高中物理:牛顿运动定律瞬时加速度问题
- 格式:docx
- 大小:349.94 KB
- 文档页数:8
专题:牛顿第二定律的应用——瞬时性问题一、牛顿第二定律1.内容:物体加速度的大小跟作用力成,跟物体的质量成,加速度的方向跟的方向相同。
2.表达式:F合=3.物理意义:反映物体运动的加速度大小、方向与所受的关系。
4.F合与a的关系同向性、正比性、瞬时性、因果性、同一性、独立性、局限性二、小试牛刀1、关于物体运动状态的改变,下列说法中正确的是( )A.运动物体的加速度不变,则其运动状态一定不变B.物体的位置在不断变化,则其运动状态一定在不断变化C.做直线运动的物体,其运动状态可能不变D.做曲线运动的物体,其运动状态可能不变2、设想能创造一理想的没有摩擦力和流体阻力的环境,用一个人的力量去推一万吨巨轮,则从理论上可以说( )A.巨轮惯性太大,所以完全无法推动B.一旦施力于巨轮,巨轮立即产生一个加速度C.由于巨轮惯性很大,施力于巨轮后,要经过很长一段时间后才会产生一个明显的加速度D.一旦施力于巨轮,巨轮立即产生一个速度三、思考:你对牛二律的瞬时性是如何理解的?要点一、力连续变化过程的瞬时性【例1】如图,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的合外力、加速度、速度的变化情况是怎样的?小步勤挪:1、对小球进行受力分析:2、在接触的初始阶段,那个力大?小球的合力方向怎样?大小如何变化?加速度方向怎样?大小如何变化?速度如何变化?3、当弹力增大到大小等于重力时,合外力、加速度、速度又如何?4、之后,小球向那运动?弹力如何变化?合力的大小方向如何?加速度、速度大小方向怎样变化?【变式1】(2009·上海高考)如图所示为蹦极运动的示意图.弹性绳的一端固定在O点,另一端和运动员相连.运动员从O点自由下落,至B点弹性绳自然伸直,经过合力为零的C点到达最低点D,然后弹起.整个过程中忽略空气阻力.分析这一过程,下列表述正确的是( ) ①经过B点时,运动员的速率最大②经过C点时,运动员的速率最大③从C点到D点,运动员的加速度增大④从C点到D点,运动员的加速度不变A.①③ B.②③ C.①④ D.②④【变式2】如图所示,物体P以一定的初速度v沿光滑水平面向右运动,与一个右端固定的轻质弹簧相撞,并被弹簧反向弹回.若弹簧在被压缩过程中始终遵守胡克定律,那么在P与弹簧发生相互作用的整个过程中( )A.P的加速度大小不断变化,方向也不断变化B.P的加速度大小不断变化,但方向只改变一次C.P的加速度大小不断改变,当加速度数值最大时,速度最小D.有一段过程,P的加速度逐渐增大,速度也逐渐增大从压缩最短到恢复原长过程中弹力、合力、加速度、速度变化情况要点二、力突变过程的瞬时性【例2】如图所示,物体甲、乙质量均为m ,弹簧和悬线的质量可以忽略不计.当悬线被烧断的瞬间,甲、乙的加速度数值应是下列哪一种情况( )A.甲是0,乙是gB.甲是g ,乙是gC.甲是0,乙是0D.甲是g/2,乙是g【思路】分析物体在某一时刻的瞬时加速度,关键是分析该时刻物体的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度【点拨】物体瞬时加速度的两类模型:(1)刚性绳(或接触面)的特点:(2)弹簧(或橡皮绳)的特点:【提醒】力和加速度的瞬时对应性是高考的重点.物体的受力情况应符合物体的运动状态,当外界因素发生变化(如撤力、变力、断绳等)时,需重新进行运动分析和受力分析,切忌想当然!【例3】如图所示,将质量均为m 的小球A 、B 用绳(不可伸长)和弹簧(轻质)连结后,悬挂在天花板上.若分别剪断绳上的P 处或剪断弹簧上的Q 处,下列对A 、B 加速度的判断正确的是( ) A.剪断P处瞬间,A 的加速度为零,B 的加速度为g B.剪断P处瞬间,A 的加速度为2g ,B 的加速度为零 C.剪断Q处瞬间,A 的加速度为零,B 的加速度为零 D.剪断Q处瞬间,A 的加速度为2g ,B 的加速度为g【变式1】 在如图所示的装置中,小球m 用两根绳子拉着,绳子OA 水平,若将绳子OA 剪断,问剪断瞬间小球m 的加速度大小?方向如何?【变式2】如图所示,现将2l 线剪断,求剪断瞬间物体的加速度。
一、单选题1.如图所示,光滑水平面上,AB 两物体用轻弹簧连接在一起。
A B 、的质量分别为12m m 、,在拉力F 作用下,AB 共同做匀加速直线运动,加速度大小为a ,某时刻突然撤去拉力F ,此瞬时A 和B 的加速度大小为1a 和2a ,则( )A .1200a a ==,B .21212m a a a a m m ==+, C .12121212m m a a a a m m m m ==++, D .1122m a a a a m ==, 2.如图所示,质量为m 的光滑小球A 被一轻质弹簧系住,弹簧另一端固定于水平天花板上,小球下方被一梯形斜面B 托起保持静止不动,弹簧恰好与梯形斜面平行,已知弹簧与天花板夹角为30o ,重力加速度为210/g m s =,若突然向下撤去梯形斜面,则小球的瞬时加速度为( )A .0B .大小为210/m s ,方向竖直向下C .大小253/m s ,方向斜向右下方D .大小25/m s ,方向斜向右下方3.如图所示为两轻绳栓接一定质量的小球,两轻绳与竖直方向的夹角如图,则在剪断a 绳的瞬间,小球的加速度大小为a 1,剪断b 绳的瞬间,小球的加速度大小为a 2.则a 1:a 2为( )A .1:1B .2:1C .3:1D .23:14.如图所示,轻弹簧上端与一质量为1kg 的木块1相连,下端与另一质量为2kg 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态,现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为1a 、2a ,已知重力加速度g 大小为210/m s ,则有( )A .10a = , 2215/a m s =B .21215/a a m s ==C .10a =, 2210/a m s =D .21210/a a m s == 5.如图所示,竖直放置在水平面上的轻质弹簧上叠放着质量均为2kg 的物块A 、B ,它们处于静止状态,若突然将一个大小为10N 、方向竖直向下的力施加在物块A 上,则此瞬间,A 对B的压力大小为(g=10m/s 2)( )A .10 NB .20 NC .25 ND .30 N6.质量为m 的物体放置在光滑的水平面上,左右两端分别固定一个弹簧,弹簧的另一端连着细绳,细绳跨过光滑定滑轮与质量为M =2m 的物体相连,如图所示。
人教版新教材高中物理必修第一册 第四章 运动和力的关系牛顿运动定律---加速度瞬时性专题(题组分类训练)题组特训特训内容 题组一力、加速度和速度的关系 题组二轻弹簧瞬时问题模型 题组三刚性绳瞬时问题模型(杆、细线、接触面等) 题组四 超重和失重现象的理解及应用1.加速度与合力的关系由牛顿第二定律F =ma ,加速度a 与合力F 具有瞬时对应关系,合力增大,加速度增大,合力减小,加速度减小;合力方向变化,加速度方向也随之变化.2.速度与加速度(合力)的关系速度与加速度(合力)方向相同或夹角为锐角,物体做加速运动;速度与加速度(合力)方向相反或夹角为钝角,物体做减速运动.3.合力、加速度、速度的关系(1)物体的加速度由所受合力决定,与速度无必然联系.(2)合力与速度夹角为锐角,物体加速;合力与速度夹角为钝角,物体减速.(3)a =Δv Δt 是加速度的定义式,a 与v 、Δv 无直接关系;a =F m是加速度的决定式. 题组特训一:力、加速度和速度的关系1. 一个做直线运动的物体受到的合外力的方向与物体运动的方向相同,当合外力减小时,物体运动的加速度和速度的变化是( )A .加速度增大,速度增大B .加速度减小,速度减小C .加速度增大,速度减小D .加速度减小,速度增大【答案】D【解析】当合外力减小时,根据牛顿第二定律a =Fm 知,加速度减小,因为合外力的方基础知识清单向与速度方向相同,则加速度方向与速度方向相同,故速度增大,D 正确.2. (多选)雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关.一雨滴从空中由静止开始沿竖直方向下落,雨滴下落过程中所受重力保持不变,其速度-时间图像如图所示,则雨滴下落过程中( )A .速度先增大后减小B .加速度先减小后不变C .受到的合力先减小后不变D .受到的空气阻力不变【答案】BC【解析】由题图可知,雨滴的速度先增大后不变,故A 错误;因为v -t 图像的斜率表示加速度,可知加速度先减小后不变,根据F =ma 可知雨滴受到的合力先减小后不变,故B 、C 正确;根据mg -F f =ma 可知雨滴受到的空气阻力先增大后不变,故D 错误.3. 如图所示,一个小球从竖直立在地面上的轻弹簧正上方某处自由下落,在小球与弹簧开始接触到弹簧被压缩到最短的过程中,小球的速度和加速度的变化情况是( )A .加速度越来越大,速度越来越小B .加速度和速度都是先增大后减小C .速度先增大后减小,加速度方向先向下后向上D .速度一直减小,加速度大小先减小后增大【答案】C【解析】在接触的第一个阶段mg >kx ,F 合=mg -kx ,合力方向竖直向下,小球向下运动,x 逐渐增大,所以F 合逐渐减小,由a =F 合m 得,a =mg -kx m ,方向竖直向下,且逐渐减小,又因为这一阶段a 与v 都竖直向下,所以v 逐渐增大.当mg =kx 时,F 合=0,a =0,此时速度达到最大.之后,小球继续向下运动,mg <kx ,合力F 合=kx -mg ,方向竖直向上,小球向下运动,x 继续增大,F 合增大,a =kx -mg m ,方向竖直向上,随x 的增大而增大,此时a 与v 方向相反,所以v 逐渐减小.综上所述,小球向下压缩弹簧的过程中,F 合的方向先向下后向上,大小先减小后增大;a 的方向先向下后向上,大小先减小后增大;v 的方向向下,大小先增大后减小.故C 正确.4. 有一轻质橡皮筋下端挂一个铁球,手持橡皮筋的上端使铁球竖直向上做匀加速运动,若某时刻手突然停止运动,则下列判断正确的是( )A.铁球立即停止上升,随后开始向下运动B.铁球立即开始向上做减速运动,当速度减到零后开始下落C.铁球立即开始向上做减速运动,当速度达到最大值后开始下落D.铁球继续向上做加速运动,当速度达到最大值后才开始做减速运动【答案】 D【解析】铁球匀加速上升,受到拉力和重力的作用,且拉力的大小大于重力,手突然停止运动瞬间,铁球由于惯性继续向上运动,开始阶段橡皮条的拉力还大于重力,合力竖直向上,铁球继续向上加速运动,当拉力等于重力后,速度达到最大值,之后拉力小于重力,铁球开始做减速运动,故A、B、C错误,D正确.5.一质点受多个力的作用,处于静止状态.现使其中一个力的大小逐渐减小到零,再沿原方向逐渐恢复到原来的大小.在此过程中,其他力保持不变,则质点的加速度大小a 和速度大小v的变化情况是( )A.a和v都始终增大B.a和v都先增大后减小C.a先增大后减小,v始终增大D.a和v都先减小后增大【答案】 C【解析】质点受多个力的作用,处于静止状态,则多个力的合力为零,其中任意一个力与剩余所有力的合力大小相等、方向相反,使其中一个力的大小逐渐减小到零再恢复到原来大小的过程中,则所有力的合力先变大后变小,但合力的方向不变,根据牛顿第二定律知,a先增大后减小,v始终增大,C正确.基础知识清单1.加速度瞬时问题的两种关键模型①轻弹簧模型(轻弹簧、橡皮绳、弹性绳等)明显形变产生的弹力,在两端连接有物体时,形变恢复需较长时间,其弹力不能突变。
第2讲牛顿第二定律的基本应用学习目标 1.会用牛顿第二定律分析计算物体的瞬时加速度。
2.掌握动力学两类基本问题的求解方法。
3.知道超重和失重现象,并会对相关的实际问题进行分析。
1.2.3.4.1.思考判断(1)已知物体受力情况,求解运动学物理量时,应先根据牛顿第二定律求解加速度。
(√)(2)运动物体的加速度可根据运动速度、位移、时间等信息求解,所以加速度由运动情况决定。
(×)(3)加速度大小等于g的物体一定处于完全失重状态。
(×)(4)减速上升的升降机内的物体,物体对地板的压力大于物体的重力。
(×)(5)加速上升的物体处于超重状态。
(√)(6)物体处于超重或失重状态时其重力并没有发生变化。
(√)(7)根据物体处于超重或失重状态,可以判断物体运动的速度方向。
(×)2.(2023·江苏卷,1)电梯上升过程中,某同学用智能手机记录了电梯速度随时间变化的关系,如图所示。
电梯加速上升的时段是()A.从20.0 s到30.0 sB.从30.0 s到40.0 sC.从40.0 s到50.0 sD.从50.0 s到60.0 s答案A考点一瞬时问题的两类模型两类模型例1 (多选)(2024·湖南邵阳模拟)如图1所示,两小球1和2之间用轻弹簧B相连,弹簧B与水平方向的夹角为30°,小球1的左上方用轻绳A悬挂在天花板上,绳A与竖直方向的夹角为30°,小球2的右边用轻绳C沿水平方向固定在竖直墙壁上。
两小球均处于静止状态。
已知重力加速度为g,则()图1A.球1和球2的质量之比为1∶2B.球1和球2的质量之比为2∶1C.在轻绳A突然断裂的瞬间,球1的加速度大小为3gD.在轻绳A突然断裂的瞬间,球2的加速度大小为2g答案BC解析对小球1、2受力分析如图甲、乙所示,根据平衡条件可得F B=m1g,F B sin30°=m2g,所以m1m2=21,故A错误,B正确;在轻绳A突然断裂的瞬间,弹簧弹力未来得及变化,球2的加速度大小为0,弹簧弹力F B=m1g,对球1,由牛顿第二定律有F合=2m1g cos 30°=m1a,解得a=3g,故C正确,D错误。
牛顿运动定律专题(二)※【模型解析】——瞬时性问题(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理.(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变.【典型例题】例1.如图,物体A、B用轻质细线2相连,然后用细线1悬挂在天花板上,求剪断轻细线1的瞬间两个物体的加速度a1、a2大小分别为()A.g,0B.g,g C.0,g D.2g,g例1题图例2题图例3题图例2.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝P和物体Q的加速度大小是() A.a P=a Q=g B.a P=2g,a Q=0C.a P=g,a Q=2g D.a P=2g,a Q=g例3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有()A.a1=a2=a3=a4=0B. a1=a2=a3=a4=gC.a1=a2=g,a3=0,a4=m+MM g D.a1=g,a2=m+MM g,a3=0,a4=m+MM g例4.细绳拴一个质量为m 的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连.平衡时细绳与竖直方向的夹角为53°,如图所示.以下说法正确的是( )A .小球静止时弹簧的弹力大小为35mg B .小球静止时细绳的拉力大小为35mg C .细线烧断瞬间小球的加速度立即为gD .细线烧断瞬间小球的加速度立即为53g 【课后练习】1.如右图所示,在倾角为θ的光滑斜面上有两个用劲度系数为k 的轻质弹簧相连的物块A 、B ,质量均为m ,开始时两物块均处于静止状态.现下压A 再静止释放使A 开始运动,当物块B 刚要离开挡板时,A 的加速度的大小和方向为( )A .0B .2gsin θ,方向沿斜面向下C .2gsin θ,方向沿斜面向上D .gsin θ,方向沿斜面向下1题图 2题图 3题图2.如图所示,竖直放置在水平面上的轻质弹簧上放着质量为3kg 的物体A ,处于静止状态。
高中物理:牛顿运动定律瞬时加速度问题
由牛顿第二定律可知,加速度是由合外力决定的,即有什么样的合外力,就有什么样的加速度与之相对应。
当合外力变化时,加速度也随之变化,某一时刻的瞬时加速度是由那一时刻物体所受合外力决定的,因此确定瞬时加速度的关键是正确确定瞬时作用力。
牛顿第二定律的瞬时性
所谓瞬时性,就是物体的加速度a与其所受的合外力F有瞬时对应的关系,每一瞬时的加速度只取决于这一瞬时的合外力。
也就是物体一旦受到不为零的合外力的作用,物体立即产生加速度;当合外力的方向、大小改变时,物体的加速度方向、大小也立即发生相应的改变;当物体的合外力为零时,物体的加速度也立即为零。
由此可知,力和加速度之间是瞬时对应的。
瞬时加速度的求解
分析物体在在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
常见情景
项目
情景1
情景2
情景3
情景4
情景5
图示
说明
几个物体叠放在一起并处于平衡状态,突然抽出下方木板的瞬间
在推力F作用下,A、B共同以加速度a做匀加速直线运动,突然撤去推力F的瞬间
两小球A、B用轻弹簧连接,通过细线悬挂于天花板处于静止状态,剪断细线的瞬间
用手提一轻弹簧,弹簧下端挂一个金属球,在将整个装置匀加速上提的过程中,手突然停止不动的瞬间
小球用水平弹簧系住,并用倾角为θ的光滑板AB托着,当板AB 突然向下撤离的瞬间
一、把握两种模型
1、轻绳、轻杆和接触面
不发生明显形变就能产生弹力,剪断或脱离后,不需要时间恢复形变,弹力立即消失或改变。
2、弹簧、蹦床和橡皮筋
当弹簧的两端与物体相连时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力大小认为是不变的。
二、求瞬时加速度的一般思路
(1)分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则利用平衡条件;若处于加速状态则利用牛顿运动定律);(2)分析当状态变化时(如:烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(如:被剪断的绳、弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失);(3)求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度。
解题时应注意两种基本模型的建立:
例题:(多选)如图所示,竖直光滑杆上套有一个小球和两根轻质弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M、N固定于杆上,小球处于静止状态.若拔去销钉M的瞬间,小球的加速度大小为12 m/s2,若不拔去销钉M而拔去销钉N的瞬间,小球的加速度可能为(g取10 m/s2)()
归纳总结:求解此类问题的关键是要知道加速度与力的变化具有瞬时对应关系,因此必须认真分析变化前后物体的受力情况,特别是注意区别牛顿第二定律瞬时性的两种模型:
1.刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间;
2.弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变。
经典例题
解析
1 答案
2
答案
方法归纳
1.其他力改变时,弹簧的弹力不能在瞬间发生突变
2.其他力改变时,细绳上的弹力可以在瞬间发生突变
如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质
弹簧相连,物块1、3质量为m,物块2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态。
现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别a1、a2、a3、a4。
重力加速度大小为g,则有( )
解析:在抽出木板的瞬时,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a1=a2=g;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上的弹力大小和对物块4向下的弹力大小仍为mg,因此物块3满足mg=F,a3=0;由牛顿第二定律得物块4满足
,所以C对。