控制理论起着至关重要的作用。
例如,在卫星控制中,需要通过最优控制技术来调节其轨道、高度、速度等参数,保证卫星能够在指定区域内工作,并实现卫星的长期稳定运行。
此外,在飞行器着陆时,也需要最优控制技术对飞行器的姿态、速度等参数进行调整,以确保飞行器能够安全着陆。
除了上述两个应用领域外,最优控制理论还广泛应用于经济管理、金融领域、天气预报等方面。
例如,在股票投资中,可以利用最优控制理论进行投资组合的优化,最大化收益,并降低投资风险;在天气预报中,也可以通过最优控制技术优化气象模型,提高预测的准确度,为国家农业、水利等领域的决策提供科学依据。
最优控制问题介绍最优控制问题是现代控制理论的核心内容之一,它研究的主要问题是如何在满足一定约束条件下,使得某一性能指标达到最优。
这类问题广泛存在于各个领域,如航天工程、经济管理、生态系统等。
通过对最优控制问题的研究,我们可以更加科学、合理地进行决策,实现资源的优化配置,提高系统的运行效率。
一、最优控制问题的基本概念最优控制问题通常可以描述为一个动态系统的优化问题。
在这个问题中,我们需要找到一个控制策略,使得系统从初始状态出发,在给定的时间内,通过控制输入,使得系统的某一性能指标达到最优。
这个性能指标可以是时间最短、能量消耗最小、误差最小等。
为了解决这个问题,我们首先需要建立系统的数学模型。
这个模型应该能够准确地描述系统的动态行为,包括状态方程、输出方程以及约束条件等。
然后,我们需要定义一个性能指标函数,这个函数描述了我们希望优化的目标。
最后,我们通过求解一个优化问题,找到使得性能指标函数达到最优的控制策略。
二、最优控制问题的分类根据系统的动态特性和性能指标函数的不同,最优控制问题可以分为多种类型。
其中,最常见的包括线性二次型最优控制问题、最小时间控制问题、最小能量控制问题等。
1. 线性二次型最优控制问题:这类问题中,系统的动态特性是线性的,性能指标函数是状态变量和控制输入的二次型函数。
这类问题在实际应用中非常广泛,因为许多实际系统都可以近似为线性系统,而二次型性能指标函数可以方便地描述许多实际优化目标。
2. 最小时间控制问题:在这类问题中,我们的目标是使得系统从初始状态到达目标状态的时间最短。
这类问题通常出现在对时间要求非常严格的场合,如火箭发射、紧急制动等。
3. 最小能量控制问题:这类问题的目标是使得系统在完成指定任务的过程中消耗的能量最小。
这类问题在能源有限的系统中尤为重要,如无人机、电动汽车等。
三、最优控制问题的求解方法求解最优控制问题的方法主要有两种:解析法和数值法。
1. 解析法:解析法是通过求解系统的动态方程和性能指标函数的极值条件,得到最优控制策略的解析表达式。
最优控制——最大值原理最优控制问题是数学中的一个重要问题,研究如何在给定约束条件下使一个系统达到最优状态。
在数学的最优控制理论中,最大值原理是一种重要的工具和方法,被广泛应用于很多最优控制问题的求解中。
本文将详细介绍最优控制中的最大值原理及其应用。
最大值原理也称为哈密顿-雅可比-贝尔曼方程(hamilton-jacobi-bellman equation),它是最优控制问题的一个基本性质。
最大值原理给出了在给定约束条件下系统状态的最优演化方程。
最大值原理的基本形式是哈密顿-雅可比-贝尔曼方程。
对于一个给定的最优控制问题,假设系统的演化满足一个偏微分方程,此方程将由状态变量、控制变量、时间变量以及一个哈密顿函数构成,具体形式如下:∂V/∂t + min(u) {H(x,u,t)+ ∇V⋅f(x,u,t)} = 0其中,V(x,t)是值函数(value function),表示从状态x在时间t开始时,系统必须选择的最佳控制来最大化性能指标的期望值。
f(x,u,t)是状态方程(state equation),描述系统状态的演化。
H(x,u,t)是哈密顿函数(Hamiltonian),是一个将值函数、控制变量和状态方程综合起来的函数,它的作用是描述系统的动力学性质。
最大值原理的关键在于通过逐步迭代的方式求解值函数V(x,t),找到使系统达到最优状态的最佳控制变量。
这一过程通常称为最优控制问题的动态规划(dynamic programming)。
最大值原理的主要应用涉及很多不同领域,例如经济学、工程学、生物学等。
在经济学中,最大值原理被广泛应用于决策理论、资产定价、宏观经济模型等领域。
在工程学中,最大值原理常用于控制系统设计、路径规划、优化问题等。
在生物学中,最大值原理被用于神经科学、生态学、生物系统动力学建模等。
最大值原理的应用还包括优化问题、最短路径问题、最优控制问题、反问题等。
它不仅可以用于求解连续问题,也可以用于离散问题。
自适应控制和最优控制的基本原理和应用在现代控制理论中,自适应控制和最优控制是两个重要的概念。
自适应控制是指根据被控对象的运动情况及其参数变化,调整控制器的参数,使得被控对象满足预先设定的控制性能要求。
最优控制是指在满足控制性能的基础上,使控制器的能耗最小,系统响应最快。
自适应控制和最优控制的基本原理是以被控对象的数学模型为基础。
对于自适应控制,需要对被控对象进行建模,以确定控制器参数的调整方向。
对于最优控制,需要对被控对象的数学模型进行优化,以找到最优的控制方案。
在自适应控制中,最常用的方法是模型参考自适应控制。
这种方法通过建立一个参考模型,将被控对象的运动与参考模型的运动进行比较,然后根据比较结果调整控制器的参数。
这种方法的优点是简单易懂,容易实现。
不过,这种方法要求被控对象的数学模型必须非常精确,否则会导致控制器参数调整不准确。
另一种常用的自适应控制方法是基于模糊逻辑的自适应控制。
该方法通过将控制器的参数用模糊集合形式表示,以适应被控对象模型的不确定性。
这种方法虽然参数调整方向不如模型参考自适应控制精确,但是可以适应更广泛的控制情况。
最优控制中,最常用的方法是线性二次型控制(LQR)。
这种方法通过对被控对象的数学模型进行优化,确定最优的控制器参数,以使系统的能耗最小。
该方法的优点是在满足控制性能的前提下,能够有效降低系统的能耗,提高系统的效率。
最优控制还可以用于求解动态优化问题。
在这种情况下,被控对象的状态会随时间变化,需要在每个时刻对控制器参数进行优化,以获得最优的控制方案。
这种方法可以应用于许多领域,包括经济系统、交通运输、动力系统等。
自适应控制和最优控制都有广泛的应用。
例如,在机械加工、机器人控制、电力系统等领域中,自适应控制可以有效提高系统的稳定性和控制性能。
而在航空航天、汽车控制、自动驾驶等领域中,最优控制可以降低系统的能耗,提高系统的效率。
总的来说,自适应控制和最优控制是现代控制理论中非常重要的概念,它们的应用范围广泛,可以有效地提高系统的效率和控制性能。
控制系统中的最优控制与最优化技术随着科技的不断进步和应用范围的扩大,控制系统在各行各业中的重要性也日益凸显。
最优控制与最优化技术作为控制系统中的重要概念和方法,在提高系统性能和效率方面发挥着关键作用。
本文将就控制系统中的最优控制与最优化技术进行深入探讨。
一、最优控制的定义与概念最优控制是指在满足给定约束条件的前提下,通过使某种性能准则达到最大或最小值来确定控制器参数或控制策略的问题。
最优控制的实现可以使系统在最短时间内达到期望状态或在给定资源条件下获得最佳性能。
最优化技术是实现最优控制的关键方法之一,它利用数学和计算方法来寻找系统中使性能准则达到最大或最小值的最优解。
最优化技术广泛应用于各种领域,例如经济学、工程学、管理学等,其中最为常见的应用是在控制系统中。
二、最优控制的分类最优控制可以分为离散最优控制和连续最优控制两大类。
离散最优控制是指在离散时间点上确定控制器参数或控制策略的问题。
典型的离散最优控制方法包括动态规划、贝尔曼方程等。
连续最优控制是指在连续时间范围内确定控制器参数或控制策略的问题。
常见的连续最优控制方法有经典最优控制、最速控制、最小能耗控制等。
三、最优化技术在控制系统中的应用最优化技术在控制系统中有着广泛的应用。
以下是一些常见的应用领域。
1. 机器人控制机器人控制是利用最优化技术来实现机器人移动、定位和路径规划等问题。
通过对机器人运动过程中的能耗、时间等指标进行优化,可以实现机器人的高效控制和优化运动。
2. 制造业控制在制造业中,最优化技术可以用来优化物料和生产设备的调度、工艺参数的优化以及生产线的平衡等问题。
通过合理地设计和优化控制策略,可以提高制造业的生产效率和产品质量。
3. 能源系统控制能源系统控制是指在能源产生、传输和消费过程中,通过最优化技术实现能源的高效利用。
例如在电力系统中,可以通过最优化技术对电网的输电线路和发电机组进行优化调度,以最大限度地提高电网的稳定性和电能的利用率。
最优控制问题的预测性控制方法最优控制是一个在工程和数学领域广泛应用的概念,旨在通过调整控制变量的取值来使系统的某种性能指标达到最优。
而预测性控制方法则是一种常用的实现最优控制的技术手段。
本文将介绍最优控制问题的预测性控制方法及其应用。
一、预测性控制的基本原理预测性控制方法,也称为模型预测控制(Model Predictive Control,简称MPC),是一种基于系统模型的控制策略。
其基本原理是通过对系统进行建模和预测,计算未来一段时间内的最优控制量,然后在当前时刻仅实施第一个时间步的控制量,之后再进行更新。
这种方式能够在系统变化的情况下实时调整控制策略,以适应不同的工作条件。
预测性控制方法通常包含以下几个步骤:1. 系统建模:根据实际系统的运行原理和特性,建立数学模型来描述系统的动态行为。
通常使用微分方程或状态空间模型来描述系统的动力学特性。
2. 状态估计:通过测量和传感器数据,对系统的当前状态进行估计。
这可以通过滤波算法(如卡尔曼滤波器)来实现。
3. 预测模型:基于系统的数学模型和当前状态估计,使用离散化的时间步长,预测系统在未来一段时间内的行为。
这通常使用递推算法,如离散状态空间模型中的状态转移方程。
4. 优化问题求解:将系统的控制目标和约束转化为数学优化问题,并通过求解器求解该优化问题。
通常使用最小二乘法、线性规划或二次规划等方法。
5. 控制执行:根据优化求解的结果,实施当前时刻的最优控制量。
然后,等待下一个时间步的测量和状态估计,更新模型和优化问题求解。
二、预测性控制方法的优势和应用领域预测性控制方法相比传统的反馈控制方法具有一些明显的优势,主要包括以下几点:1. 非线性系统的控制:预测性控制方法可以有效地应对非线性、多变量系统的控制问题,由于其建模和预测步骤可以灵活地考虑非线性和耦合特性。
2. 多目标优化:预测性控制方法可以灵活地处理多目标优化问题,通过调整权重和约束条件来实现不同性能指标之间的平衡。