求瞬时加速度几种模型
- 格式:ppt
- 大小:269.50 KB
- 文档页数:11
瞬时加速度问题1.求解思路:求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.2.牛顿第二定律瞬时性的“两类”模型(1)刚性绳(轻杆或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.3.在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.典型例题分析1、如图所示,质量为0.2 kg的物体A静止在竖直的轻弹簧上,质量为0.6 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压,现突然将细线剪断,则剪断后瞬间A.B间的作用力大小为(g取10 m/s2)()A.0.5 N B.2.5 N C.0 N D.1.5 N【解析】剪断细线前,A、B间无压力,则弹簧的弹力F=m A g=0.2×10=2 N,剪断细线的瞬间,对整体分析,N=m B g-m B a=0.6×10 N-0.6×7.5 N=1.5 N.故选D项【答案】D2、如图所示,天花板上固定有一光滑的定滑轮,绕过定滑轮且不可伸长的轻质细绳左端悬挂一质量为M的铁块;右端悬挂有两质量均为m的铁块,上下两铁块用轻质细线连接,中间夹一轻质弹簧处于压缩状态,此时细线上的张力为2mg,最初系统处于静止状态.某瞬间将细线烧断,则左端铁块的加速度大小为( )A.14gB.13gC.23gD.13g 【解析】 根据题意,烧断细线前轻绳上的张力为2mg ,可得到M =2m ,以右下端的铁块为研究对象,根据平衡条件可知,细线烧断前弹簧的弹力为mg ,细线烧断前的瞬间,铁块M 与右端上面的铁块m 间轻绳的故C 项正确.【答案】 C3、“儿童蹦极”中,拴在腰间左右两侧的是弹性极好的橡皮绳..质量为m 的小明如图所示静止悬挂时,两橡皮绳的拉力大小均恰为mg ,若此时小明右侧橡皮绳在腰间断裂,则小明此时( )A .加速度为零,速度为零B .加速度a =g ,沿原断裂橡皮绳的方向斜向下C .加速度a =g ,沿未断裂橡皮绳的方向斜向上D .加速度a =g ,方向竖直向下 解析 根据题述,腰间左右两侧的橡皮绳中弹力等于重力.若此时小明右侧橡皮绳在腰间断裂,则小明此时所受合力方向沿原断裂橡皮绳的方向斜向下,大小等于mg ,所以小明的加速度a =g ,沿原断裂橡皮绳的方向斜向下,B 项正确.答案B4、(多选)如图所示,A 、B 、C 三球质量分别为3m 、2m 、m ,轻质弹簧一端固定在斜面顶端、另一端与A 球相连,A 、B 间固定一个轻杆,B 、C 间由一轻质细线连接.倾角为θ=30°的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态.已知重力加速度为g.将细线烧断的瞬间,下列说法正确的是( )A .A 、B 两个小球的加速度均沿斜面向上,大小均为g 10B .B 球的加速度为g 2,方向沿斜面向下C .A 、B 之间杆的拉力大小为mgD .A 、B 之间杆的拉力大小为1.2mg解析A、B项,烧断细线前,以A、B、C组成的系统为研究对象,系统静止,处于平衡状态,合力为零,则弹簧的弹力为F=(3m+2m+m)gsinθ=6mgsinθ.以C为研究对象知,细线的拉力为mgsinθ.烧断细线的瞬间,由于弹簧弹力不能突变,弹簧弹力不变,以A、B组成的系统为研究对象,由牛顿第二定律得:F-(3m+2m)gsinθ=(3m+2m)a AB.答案AD5、如图所示,弹簧p和细绳q的上端固定在天花板上,下端用小钩勾住质量为m的小球C,弹簧、细绳和小钩的质量均忽略不计.静止时p、q与竖直方向的夹角均为60°.下列判断正确的有()A.若p和球突然脱钩,则脱钩后瞬间q对球的拉力大小为mgB.若p和球突然脱钩,则脱钩后瞬间球的加速度大小为gC.若q和球突然脱钩,则脱钩后瞬间p对球的拉力大小为mgD.若q和球突然脱钩,则脱钩后瞬间球的加速度大小为g6、(多选)如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a 上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断,将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g,在剪断的瞬间,()A.a1=3g B.a1=0 C.Δl1=2Δl2D.Δl1=Δl2[审题突破](1)剪断前,S1的弹力为________,S2的弹力为________,a物块所受合力为________;(2)剪断瞬间,两弹簧弹力________,物块a所受合力为________.[解析]设物体的质量为m,剪断细绳的瞬间,绳子的拉力消失,弹簧还没有来得及改变,所以剪断细绳的瞬间a受到重力和弹簧S1的拉力F T1,剪断前对bc和弹簧S2组成的整体分析可知F T1=2mg,故a受到的合=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确、D错误.[答案]AC7.如图所示,物块1、2 间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为aA .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +M M gD .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +M M g解析:选C.在抽出木板的瞬间,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上1、四个质量均为m 的小球,分别用三条轻绳和一根轻弹簧连接,处于平衡状态,如图所示.现突然迅速剪断轻绳A1、B1,让小球下落,在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用a1、a2、a3和a4表示,则( )A .a 1=g ,a 2=g ,a 3=2g ,a 4=0B .a 1=0,a 2=2g ,a 3=0,a 4=2gC .a 1=g ,a 2=g ,a 3=g ,a 4=gD .a 1=0,a 2=2g ,a 3=g ,a 4=g2、(多选)在动摩擦因数μ=0.2的水平面上有一个质量为m =2 kg 的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零.当剪断轻绳的瞬间,取g =10 m/s 2,以下说法正确的是( )A .此时轻弹簧的弹力大小为20 NB .小球的加速度大小为8 m/s 2,方向向左C .若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s 2,方向向右D .若剪断弹簧,则剪断的瞬间小球的加速度为0答案ABD解析在剪断轻绳前,小球受重力、绳子的拉力以及弹簧的弹力处于平衡,根据共点力平衡得,弹簧的弹力:F=mgtan45°=20×1=20 N,故A项正确;在剪断轻绳的瞬间,弹簧的弹力仍然为20 N,小球此时受重力、支持力、弹簧弹力和摩擦力四个力作用;小球所受的最大静摩擦力为:f=μmg=0.2×20 N=4 N,根据牛顿第二定律得小球的加速度为:a=(F-f)/m=8 m/s2;合力方向向左,所以向左加速.故B项正确;剪断弹簧的瞬间,轻绳对小球的拉力瞬间为零,此时小球所受的合力为零,则小球的加速度为零,故C项错误,D项正确.3、如图所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为( )A.0 B.g C.g D.g。
人教版新教材高中物理必修第一册 第四章 运动和力的关系牛顿运动定律---加速度瞬时性专题(题组分类训练)题组特训特训内容 题组一力、加速度和速度的关系 题组二轻弹簧瞬时问题模型 题组三刚性绳瞬时问题模型(杆、细线、接触面等) 题组四 超重和失重现象的理解及应用1.加速度与合力的关系由牛顿第二定律F =ma ,加速度a 与合力F 具有瞬时对应关系,合力增大,加速度增大,合力减小,加速度减小;合力方向变化,加速度方向也随之变化.2.速度与加速度(合力)的关系速度与加速度(合力)方向相同或夹角为锐角,物体做加速运动;速度与加速度(合力)方向相反或夹角为钝角,物体做减速运动.3.合力、加速度、速度的关系(1)物体的加速度由所受合力决定,与速度无必然联系.(2)合力与速度夹角为锐角,物体加速;合力与速度夹角为钝角,物体减速.(3)a =Δv Δt 是加速度的定义式,a 与v 、Δv 无直接关系;a =F m是加速度的决定式. 题组特训一:力、加速度和速度的关系1. 一个做直线运动的物体受到的合外力的方向与物体运动的方向相同,当合外力减小时,物体运动的加速度和速度的变化是( )A .加速度增大,速度增大B .加速度减小,速度减小C .加速度增大,速度减小D .加速度减小,速度增大【答案】D【解析】当合外力减小时,根据牛顿第二定律a =Fm 知,加速度减小,因为合外力的方基础知识清单向与速度方向相同,则加速度方向与速度方向相同,故速度增大,D 正确.2. (多选)雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关.一雨滴从空中由静止开始沿竖直方向下落,雨滴下落过程中所受重力保持不变,其速度-时间图像如图所示,则雨滴下落过程中( )A .速度先增大后减小B .加速度先减小后不变C .受到的合力先减小后不变D .受到的空气阻力不变【答案】BC【解析】由题图可知,雨滴的速度先增大后不变,故A 错误;因为v -t 图像的斜率表示加速度,可知加速度先减小后不变,根据F =ma 可知雨滴受到的合力先减小后不变,故B 、C 正确;根据mg -F f =ma 可知雨滴受到的空气阻力先增大后不变,故D 错误.3. 如图所示,一个小球从竖直立在地面上的轻弹簧正上方某处自由下落,在小球与弹簧开始接触到弹簧被压缩到最短的过程中,小球的速度和加速度的变化情况是( )A .加速度越来越大,速度越来越小B .加速度和速度都是先增大后减小C .速度先增大后减小,加速度方向先向下后向上D .速度一直减小,加速度大小先减小后增大【答案】C【解析】在接触的第一个阶段mg >kx ,F 合=mg -kx ,合力方向竖直向下,小球向下运动,x 逐渐增大,所以F 合逐渐减小,由a =F 合m 得,a =mg -kx m ,方向竖直向下,且逐渐减小,又因为这一阶段a 与v 都竖直向下,所以v 逐渐增大.当mg =kx 时,F 合=0,a =0,此时速度达到最大.之后,小球继续向下运动,mg <kx ,合力F 合=kx -mg ,方向竖直向上,小球向下运动,x 继续增大,F 合增大,a =kx -mg m ,方向竖直向上,随x 的增大而增大,此时a 与v 方向相反,所以v 逐渐减小.综上所述,小球向下压缩弹簧的过程中,F 合的方向先向下后向上,大小先减小后增大;a 的方向先向下后向上,大小先减小后增大;v 的方向向下,大小先增大后减小.故C 正确.4. 有一轻质橡皮筋下端挂一个铁球,手持橡皮筋的上端使铁球竖直向上做匀加速运动,若某时刻手突然停止运动,则下列判断正确的是( )A.铁球立即停止上升,随后开始向下运动B.铁球立即开始向上做减速运动,当速度减到零后开始下落C.铁球立即开始向上做减速运动,当速度达到最大值后开始下落D.铁球继续向上做加速运动,当速度达到最大值后才开始做减速运动【答案】 D【解析】铁球匀加速上升,受到拉力和重力的作用,且拉力的大小大于重力,手突然停止运动瞬间,铁球由于惯性继续向上运动,开始阶段橡皮条的拉力还大于重力,合力竖直向上,铁球继续向上加速运动,当拉力等于重力后,速度达到最大值,之后拉力小于重力,铁球开始做减速运动,故A、B、C错误,D正确.5.一质点受多个力的作用,处于静止状态.现使其中一个力的大小逐渐减小到零,再沿原方向逐渐恢复到原来的大小.在此过程中,其他力保持不变,则质点的加速度大小a 和速度大小v的变化情况是( )A.a和v都始终增大B.a和v都先增大后减小C.a先增大后减小,v始终增大D.a和v都先减小后增大【答案】 C【解析】质点受多个力的作用,处于静止状态,则多个力的合力为零,其中任意一个力与剩余所有力的合力大小相等、方向相反,使其中一个力的大小逐渐减小到零再恢复到原来大小的过程中,则所有力的合力先变大后变小,但合力的方向不变,根据牛顿第二定律知,a先增大后减小,v始终增大,C正确.基础知识清单1.加速度瞬时问题的两种关键模型①轻弹簧模型(轻弹簧、橡皮绳、弹性绳等)明显形变产生的弹力,在两端连接有物体时,形变恢复需较长时间,其弹力不能突变。
专题课5瞬时问题和连接体问题题型一瞬时问题1.模型介绍(1)刚性绳(或接触面)模型:这种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,形变恢复几乎不需要时间。
(2)弹簧(或橡皮条)模型:此种物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成是不变的。
(3)杆模型:杆不发生明显形变也能产生弹力,杆的弹力可以发生突变。
2.解题关键关键是分析瞬时变化前后的受力情况。
如图所示,质量为m的小球在轻弹簧和水平轻绳作用下处于静止状态,弹簧与竖直方向夹角为θ。
设重力加速度为g,剪断轻绳的瞬间,小球加速度大小和方向分别为()A.g,沿竖直方向B. g sin θ,沿切线方向C. g cos θ,沿水平方向D. g tan θ,沿水平方向[解析]轻绳未剪断时,轻绳的拉力T=mg tan θ,当剪断轻绳的瞬间,弹簧弹力不能突变,则弹簧弹力与重力的合力水平向左,大小等于F合=T=mg tan θ,根据牛顿第二定律,小球的加速度为a=F合m=g tan θ,方向沿水平向左。
[答案] D(多选)如图所示,天花板上悬挂一轻质弹簧,弹簧下端拴接质量为m的小球A,A球通过轻杆连接质量为2m的小球B,重力加速度为g,下列说法正确的是()A.剪断弹簧瞬间,轻杆上弹力不为0B.剪断弹簧瞬间,A、B球加速度均为gC.剪断轻杆瞬间,A、B球加速度大小均为gD.剪断轻杆瞬间,A球加速度大小为2g,B球加速度大小为g[解析]剪断弹簧瞬间,以A、B球以及杆整体作为研究对象,整体做自由落体运动,加速度为g;再隔离B球,根据牛顿第二定律可知,B球做自由落体运动,杆对B球的力必须为零,故A错误,B正确;剪断轻杆瞬间,B球加速度大小为g,做自由落体运动;剪断轻杆前对A球进行受力分析如图所示,根据平衡条件有F弹=mg+F杆=3mg,当剪断轻杆后,对球A,除了杆的力消失以外,其他力没有发生变化,根据牛顿第二定律有F弹-mg=ma,得a=2g,加速度方向竖直向上,故C错误,D正确。
牛顿运动定律:瞬时加速度问题知识点睛牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,即m Fa ,ma F ,适用于惯性参考系中宏观、低速的物体;牛顿第二定律具有以下性质:①矢量性:加速度的方向与合外力方向一致;②瞬时性:ma F 对于过程中的每一瞬间都成立,a 和F 具有瞬时对应关系;③相对性:mFa 求得的a 是相对于惯性参考系地面而言的;④独立性:若F 是物体所受的合外力,则a 为实际加速度;若F 是某一方向上的合外力,则a 是该方向上的加速度关于力的瞬时性:(1) 物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之前或之后的力无关,不等于零的合外力作用在物体上,物体立即产生加速度;若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;若合外力变为零,加速度也立即变为零,也就是说物体运动的加速度可以突变(2) 对于中学物理的几个理想模型,如刚性绳、轻杆、轻弹簧、接触面等产生的弹力能否突变,关键要看在受力时形变是否明显,若形变不明显,则可以突变;若形变明显,则不能突变,详细如下: 比较模型 刚性绳 轻杆 接触面 弹性绳 轻弹簧 形变类型 拉伸 拉伸、压缩、扭曲 压缩 拉伸拉伸、压缩弹力方向沿着绳指向 绳收缩方向能沿着杆也可以 和杆成任意角度 垂直于接触面 指向受力物体 沿着绳指向 绳收缩方向 沿着弹簧指向弹簧 恢复原长的方向 形变大小 形变不明显 形变不明显 形变不明显 形变明显 形变明显 能否突变 可以突变可以突变可以突变不能突变不能突变例题精讲例题1:如图1,一质量为m 的物体系于长度分别为1l 和2l 的两根细绳上,1l 的一端悬挂在天花板上,与竖直方向夹角为 , 2l 水平拉直,物体处于平衡状态图1 图2(1)现将2l 线剪断,求剪断瞬间物体的加速度? 下面是某同学对该题的一种解法:设1l 线上拉力为1F ,2l 线上拉力为2F ,重力为mg ,物体在三力作用下保持平衡:mg F cos 1,21sin F F , tan 2mg F ,剪断2l 线的瞬间,2F 突然消失,物体即在2F 反方向上获得加速度,因为ma mg tan ,所以加速度 tan g a ,方向沿2F 反方向 你认为这个结果正确吗?请对该解法作出评价并说明(2)若将图中的细线1l 改为长度相同、质量不计的轻弹簧,如图2所示,其他条件不变,求解步骤与(1)完全相同,即 tan g a ,你认为这个结果正确吗?请说明理由解析:(1)结果不正确,因为2l 被剪断瞬间,轻绳1l 上张力大小发生了突变,此瞬间 cos 1mg F ,它与重力沿绳方向的分力抵消,重力垂直于绳方向的分力 sin mg 产生加速度 sin g a (2)结果正确,因为2l 被剪断瞬间,弹簧1l 的长度不能发生突变,即1F 大小方向都不变,它与重 力的合力与2F 方向相反,大小与2F 相等,所以物体的加速度大小为 tan g a例题2:光滑水平面上有一质量kg 1 m 的小球,小球与水平轻弹簧和与水平方向夹角 为 30的轻绳的一端相连,如图,此时小球处于静止状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,小球加速度的大小和方向如何?此时轻弹簧弹力与水平面对球的弹力比值是多少?解析:小球在绳末断时受三个力的作用, 绳剪断的瞬间,作用于小球的拉力T 立即消失,但弹簧的形变还存在,故弹簧的弹力F 存在.(1)绳未断时:F T 30cos ,mg T 30sin ,解得:N 20 T , N 310 F(2)绳断的瞬间:0 T ,在竖直方向支持力mg N ,水平方向F 大小方向不变,且ma F 所以310mFa 2/s m ,此时3 N F 说明:当将弹簧改为轻绳时,斜向上拉绳剪断的瞬间,水平绳的拉力立即为零.例题3:如图,木块B A 、用轻弹簧相连,放在悬挂的木箱C 内,处于静止状态,它们质量之比是3:2:1当剪断细绳的瞬间,各物体的加速度大小及其方向?解析:设A 的质量为m ,则C B 、的质量分别为m 2、m 3在未剪断细绳时,C B A 、、均受平衡力作用,受力如图所示。
牛顿第二定律的瞬时性问题根据牛顿第二定律的表达式F=ma,物体的加速度与物体所受的合外力总是同时产生、同时变化、同时消失,故物体的合外力与其加速度具有瞬时对应关系。
所以,合外力恒定时加速度恒定不变,合外力变化时加速度随之发生变化。
在某些情况下物体的合外力受力条件突然发生变化,要求分析物体加速度的变化,这类问题我们称为瞬时性问题。
一、瞬时性问题的解题步骤二、两种模型1、轻绳、轻杆和接触面这些物体产生弹力时没有明显的形变,剪断或脱离后,恢复形变不需要时间,弹力立即消失或改变,如果题目中没有特殊说明,我们均可认为轻绳、轻杆和接触面的弹力发生突变。
例题1:如图甲、乙所示,质量为m的两物体分别用长度均为L的细线悬挂在天花板上的A、B、C、D 四点,A、B及C、D两点间的距离也为L,甲图中物体通过一小段细线悬挂,而乙图中两根等长细线直接系在物体上,现在剪断悬挂在B、D两点的细线,则在剪断细线的瞬间,物体的加速度为()A. 甲图中物体的加速度为0,乙图中物体的加速度为gB. 甲图中物体的加速度为12g,乙图中物体的加速度为32g分析原状态受力情况,求出原状态下各力的大小和方向。
原状态当前状态加速度若原状态是平衡状态,则由平衡条件求解,若原状态处于加速状态,则由牛顿第二定律求解。
分析当前状态与原状态的间的差异,发生了哪些变化?分析当前状态的受力情况,确定合外力,由牛顿第二定律求解加速度。
C. 甲图中物体的加速度为g,乙图中物体的加速度为1 2 gD. 甲图中物体的加速度为32g,乙图中物体的加速度为0分析与解:甲图中细线剪断后,物体将做自由落体运动,直至细线被拉直,所以剪断的瞬间物体加速度为g;乙图中细线剪断后,物体将绕C点做圆周运动,其加速度垂直细线,所以加速度为12g。
答案:C例题2:(多选)如图所示,质量分别为M=10kg和m=5kg的两物体通过细线连接,已知物体M与水平面的摩擦因数为0.1,物体m与水平面的摩擦因数为0.2,用恒定的外力F=30N拉着两物体在水平面上做匀加速运动,某时刻,突然撤去外力F的瞬间,下列说法正确的是()A.两物体的加速度大小均为43m/s2B.细线的拉力为10NC.物体m的加速度为2m/s2D. 细线的拉力为零分析与解:撤去力F的瞬间,由于物体m所受摩擦力产生的加速度大于物体M所受摩擦力产生的加速度,所以两细线间没有拉力,两物体加速度不同,物体M的加速度为1 m/s2,物体m的加速度为2 m/s2.答案:CD例题3:(多选)如图所示,箱子内用两根细线将质量为m的小球悬挂在A、B两点,其中细线AO与水平方向成600角,细线BO水平,箱子做竖直向上的匀加速直线运动,加速度a=g,g为重力加速度。
2023高考一轮知识点精讲和最新高考题模拟题同步训练第三章牛顿运动定律专题13 牛顿第二定律的应用第一部分知识点精讲1. 瞬时加速度问题(1)两类模型(2). 在求解瞬时加速度时应注意的问题(i)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析。
(ii)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变。
(3)求解瞬时加速度的步骤2.动力学的两类基本问题第一类:已知受力情况求物体的运动情况。
第二类:已知运动情况求物体的受力情况。
不管是哪一类动力学问题,受力分析和运动状态分析都是关键环节。
(1)解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图:作为“桥梁”的加速度,既可能需要根据已知受力求解,也可能需要根据已知运动求解。
(2)动力学两类基本问题的解题步骤(3)掌握动力学两类基本问题的“两个分析”“一个桥梁”,以及在多个运动过程之间建立“联系”。
(i )把握“两个分析”“一个桥梁”(ii)找到不同过程之间的“联系”,如第一个过程的末速度就是下一个过程的初速度,若过程较为复杂,可画位置示意图确定位移之间的联系。
3.物体在五类光滑斜面上运动时间的比较第一类:等高斜面(如图1所示)由L =12 at 2,a =g sin θ,L =h sin θ可得t =1sin θ 2h g, 可知倾角越小,时间越长,图1中t 1>t 2>t 3。
第二类:同底斜面(如图2所示)由L =12 at 2,a =g sin θ,L =d cos θ可得t = 4d g sin 2θ, 可见θ=45°时时间最短,图2中t 1=t 3>t 2。
第三类:圆周内同顶端的斜面(如图3所示)在竖直面内的同一个圆周上,各斜面的顶端都在竖直圆周的最高点,底端都落在该圆周上。
由2R ·sin θ=12·g sin θ·t 2,可推得t 1=t 2=t 3。
牛顿第二定律瞬时性模型小结学习物理的过程就是不断建立和完善物理模型的过程。
完善的物理模型能为我们在解题和处理物理问题时带来方便,现就牛顿第二定律的瞬时性的几个模型总结如下供大家学习交流:1.轻绳或接触面模型:此类物体都有一个共同的特点形变量比较小。
在处理这类问题如:剪断(或脱离后)时可以认为是一种不发生明显型变量就能产生弹力的物体,弹力发生突变立即消失或不需要恢复时间。
2.弹簧或橡皮条绳模型:此类物体都有一个共同的特点形变量比较大。
在处理这类问题如:剪断时恢复原状需要较长时间,在瞬间问题中弹簧与物体相连时,其弹力的大小往往可以看成不变,但弹簧一端剪断不与物体相连时弹力可以突变。
例题1.如图:甲所示质量为m 的物体系于长度分别为21L L 和 的两根不可伸长的细线上,1L 的一端悬挂在天花板上,θ于平衡状态,现将2L 解析:剪断2L 瞬间2L 上的拉力立即消失,1L 上 GyF =θs i n g a ma G X =⇒=试一试:上题中如果剪断的是1L 那小球的加速度又如何呢?例题2.如图:B A m m = A.B 间用不可伸长的轻绳连接,在M 处将悬挂A 的绳子剪断,求:(1)剪断后瞬间A.B 的加速度综上得:A 和 B : g a a B A ==试一试:若在题中,A.B 间改用橡皮筋(或轻弹簧)连着,结果又如何呢?例题3.如图:在动擦因数μ=0.2的水平面上,有一个质量为m=1kg 的小球。
小球与水平弹簧及与竖直方向成 45=θ角的不可伸长的轻弹簧一端相连。
此时小球处于静止平衡状态,且水平面对小球的弹力恰好为0。
当剪断轻绳的瞬间。
(210smg = )求:(1) 此时弹簧的弹力为多大? (2) 小球的加速度和方向?(3)剪断弹簧瞬间小球的加速度?解析:(1)在剪断绳子瞬间弹簧上弹力仍然存在但绳子上的力马上消失小球的受A m gA:g m T B =1 g m B1TB:g m T T A +=1 A: T1 A gg m BB:剪断前: 剪断后: F F=mg(2)剪断后小球的受力如下:方向:如上图与竖直方向夹角 45=θ斜向下。
牛顿第二定律的瞬时性问题加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失。
分析物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意以下两种模型:(1)刚性绳(或接触面)——不发生明显形变就能产生弹力,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间。
(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变。
【题型1】两个质量均为m 的小球,用两条轻绳连接,处于平衡状态,如图所示。
现突然迅速剪断轻绳OA ,让小球下落,在剪断轻绳的瞬间,设小球A 、B 的加速度分别用a 1和a 2表示,则( )A.a 1=g ,a 2=gB.a 1=0,a 2=2gC.a 1=g ,a 2=0D.a 1=2g ,a 2=0【题型2】如图所示,光滑水平面上,A 、B 两物体用轻弹簧连接在一起,A 、B 的质量分别为m 1、m 2,在拉力F 作用下,A 、B 共同做匀加速直线运动,加速度大小为a ,某时刻突然撤去拉力F ,此瞬时A 和B 的加速度大小为a 1和a 2,则( )A.a 1=0,a 2=0B.a 1=a ,a 2=m 2m 1+m 2aC.a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2a D.a 1=a ,a 2=m 1m 2a 【题型3】(多选)如图甲、乙所示,图中细线均不可伸长,两小球质量相同且均处于平衡状态,细线和弹簧与竖直方向的夹角均为θ。
如果突然把两水平细线剪断,则剪断瞬间( )A.图甲中小球的加速度大小为g sin θ,方向水平向右B.图乙中小球的加速度大小为g tan θ,方向水平向右C.图甲中倾斜细线与图乙中弹簧的拉力之比为1∶cos 2θD.图甲中倾斜细线与图乙中弹簧的拉力之比为cos 2θ∶1【题型4】如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M ,两个系统均置于水平放置的光滑木板上,并处于静止状态。