当前位置:文档之家› 顺序阀单阀控制原理区别操作注意事项

顺序阀单阀控制原理区别操作注意事项

顺序阀单阀控制原理区别操作注意事项
顺序阀单阀控制原理区别操作注意事项

汽轮机的配汽方式

改变汽轮机功率,可通过改变蒸汽在叶栅通流部分的焓降和改变进汽量。这种改变进汽量和焓降的方式称为汽轮机的配汽。汽轮机的配汽有节流配汽、喷嘴配汽和旁通配汽多种方式。现在的汽轮机普遍采用数字电液调节系统,具备阀门管理功能,即同一台汽轮机既可以采用阀门同时启闭的节流配汽(称为单阀控制>,也可以采用阀门顺序启闭的喷嘴配汽(称为顺序阀控制>,目前汽轮机都有调节级。

三种配汽方式

一、节流配汽

采用节流配汽的汽轮机,其全部蒸汽通过一个或几个同时启闭阀门,进入汽轮机的第一级,调节汽门后的压力即为汽轮机的进口压力。在部分负荷运行时,阀后压力决定于流量比,进汽温度基本保持不变[12]。特点如下:

1.负荷小于额定值时,所有进汽受到节流作用。节流配汽在部分负荷下相对内效率下降的主要原因是调节汽门的节流损失,低负荷时调节汽门的进汽机构节流损失大,并且随负荷下降而损失增大。

2.同样负荷下,背压越高,节流效率越低,所以,背压式汽轮机一般不用节流配汽。与喷嘴配汽相比,因为没有调节级,结构简单,制造成本较低,定压运行流量变化时,各级温度变化较小,热应力小,对负荷变化适应性较好。

二、喷嘴配汽

将汽轮机高压缸的第一级设为调节级,将该级的喷嘴分成4组或更多组。每一喷嘴组由1个独立的调节汽门供汽,通常认为调节级后的压力相等[13]。为减小喷嘴配汽调节级的漏汽量,调节级采用低反动度(约0.05)的冲动式。特点如下:

1.部分进汽度e<1,存在部分进汽损失,余速不能被利用,100%负荷效率低于纯节流配汽机组。

2.部分负荷,根据负荷大小,调门顺序开启,只有通过部分开启的调门有节流损失,而通过全开调门的汽流没有节流损失,因此效率高于节流。既可以承担基本负荷,又可调峰。

3.变工况时,调节级汽室及高压缸各级温度变化较大,引起的热应力较大。

三、旁通配汽

旁通配汽主要用于船舶和工业汽轮机,通过设置内部或外部旁通阀增大汽轮机的流量,增大汽轮机的功率输出或增大汽轮机的抽汽供热量。

喷嘴调节与节流调节的比较

一、调节级压力与流量的关系

调节级的最危险工况是当第一调节汽门全开而其他调节汽门都关闭时,调节级动叶受力最大,为最危险工况[14]。

1.当只有第一调节汽门全开而其他调节汽门关闭时,第一级理想比焓降最大;

2.此时流过第一喷嘴组的流量是第一喷嘴组的最大流量;

3.这股流量集中在第一喷嘴组后少数动叶上,每片动叶分摊的蒸汽流量最大;

4.动叶的蒸汽作用力正比于流量和比焓降之积。

二、喷嘴调节与节流调节的比较

1.汽缸沿圆周上温度的均匀性

节流调节原多应用于小型机组,目的是使调节系统及汽缸的结构简单,但是,现在大型机组亦有采用节流调节,其理由是:节流调节可以做到全周进汽,使汽缸在进汽段<高温段)温度均匀,汽缸结构简单,减小汽缸体内的热应力和因温度不匀引起的翘曲。对于大型机组采用节流调节时,为着避免节流调节阀尺寸过大,开启阀门所需要的提升力过大,将节流调节阀设计成为相同的若干个,外观上与喷嘴调节相同,但各阀同步开启和关闭。当用数个调节阀时,可以在机内内部联通成为全周进汽,亦可以分为几个弧段进汽<降低汽缸承受的最大压差),这时进汽度稍小于1。

喷嘴调节是几个调节阀分别向几个对应的喷嘴弧段供汽,随着负荷的增加,各阀依次开启[15]。为使汽缸结构简化,调节阀可设计安置在机旁,用导汽管与汽缸内喷嘴弧段<蒸汽室)相联。因考虑热膨胀,导汽管甚长,使调节阀后有一不小的中间容积。当调节阀的数目较多、阀的尺寸较小时,亦有直接布置在上汽缸和下汽缸上,与汽缸直接相连。因为喷嘴调节的喷嘴弧段是依次投入工作的,所以有一些弧段内为新汽,有一部分是节流后的新汽,当调节阀尚未开启时,该喷嘴弧段中的压力和温度和调节级后相等,使喷嘴弧段间的温差甚大,同时与其相邻及相接的汽缸亦有较大的温差;加上在调节级只有调节阀开启的弧段有强烈蒸汽流动,对应于未开启调节阀的弧段没有蒸汽流动。这些都将导致调节级处汽缸沿周向温度不均匀,除在汽缸体内会引起热应力外,还会使汽缸产生热翘曲。为了保证安全运行,使得汽轮机的前轴封和第一非调节级的喷嘴板汽封的径向间隙不能调得过小,否则会引起动、静之间碰磨,使机组发生事故。但较大的汽封间隙将增大漏汽量,降低效率。有一些机组采用了喷嘴调节,又不希望在调节级汽缸处有过大的热应力和热变

形,故设计成在开机及低负荷时各调节阀都开一些,各喷嘴弧段都有一些蒸汽通过,使汽缸圆周间温度较均匀。随着负荷增加,进入汽轮机的流量随之增大,除正常工作的喷嘴弧段外,其它调节阀及相应的喷嘴弧段又停止进汽,只有到大负荷时方重新开启。纯滑压运行常是调节阀全开,新汽温度维持不变,故汽缸在进汽段沿圆周间温度是均匀的。另外,有些机组滑压运行时不是让各调节阀都全开,这时汽缸沿圆周温度将不均匀。

2.调节级叶片的负载

对于节流调节或滑压调节,因为调节级工作喷嘴数不变,工作时通流面积不变,调节级前温度近似不变或不变;则认为在不同进汽流量下,调节级前后压力比近似认为不变,即焓降不变,叶片上所受到的蒸汽作用力只是随着流量的增大而增大,故在最大流量时,叶片受力为最大。对于喷嘴调节,当第一个调节阀刚全开时,喷嘴前的压力近于新汽压力,调节级后压力因为流量较小而较低,故这时级的焓降为最大。同时级前后压差亦为最大,这时虽然全机流量并不大,但通过每一个工作喷嘴的流量却为最大<常为临界流量),故这时作用到与工作喷嘴相对应的叶片上所受的蒸汽作用力要比额定工况时大得多[16]。加上工作叶片有时有工作蒸汽流过,有时又没有,使叶片所受到的扰动力很大,动应力大。调节叶片强度即按此工况设计,所以对调节级叶片强度要求很高,常把叶根设计成双T型,或者橄树型。叶片的宽度亦随机组的容量增大而增大,叶宽由高压机组的50mm左右逐步增大到75mm、100mm,甚至大到120mm左右,而相同参数及容量的节流调节机组,第一级叶片的宽度只有70~80mm。喷嘴调节的调节级叶片在叶顶还需要较厚的包箍或双包箍,有时调节级就采用分流,而第一压力级并不分流,目的之一也是为了降低调节级叶片应力。为了减小喷嘴调节机组低负荷时的应力,应当增大第一个调节阀全开时的流量,提高调节级后压力,减小这时调节级的理想焓降。若采用较大尺寸的第一个调节阀,又会引起阀门设计和制造上的麻烦,并使开启阀门的提升力过大,调节阀零件不能互换等缺点,故常用的方法是让第一、二个调节阀结构相同并同时开启,要比只一个调节阀全开时全机流量大一倍,调节级后压力亦高一倍,使焓降变小,有时还会使通过每个叶片的流量变小<变为不超临界),使调节级叶片应力变小。

3.负荷变化时汽缸及转子温度的变化

对于喷嘴调节的机组,在负荷变小时,调节级级后压力变低,调节级的焓降增大,使调节级后的汽温随负荷升降而变动,这就使转子和汽缸受到冷却或加热,它

们的内外温差增大,引起较大的交变热应力,因而限制了机组的负荷变化速度,以保证机组一定的使用寿命。对于节流调节,汽轮机在低负荷运行时,用调节阀节流降低新汽压力,汽温亦有些降低,但在流量由100%下降到25%时<以CLN600-24.2/566/566型600MW汽轮机为例)汽温只下降38℃,只是喷嘴调节的三分之一多些,故负荷适应性能较好[17]。对于滑压调节,在负荷降低新汽压力降低时,但新汽温度不变,则转子及汽缸最高温度在负荷变动时基本不变,这样就允许机组的负荷有较快的变动,即机组的适应性为最好。

4.高压缸排汽温度

在负荷变动时,高压缸排汽温度亦将发生变化,当流量由100%减小到25%时,对喷嘴调节的机组,高压缸排汽温度下降108℃,节流调节只下降21℃,而滑压调节还升高8℃。由上可以看出,对于节流调节的机组,在流量由100%下降到25%时,高压缸内的蒸汽温度平均下降20~40℃,滑压调节时高压缸内蒸汽、汽缸温度近似于不变。故从整个高压转子和汽缸的温度变化大小来看,喷嘴调节不适于负荷快速变化,滑压调节的负荷适应性最好。

应当注意,上述的数据都是对稳态而言,对于动态过程,因为中间再热机组有一甚大的中间再热容积,容积时间常大到10~15s,这使得在汽轮机负荷变动时,例如负荷降低时,高压缸的排汽压力、中间再热压力较缓慢的下降,对于调节级或者节流调节的第一级来讲,距中间再热容积较远,受中间再热容积的压力影响较小,随着负荷下降,流量下降,压力较快下降,但不是阶跃式下降;对于距中间容积最近的一些级,例如高压缸最后一个级组,因级组前的压力因流量减小而降低,但级组后压力受中间容积中压力惯性的影响下降得很少,使得这一级组的焓降变小,效率变低,使高压缸的排汽温度不但不随负荷的降低而降低,反而有所升高,然后高压缸排汽温度再随着中间再热容积压力降低而降低。

5.汽轮机的效率

对于节流调节和滑压调节来讲,高压缸的理想焓降在负荷变动时,基本上不变,当流量由100%下降到25%时,节流调节高压缸理想焓降基本上不变,只稍有增加,约 4.2kJ/kg,对滑压调节亦是稍有增加,增加23kJ/kg,即理想焓降分别增大3%及5%,故高压缸的相对内效率可以近似地认为不变。

对于喷嘴调节而言,全开调节阀后压力近似于不变,而高压缸的排汽压力因流量减小而降低,使蒸汽在高压缸内的理想焓降增大361.7kJ/kg,非调节级的理想焓降因喷嘴前温度变低,还会变少一些,调节级的理想焓降比此值还大一些

<393kJ/kg>,使调节级的理想焓降增大了几倍<3.13倍),亦即使级的速度比变小,离开设计点较多,使调节级的效率显著下降,高压缸的相对内效率下降。

根据对调节方案的分析,从热效率来看,节流调节及滑压调节都因初压变低,使每公斤蒸汽的作功能力变小,而喷嘴调节的每公斤蒸汽作功能力为最大。虽然喷嘴调节因高压缸排汽温度下降,使蒸汽在再热器中吸热量增大,仍可能是喷嘴调节的热效率高些。对具体机组要具体分析,进行比较最后方能决定[18]。一般地说,对于超高压机组,在负荷变低时,还是喷嘴调节的热效率稍高些、稍经济些,或者说与滑压调节的热效率相近。对于额定负荷来讲,喷嘴调节时仍是部分进汽,所以调节级有鼓风损失和斥汽损失,使调节级效率稍低,而节流调节和滑压调节,可以设计成全周进汽,或者部分进汽度较大,斥汽损失、鼓风损失较小,故在额定负荷时调节级的效率稍高,较喷嘴调节的调节级的效率高出0.4%~0.6%,此数值虽小,对于经常在满负荷下运行的大机组,亦是一个不可忽视的因素[19]。

顺序阀改造方案

汽轮机原有阀门控制函数

托电汽轮机原有高压调门控制函数与纯单阀稍有不同,采取的是滑压复合配汽方式运行,如图3-1所示[20][21][22][23]。图中可以看出,先后两种控制方式对应两种不同的进汽方式,低流量时单阀方式可以实现机组的节流调节运行,高流量时部分实现机组的喷嘴调节运行。为减小启动过程中的热冲击,以单阀方式启动即采用节流配汽<全周进汽方式),避免汽缸及转子应力过大,保证机组顺利启动,在达到目标负荷且温度场趋于稳定后可以切换到部分喷嘴配汽,提高一定的经济性。在大部分运行时间内,四个调门均参与调节,节流损失大。因为是采用中压缸启动,在流量0-20%期间,高压调门并不开启,而是由中调门进行控制,中调门全开后,高调门开始开启。再热蒸汽通过2个中压联合汽阀进入中压部分,中压部分为全周进汽,因此中压调节阀仅采用节流调节方式运行。流量在20%以下时起调节作用,以维持再热器内必要的最低压力,流量大于20%时,调节阀一直保持全开,仅由高压调节阀调节负荷[24][25][26][27]。

图3-1 原有汽轮机高压调门函数曲线

Fig 3-1 The original function curves of turbine governing valves

汽轮机高压阀门位置及原有顺序图

托电汽轮机原有高压阀门位置及顺序见图3-2。

图3-2 原有汽轮机高压阀门位置及开启顺序

Fig 3-2 The originalposition and opening sequence of turbine governing valves 启动过程无论是采用中压缸启动还是高中压缸联合启动,在汽轮机冲转、升速、并网、带低负荷阶段一般选用节流调节方式。因该方式为汽流全周进入中压缸或高压调节级,使汽缸和转子能均匀地加热膨胀,故能有效降低启动过程中的热应

力和调节级动叶的机械应力。图3-3所示为托电汽轮机的阀门升程曲线及调节级后温度变化曲线。图3-4所示为托电汽轮机的调门升程曲线。

图3-3 汽轮机调门升程及调节级后温度变化曲线

Fig 3-3 The curved line of governing valvelift and temperature change behind velocity stage of turbine

图3-4 汽轮机调门升程曲线

Fig 3-4 The curved line of governing valvelift of turbine

汽轮机调节级配汽数据

托电汽轮机调节级配汽数据见表3-1,调节级喷嘴组数据见表3-2。

表3-1 汽轮机调节级配汽数据

表3-2 汽轮机调节级喷嘴组数据

确定顺序阀改造方案

喷嘴调节机组在部分负荷运行时,调节级喷嘴部分进汽。不同的阀门开启顺序,进汽的部位不同,对机组产生不同的影响。主要影响有两个。一是启动时,进汽的部位不同,汽缸被加热的部位不同,产生的热应力有大有小。但是,600MW机组用单阀启动,全周进汽,没有这个问题。二是部分进汽时,进汽的动叶受到一个汽流产生的切向力和前后压差产生的轴向力,不进汽的动叶就没有这些力。所以,调节级叶轮受到不均衡的切向力和轴向力[28]。这些力通过转子作用到轴承上,对1号和2号轴承的载荷产生较大的影响,不同的开启顺序产生不同的影响,而且调节级功率越大,产生的影响越大,不容忽视。托电汽轮机顺序阀改造提出三种方案,如图3-5所示。

图3-5 汽轮机高压阀门开启顺序三种改造方案

Fig 3-5 Three transforming schemes of opening sequence of turbine governing valves 经过比较,B方案是比较安全的,最终确定了“1号、4号调门同时先开,然后依次开2号和3号调门”的方案,如图3-6。

图3-6汽轮机高压阀门位置及开启顺序的改造方案

顺序阀切换时间的选择

顺序阀不容易实现的原因之一就是单阀与顺阀切换过程中机组跳闸,使人产生害怕心理。盘山电厂在切换过程中机组多次跳闸,平圩电厂机组也因此跳闸过。经过分析认为是切换时间短,蒸汽的扰动力大,使转子失稳,轴瓦温度和振动快速上升。经验表明切换时间大于10分钟,蒸汽的扰动力减少很多,转子稳定,轴瓦温度和振动变化缓慢。初步确定托电汽轮机单阀、顺序阀切换时间为15分钟。

单阀、顺序阀切换实验

单阀、顺序阀方式切换方法

两套函数<单阀控制函数为原控制函数,顺阀控制函数为新设计函数),根据要求由运行人员手动进行阀门控制方式切换。在机组主画面“DEH CV MODE”按钮,进入“CV CONTROL MODE”画面(即单阀、顺序阀切换操作画面>。该画面与“DEH AUTO CTL”(DEH自动控制>画面类似,除画面中新增的两个按钮——“CV CTRL MODE”和

“MODE HOLD”外,其余按钮及对话框所具备的功能与“DEH AUTO CTL”画面中的相

应的按钮及对话框一致,画面如图3-8。

1.在单阀控制方式下,“CV CONTROL MODE”画面显示相关描述为:

⑴显示字体“SINGLE VLV MODE”。

⑵“TRANSFORM PROCESS”为“100%”。

⑶“TIME”所对应的时间为完成整个转换过程所需要的时间。

2.在顺序阀控制方式下,“CV CONTROL MODE”画面显示相关描述为:

⑴显示字体“SEQUENCE VLV MODE”。

⑵“TRANSFORM PROCESS”为“100%”。

⑶“TIME”所指示的时间为完成整个转换过程所需要的时间。

图3-8单阀、顺序阀切换操作画面

Fig 3-8 The operation frame of switching from single-valve to sequence-valve mode

3.由单阀控制方式向顺序阀控制方式转换

⑴点击“CV CTRL MODE”按钮,弹出对话框,“SINGLE”为红色字体,“SEQ”为黑色字体,“CONFIRM”为灰色字体;点击“SEQ”按钮,在“CONFIRM”变为黑色字体时迅速点击其按钮,则转换过程开始,然后“SEQ”变为红色字体,“SINGLE”变为黑色字体,“CONFIRM”恢复为灰色字体。

⑵转换过程中画面文字主要显示:

“SINGLE TO SEQUENCE”闪烁;“TRANSFORM PROCESS”从0%向100% 变化;字

体“SINGLE VLV MODE”消失。

⑶转换完成后画面显示顺序阀控制状态下的正常显示。

4.顺序阀控制方式向单阀控制方式转换

⑴点击“CV CTRL MODE”按钮,弹出对话框,“SEQ”为红色字体,“SINGLE”为黑色字体,“CONFIRM”为灰色字体;点击“SINGLE”按钮,在“CONFIRM”变为黑色字体时迅速点击其按钮,则转换过程开始,然后“SINGLE”变为红色字体,“SEQ”变为黑色字体,“CONFIRM”恢复为灰色字体。

⑵转换过程中画面文字主要显示:

“SEQUENCE TO SINGLE”闪烁;“TRANSFORM PROCESS”从0%向100%变化;字体“SEQUENCE VLV MODE”消失。

⑶转换完成后画面显示单阀控制状态下的正常显示。

5.“MODE HOLD”按钮的使用

在CV调门控制方式转换过程中,系统一但出现异常情况,运行人员可点击“MODE HOLD”按钮,在弹出的对话框中点击“HOLD”按钮,使转换过程停止并保持在当前状态,画面显示红色闪烁字体“HOLD”。当系统稳定后,再点击“MODE HOLD”按钮对话框中的“RESET”键,使转换过程继续进行。此按钮只有在CV控制模式转换过程中起作用,与“DEH AUTO CTL”画面中的“GO\HOLD”按钮无任何关系。

单阀、顺序阀方式切换注意事项

1.汽轮机冲车前确认CV控制方式在“SINGLE VLV MODE”;

2.机组首次进行CV控制方式转换时使用DEH LOAD CONTROL;

3.当实际负荷与负荷指令偏差大于20MW时或DEH在手动控制方式都会导致转换过程自动停止<相当于手动点击“MODE HOLD”按钮);

4.从“HOLD”状态恢复到模式转换过程只能通过运行人员手动按“HOLD MODE”中的“RESET”键。

5.在转换过程中,可随时进行反切换。例如在由单阀控制方式向顺序阀控制方式转换过程中,若想停止转换过程并重新恢复到单阀控制模式,可参照前面所述的“由顺序阀控制方式向单阀控制方式转换”的相关内容进行操作即可;反之亦然。顺序阀运行及切换安全措施

根据实验过程,制定了顺序阀运行及切换安全措施:

1.顺阀运行时

⑴顺序阀运行期间,负荷出现大幅度异常波动,立即将汽机自动切至手动,机组参数稳定后,再重新投入。

⑵顺序阀运行期间,加强对#1、2瓦温度及振动的监视。

⑶顺序阀运行期间,每班对照两次阀门函数表,观察阀门位置是否正常,发现异常及时汇报专业,并通知热控人员。

2.切换注意事项

⑴单阀、顺阀互切时,将机组负荷维持300MW以上(尽量低一些>,各参数稳定后再进行切换。首先解除机、炉主控自动,退出CCS CTL(协调顺序系统>,投入LOAD CTL(DEH负荷控制>,然后开始进行切换。

⑵切换过程中,出现负荷或阀位摆动大,立即按“HOLD”按钮进行保持(切换时负荷与初始负荷偏差达到20MW后,切换自动保持>,解除汽机DEH自动,手动调整总阀位指令,维持切换前负荷参数稳定后,投入DEH自动及LOAD CTL,按“RESET”复位,继续进行切换。

3.特殊方式下注意事项

⑴冲转前必须确认汽机调门控制方式在“单阀”方式,否则切换至单阀方式。

⑵正常停机,机组负荷300MW时将汽机调门控制方式切换至“单阀”方式。

⑶汽机总阀位指令顺阀与单阀时不同,机组发生RB、灭火等紧急降负荷的情况时,注意观察机组负荷及各调门开度,防止逆功率保护动作。

改造效果及其评价

托电公司汽轮机顺序阀改造后,降低了轴承金属温度,轴承振动没有大的变化,提高机组了运行的安全性和可靠性;顺序阀有明显节能效益,汽轮机热耗下降从而使煤耗降低,提高了机组的经济性。

节能效果显著

托电公司目前装机容量为8×600MW,因为线路送出受阻八台,机组运行最大负荷将近4000MW,最大负荷率将近90%,正常负荷率75%,即机组平均负荷为450MW。根据实验及实际运行情况看,汽轮机顺序阀改造后的机组发电煤耗下降在1.5克/千瓦时以上。

托电2007年八台机组发电量约244亿kWh,消耗原煤约1290万吨,折合标煤

约782万吨。按煤耗降低1.5克/千瓦时(实际发电煤耗311.19克/千瓦时>,节约原煤约62180吨,折合标煤约37694吨,按照标煤单价246.8元/吨计算,燃料成本将降低约930.29万元。

从上面数据可以看出,电厂汽轮机顺序阀改造大大地提高了机组运行的经济性,有非常显著节能效果。

延长设备寿命,提高设备可靠性

汽轮机采用顺序阀配汽可使1、2号轴承金属温度显著下降,轴承工作状况得到了明显改善,从而降低汽轮机轴承损坏的故障率,提高了汽轮机运行的可靠性。

顺序阀不能实现的首要原因就是单阀与顺阀切换过程中机跳闸,托电在改造过程中,延长了切换时间到15分钟,没有出现在切换过程中机组跳闸的现象,说明此时间选择比较合理,提高了顺序阀切换的可靠性。

减少环境污染

汽轮机采用顺序阀配汽后,机组煤耗降低,相当于少燃烧煤碳,减少了氮氧化物、二氧化硫、粉尘和大量二氧化碳等污染物的排放,降低对大气污染,保护了环境。

如果按照燃煤含硫量0.764%计算,则减少二氧化硫排放量约760吨(燃烧产物80%计算>;燃煤燃烧后按照28.3%灰渣量计算,则减少灰渣排放量约17597吨,环保效果明显。

门杆断裂问题

托电3号机组曾发生过高压调门门杆断裂的问题。经过分析,汽轮机高压调门伺服阀在0~100%之间调节过程是双向调节,同时控制油动机的进口和出口,将油动机固定在相应的位置。而改为顺序阀调节后,在50%以上负荷时有两个阀门基本是常开的,油动机只提供单向动力,阀杆长期受油动机牵引力极易导致连接部分断裂。

解决问题的措施:

1.油动机100%开度要比阀门的全行程小5~7mm,限制油动机全开。

2.加大连接部分的几何尺寸。

3.更换阀门的材质。

托电通过更改油动机开度,最大只开95%,阀杆双向受力,门杆断裂的问题再

未发生。

负荷振荡

托电3号汽轮机在投入顺阀后,机组在AGC运行方式下,曾发生负荷振荡,原因为原协调参数在顺阀方式下不适应一次调频动作后引起的机组负荷扰动,重新调整协调PID参数后此问题已解决。并对其他机组按3号机组参数进行优化,同类事件的没有再次发生。

低负荷状态

2号机组于2007年6月15日发生一次灭火不停机事故,灭火前机组处于600MW 满负荷顺阀方式,灭火后机组在顺阀方式快速减负荷至30MW,随后锅炉点火成功,机组重新升负荷至500MW。此过程机组一直保持在顺阀方式,汽机转速及负荷控制很稳定,未发生转速飞升和负荷振荡现象,这从另一个角度说明了托电的顺阀函数可以在任意负荷状态下能够安全稳定运行。

综上所述,若该方法在全国电力系统600兆瓦级同型汽轮机全面推广,既提高机组运行的经济性,又降低污染物的排放,经济效益和环保效益相当可观。

第三节-顺序阀

顺序阀 学习完后的目的:掌握各种阀的工作原理及应用场合。一、目的: 是利用油液压力作为控制信号来控制多个执行元件按一定的顺序动作。 二、顺序阀的主要作用有: (1)控制多个元件的顺序动作; (2)用于保压回路; (3)防止因自重引起油缸活塞自由下落而做平衡阀用; (4)用外控顺序阀做卸荷阀,使泵卸荷; (5)用内控顺序阀作背压阀。 三、对顺序阀还有其特殊的要求: (1)为了使执行元件准确实现顺序动作,要求顺序阀的 调压精度高,偏差小; (2)为了顺序动作的准确性,要求阀关闭时内泄漏量小; (3)对于单向顺序阀,要求反向压力损失及正向 压力损失值均应较小。 四、顺序阀分类: ㈠按结构分类 ①直动式:适用于低压。 ②先导式:适用于高压。

㈡按控制压力来源分类 ①内控式:控制阀芯开启的压力油来自顺序阀进口。 ②外控式:控制阀芯开启的压力油从外控口外部引入。 ㈢按泄油方式分类 ①内泄式:弹簧腔内的油液直接从出油口泄漏。 ②外泄式:弹簧腔内的油液直接从外泄油口泄漏到油箱。 顺序阀有内控外泄、内控内泄、外控外泄、外控内泄六、工作原理: ㈠直动式顺序阀 直动式顺序阀通常为滑阀结构,其工作原理与直动式溢流阀相似,均为进油口测压,但顺序阀为减小调压弹簧刚度,还设置了断面积比阀芯小的控制活塞A。 顺序阀与溢流阀的区别还有: ■其一,出口不是溢流口,因此出口p2不接回油箱,而是与某一执行元件相连,弹簧腔泄漏油口L必须单独接回油箱; ■其二,顺序阀不是稳压阀,而是开关阀,它是一种利用压力的高低控制油路通断的“压控开关”,严格地说,顺序阀是一 个二位二通液动换向阀。

㈡先导型顺序阀 ⑴如果在直动型顺序阀的基础上,将主阀芯上腔的调压弹簧用先导调压回路代替,且将先导阀调压弹簧腔引至外泄口上,就可以构成先导式顺序阀。 ⑵这种先导式顺序阀的原理与先导式溢流阀相似,所不同的

电磁阀原理图解

电磁阀原理图解 电磁阀原理上分为三大类:直动式、分步直动式、先导式。 一、直动式电磁阀 原理:常闭型通电时,电磁线圈产生电磁力把敞开件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把敞开件压在阀座上,阀门敞开。(常开型与此相反) 特点:在真空、负压、零压时能正常工作,但通径一般不超过25mm。

二、分步直动式电磁阀 原理:它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。 特点:在零压差或真空、高压时亦能可动作,但功率较大,要求必须水平安装。

三、间接先导式电磁阀

原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在敞开件周围形成上低下高的压差,流体压力推动敞开件向上移动,阀门打开;断电时,弹簧力把先导孔敞开,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动敞开件向下移动,敞开阀门。 特点:体积小,功率低,流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件 工作原理 电磁阀里有密闭的腔,在不同位置开有通孔,每个孔连接不同的油管,腔中间是活塞,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来开启或关闭不同的排油孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油缸的活塞,活塞又带动活塞杆,活塞

液控单向阀的工作原理

液控单向阀是方向控制阀中的一类,它主要是依靠控制流体压力,使单向阀反向流体的阀。主要应用于煤矿机械设备中。具体的控液单向阀的工作原理是怎样的,接下来我们将详细介绍控液单向阀的工作原理。 液控单向阀的工作原理 液控单向阀原理结构图(亚洲流体网) 2、单向阀的工作原理: 液控单向阀工作原理是依靠控制流体压力,可以使单向阀反向流通的阀。这种阀在煤矿机械的液压支护设备中占有较重要的地位。液控单向阀与普通单向阀不同之处是多了一个控制油路K,当控制油路未接通压力油液时,液控单向阀就象普通单向阀一样工作,压力油只从进油口流向出油口,不能反向流动。当控制油路油控制压力输入时,活塞顶杆在压力油作用下向右移动,用顶杆顶开单向阀,使进出油口接通。若出油口大于进油口就能使油液反向流动。 (1) 保持压力。 滑阀式换向阀都有间隙泄漏现象,只能短时间保压。当有保压要求时,可在油路上加一个液控单向阀,利用锥阀关闭的严密性,使油路长时间保压。 (2) 液压缸的“支承”。

在立式液压缸中,由于滑阀和管的泄漏,在活塞和活塞杆的重力下,可能引起活塞和活塞杆下滑。将液控单向阀接于液压缸下腔的油路,则可防止液压缸活塞和滑块等活动部分下滑。 (3) 实现液压缸锁紧。 当换向阀处于中位时,两个液控单向阀关闭,可严密封闭液压缸两腔的油液,这时活塞就不能因外力作用而产生移动。 (4) 大流量排油。 液压缸两腔的有效工作面积相差很大。在活塞退回时,液压缸右腔排油量骤然增大,此时若采用小流量的滑阀,会产生节流作用,限制活塞的后退速度;若加设液控单向阀,在液压缸活塞后退时,控制压力油将液控单向阀打开,便可以顺利地将右腔油液排出。 (5) 作充油阀。 立式液压缸的活塞在高速下降过程中,因高压油和自重的作用,致使下降迅速,产生吸空和负压,必须增设补油装置。液控单向阀作为充油阀使用,以完成补油功能。 以上控液单向阀的工作原理相对简单。随着科技社会的逐步发展,我们能够接触到的高新产品还会越来越多,我们在体验和使用的同时,若能掌握这些设备的基本原理,平常使用时进行维护保养也是有作用的。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注!)

单向阀工作原理

单向阀分为两种,一种是直通式的一种是直角式的。直通式单向阀用螺纹连接安装在管路上。直角式单向阀有螺纹连接、板式连接和法兰连接三种形式。液控单向阀也称闭锁阀或保压阀,它与单向阀相同,用以防止油液反向流动。但在液压回路中需要油流反向流动时又可利用控制油压,打开单向阀,使油流在两个方向都可流动。 启闭件靠介质流动和力量自行开启或关闭,以防止介质倒流的阀门叫单向阀。单向阀属于自动阀类,主要用于介质单向流动的管道上,只允许介质向一个方向流动,以防止发生事故。 单向阀的作用是只允许介质向一个方向流动,而且阻止反方向流动。通常这种阀门是自动工作的,在一个方向流动的流体压力作用下,阀瓣打开;流体反方向流动时,由流体压力和阀瓣的自重合阀瓣作用于阀座,从而切断流动。 单向阀按结构划分,可分为升降式单向阀、旋启式单向阀和蝶式单向阀三种。升降式单向阀可分为立式和卧式两种。旋启式单向阀分为单瓣式、双瓣式和多瓣式三种。蝶式单向阀为直通式、以上几种单向阀在连接形式上可分为螺纹连接、法兰连接和焊接三种。 PUW防水透气阀选用进口膨体聚四氟乙烯(E-PTFE)微孔膜精心制造,该进口E-PTFE膜的微孔直径在0.1-10μm之间,而气体的分子只有0.0004μm左右,EPTFE膜的孔径比气体直径大250-25000倍,因此气体可以顺利通过;而毛毛雨的直径有400μm,比薄膜的微孔直径大40-4000倍,另外,由于EPTFE薄膜材料表面能很低,接触角为135.6°,由于表面张力作用(水分子相互拉扯)水汽冷凝变成小

水滴在EPTFE膜表面形大较大水珠,可有效阻止液态水润湿和毛细渗透,因此具有良好的防水透气性能。

电动阀门控制原理图

电动阀门控制原理图 对话世界能源巨头让中国每年省出13个核电站 “未来25年,全球能源需求增加的部分中将有近1/4来自于中国。而能效水平低于工业发达国家近20%状况,无疑使中国能源紧张的形势更加严峻。” “意法半导体营造了一个主动的可获益的大环境,数以百计的节能措施被建议并付诸实施,相关的节能投入每年平均为2500万美元。” 电子产品的发展给人类生活带来越来越多便利与美好体验的同时,一些弊端也随之而生,电子垃圾、环境污染、能源消耗速度过快等种种问题开始困扰人们。于是,全球对环保与节能的关注达到了前所未有的高度,如何应对环保指令、开发新的节能产品、充分利用能源逐渐成为一个越来越热门的话题。随着2008年奥运会的临近,中国政府也把环保节能提上日程。节约能源,越来越成为我们时刻关注的大事。为此,本报记者采访了意法半导体公司副总裁兼大中国区总裁柯明远,希望对该公司电子产品的能耗管理经验深入了解,并分析当今的能源管理市场及趋势。 蝶阀>>电动蝶阀>>电动硬密封蝶阀

球阀>>塑料球阀>>电动塑料球阀

产品详细信息 电动塑料球阀特性: 工作温度:0℃至+60℃ 工作压力:见图 流体范围:食品工业、石化和与聚氯乙烯相匹配的各种流体。 连接:内螺纹DIN/ISO228/1;焊接ISO727UNI7442/75 电动塑料球阀材料: 1)轴Shaft 聚氯乙烯PVC 2)O环O-Ring 三元乙丙橡胶EPDM 3)环型螺母Ringnut 聚氯乙烯PVC 4)阀体Body 聚氯乙烯PVC 5)端口End 聚氯乙烯PVC 6)O环O-Ring 三元乙丙橡胶EPDM 7)球体密封Ballsealing 8)球体Ball 聚氯乙烯PVC 9)O环O-Ring 三元乙丙橡胶EPDM 10)球体密封支架Ballsealingsupport 聚氯乙烯PVC 11)环Ring 聚氯乙烯PVC 电动塑料球阀尺寸表 "螺纹"订货号M61116 F03 M61116 F04 M61116 F05 M61116 F06 M61116 F07 M61116 F08 M61116 F09 M61116F 10 “焊接”订货号M61316 F83 M61316 F84 M61316 F85 M61316 F86 M61316 F87 M61316 F88 M61316 F89 M61316F 90 DN mm. 10 15 20 25 32 40 50 65 内螺纹尺寸mm. 3/8" 1/2" 3/4" 1" 1"1/4 1"1/2 2" 2"1/2 焊接管mm. 16 20 25 32 40 50 63 75 通径mm. 10 15 20 25 32 40 50 65 A mm. 207,5 207,5 207,5 207,5 207,5 207,5 207,5 207,5 B mm. 122,5 122,5 122,5 122,5 122,5 122,5 122,5 122,5

气动控制阀结构与原理

1.方向控制阀及换向回路 方向控制阀按气流在阀内的作用方向,可分为单向型控制阀和换向型控制阀。 (1)单向型控制阀。 1)单向阀。气动单向阀的工作原理与作用与液压单向阀相同。 在气动系统中,为防止储气罐中的压缩空气倒流回空气压缩机,在空气压缩机和储气罐之间就装有单向阀。单向阀还可与其他的阀组合成单向节流阀、单向顺序阀等。 2)梭阀(或门阀)。梭阀是两个单向阀反向串联的组合阀。由于阀芯像织布梭子一样来回运动,因而称之为梭阀。 图3一25(a)为或门型梭阀的结构图。其工作原理是当P1进气时,将阀芯推向右边,P2被关闭,于是气流从P1进人A腔,如图3-25(b)所示;反之,从P2进气时,将阀芯推向左边,于是气流从几进人P2腔,如图3-25(c)所示;当P1,P2同时进气时,哪端压力高,A就与哪端相通,另一端就自动关闭。可见该阀两输人口中只要有一个输人,输出口就有输出,输人和输出呈现逻辑“或”的关系。 或门型梭阀在逻辑回路中和程序控制回路中被广泛采用,图3-26是梭阀在手动一自动回路中的应用。通过梭阀的作用,使得电磁阀和手动阀均可单独操纵汽缸的动作。 气动调节阀:https://www.doczj.com/doc/bf11718389.html,/ 3)双压阀(与门阀)图3-27是双压阀的工作原理图。当P1进气时,将阀芯推向右端,A 无输出,如图3-27(a)所示;当P2进气时,将阀芯推向左端,A无输出,如图3一27(b)所示;只有当P1,P2同时进气时,A才有输出,如图3-27(c)所示;当P1和P2气体压力不等时,则气压低的通过A输出。由此可见,该阀只有两输人口中同时进气时A才有输出,输人和输出呈现逻辑“与”的关系。 自力式压力调节阀:https://www.doczj.com/doc/bf11718389.html,/

减压阀的工作原理

本文为大家介绍的是减压阀的工作原理,首先介绍减压阀的定义,所谓的减压阀是通过调节,将进口压力减至某一需要的出口压力,并依靠介质本身的能量,使出口压力自动保持稳定的阀门。从流体力学的观点看,减压阀是一个局部阻力可以变化的节流元件,即通过改变节流面积,使流速及流体的动能改变,造成不同的压力损失,从而达到减压的目的。然后依靠控制与调节系统的调节,使阀后压力的波动与弹簧力相平衡,使阀后压力在一定的误差范围内保持恒定。 下面我们通过减压阀的三个结构分别为大家介绍减压阀的工作原理。 减压阀是气动调节阀的一个必备配件,主要作用是将气源的压力减压并稳定到一个定值,以便于调节阀能够获得稳定的气源动力用于调节控制。按结构形式可分为薄膜式、弹簧薄膜式、活塞式、杠杆式和波纹管式;按阀座数目可分为单座式和双座式;按阀瓣的位置不同可分为正作用式和反作用式。 减压阀的工作原理 一组合式减压阀的内部结构 1、组合式减压阀自动调节原理: 组合式减压阀是一种在复杂多变的工况下亦可利用水压进行自我调节的减压阀稳压阀,在进口压力和流量产生变化的时候保持出口的压力和流量稳定。其完全实现自力控制,调试简单,运行可靠。 2、组合式减压阀的双反馈切换的工作原理: 组合式减压阀的反馈系统是根据减压阀出口压力的变化信号来控制过流面积(节流锥开度)的独立系统。减压阀装备有互为备用的双反馈系统,启用A系统即停用B系统的运行模式可以达到减压阀不停机检修的目的。 3、组合式减压阀反冲排污的工作原理: 水电站的运行工况比较复杂,尤其水质的好坏直接关系到设备的安全运行。针对泥沙含量较大的水电站,除了在减压阀的过流位置采用不锈钢材质并堆焊镍基合金防磨蚀外,减压阀的反冲排污装置亦能有效地防止反馈控制系统的堵塞,使减压阀在多泥沙杂物的水质中保持良好的工况。(反冲排污系统标配为手动控制,根据水质实际情况把握反冲排污频率,或直接

气动阀组成及工作原理

气动阀组成及工作原理 内容提要 气动控制阀是指在气动系统中控制气流的压力、流量和流动方向,并保证气动执行元件或机构正常工作的各类气动元件。控制和调节压缩空气压力的元件称为压力控制阀。 一、气动阀门系统各部分功能和用途 ①气动执行器:分为双动型和单动型。双动气动执行器:对阀门 开启和关闭的两位式控制。单动气动执行器(弹簧复位型):在气路切断或故障,阀门自动开启或关闭。 ②阀门:阀门是流体输送系统中的控制部件。 ③电磁阀:分为单电控电磁阀和双电控电磁阀。单电控电磁阀: 供电时阀门打开或关闭,断电时阀门关闭或打开。双电控电磁阀:一个线圈得电时阀门打开,另一个线圈得电时阀门关闭。 ④限位开关:远距离传送阀门的开关位置的信号。有机械式、接 近式、感应式。 ⑤气电定位器:根据电流信号 (标准4-20mA)的大小对阀门的介 质流量调节控制。 ⑥气源处理三联件:包括空气减压阀、过滤器、油雾器,对气源 稳压、清洁、运动部件润滑作用。 ⑦手动操作机构:在自动控制不正常情况下手动操作。 ⑧消声器:安装在电磁阀的排气口,降低噪声。

⑨快插接头:一端连接于电磁阀或执行器,另一端将气管直接插 入即可使用。 ⑩空压机:是压缩空气的气压发生装置。 11 气管:有软管、紫铜管、不锈钢。常用规格有6mm、8mm。 气动开关型阀门系统构成: ①气动执行器+②阀门+③电磁阀+④限位开关+⑥气源处理三联件+⑦手动操作机构+⑧消声器+⑨快插接头+⑩空气压缩机+11气管 (其中④、⑥、⑦、⑧、⑨项可根据现场实际情况选配。) 气动调节型阀门系统构成: ①气动执行器+②阀门+⑤气电定位器+⑥气源处理三联件+⑦手动操作机构+⑧消声器+⑨快插接头+⑩空气压缩机+11气管 (其中⑦、⑧、⑨项可根据现场实际情况选配。) 二、气动开关阀 气动开关阀就是以压缩空气(空压机)为动力源,通过电磁阀换向去驱动气动执行器,气动执行器带动阀门,实现阀门的开关。下为单动气动开关型蝶阀实图。

顺序动作回路工作原理

顺序动作回路 顺序动作回路的作用是保证执行元件按照预定的先后次序完成各种动作。按照控制方式不同,可以分为行程控制和压力控制两种。 1.行程控制顺序动作回路 图7.32为行程阀控制的动作回路,在图示状态下,1, 2两油缸活塞均在左端。当推动手柄,使阀3左位工作,缸1的活塞右行,完成动作①;当缸1的活塞运动到终点后挡块压下行程阀4,缸2右行,完成动作②;手动换向阀C复位后,实现动作③;随着挡块的后移,阀4复位,缸2活塞退回,实现动作④。利用行程阀控制的优点是位置精度高、平稳可靠;缺点是行程和顺序不容易更改 图7. 33为行程开关控制的动作回路,在图示状态下,1, 2两油缸活塞均在左端。电磁阀1YA通电时使阀左位工作,缸I的活塞右行,完成动作①;当缸1的活塞运动到终点后触动行程开关2S,使电磁阀2YA通电换到左位,缸2的活塞右行,完成动作②;当缸2的活塞运动到终点后触动行程开关4S,电磁阀1Y A断电复位,实现动作③;油缸1的活塞运动到终点后触动行程开关15,电磁阀2Y A断电复位,缸2的活塞退回实现动作④。行程开关控制的顺序动作回路优点是位置精度高,调整方便,且可以更改顺序,所以应用较广,适合于工作循环经常要更改的场合。 2.压力控制顺序动作回路 利用液压系统中的工作压力变化控制各个执行元件的顺序动作是液压系统独具的控制特性。压力控制的优点是动作灵敏,安装布置比较方便;缺点是可靠性不高,位置精度低。 图7.34为顺序阀控制的动作回路。当换向阀左位接入回路且顺序阀4的调定压力大于液压缸活塞伸出最大工作压力时,顺序阀4关闭,压力油进入液压缸1的左腔,缸1的右腔经顺序阀3的单向阀回油,实现动作①;当缸1的伸出行程结束到达终点后,压力升高,压力油打开顺序阀4进人液压缸2的左腔,缸2的右腔回油,实现动作②;同样道理,当换向阀右位接入回路且顺序阀3的调定压力大于液压缸活塞缩回最大供油压力时,顺序阀3关闭,压力油进入缸2的右腔,缸2的左腔经顺序阀2的单向阀回油,实现动作③;当液压缸2的缩回行程结束到达终点后,压力升高,压力油打开顺序阀3进入缸1的右腔,缸I的左腔回油,实现动作④。为了保证顺序动作的可靠性,顺序阀的压力调定值应比前一个动作的最大工作压力高出0. 8MPa-1.OMPa,以免系统中的压力波动使顺序阀出现误动作,所以这种回路只适应于油缸数目不多且阻力变化不大的场合。 图7. 35为压力继电器控制的顺序动作回路。其T作过程如下:当电磁铁1YA通电时,

电磁阀工作原理(图文并茂)

电磁阀工作原理 纵观国外电磁阀,到目前为止,从动作方式上可分为三大类即:直动式、反冲式、先导式,而从阀瓣结构和材料上的不同以及原理上的区别反冲式又可分为:膜片式反冲电磁阀、活塞式反冲电磁阀;先导式又可分为:先导式膜片电磁阀、先导式活塞电磁阀;从阀座及密封材料上分又可分为:软密封电磁阀、钢性密封电磁阀、半钢性密封电磁阀。 一、直动式电磁阀 原理:常闭型直动式电磁阀通电时,电磁线圈产生电磁吸力把阀芯提起,使关闭件离远开阀座密封副打开;断电时,电磁力消失,靠弹簧力把关闭元件压在阀座上阀门关闭。(常开型与此相反) 特点:在真空、负压、零压差时能正常工作,DN50以下可任意安装,但电磁头体积较大。如我公司引进HERION公司技术生产的直动电磁阀可用于1.33×10-4 Mpa真空。 二、反冲型电磁阀 原理:它的原理是一种直动和先导相结合,通电时,电磁阀先将辅阀打开,主阀下腔压力大于上腔压力而利用压差及电磁阀的同时作用把阀门开启;断电时,辅阀利用弹簧力或介质压力推动关闭件,向下移动便阀门关闭。 特点:在零压差或高压时也能可靠工作,但功率及体积较大,要求竖直安装。三、先导式电磁阀 原理:通电时,电磁力驱动先导阀打开先导阀,主阀上腔压力迅速下降,在主阀上下腔形成压差,依靠介质压力推动主阀关闭件上移,阀门开启;断电时,弹簧力把先导阀关闭,入口介质压力通过先导孔迅速进入主阀上腔在上腔形成压差,从而使主阀关闭。 特点:体积小,功率低,但介质压差围受限,必须满足压差条件。 两位三通电磁阀通常与单作用气动执行机构配套使用,两位是两个位置可控:开-关,三通是有三个通道通气,一般情况下1个通道与气源连接,另外两个通道1个与执行机构的进气口连接,1个与执行机构排气口连接,具体的工作原理可以参照单作用气动执行机构的工作原理图。 两位五通电磁阀通常与双作用气动执行机构配套使用,两位是两个位置可控:开-关,五通是有五个通道通气,其中1个与气源连接,两个与双作用气缸的外部气室的进出气口连接,两个与部气室的进出气口接连,具体的工作原理可参照双作用气动执行机构工作原理 在气路(或液路)上来说,两位三通电磁阀具有1个进气孔(接进气气源)、1个出气孔(提供给目标设备气源)、1个排气孔(一般安装一个消声器,如果不怕噪音的话也可以不装_)。 两位五通电磁阀具有1个进气孔(接进气气源)、1个正动作出气孔和1个反动作

单向阀原理总结

1、单向阀原理:止回阀是指依靠介质本身流动而自动开、闭阀瓣,用来防止介 质倒流的阀门,又称逆止阀、单向阀、逆流阀、和背压阀。止回阀属于一种自动阀门,其主要作用是防止介质倒流、防止泵及驱动电动机反转,以及容器介质的泄放。启闭件靠介质流动和力量自行开启或关闭,以防止介质倒流的阀门叫止回阀。止回阀属于自动阀类,主要用于介质单向流动的管道上,只允许介质向一个方向流动,以防止发生事故。止回阀又称单向阀或逆止阀,其作用是防止管路中的介质倒流。水泵吸水关的底阀也属于止回阀类。 2、旋启式止回阀有一介铰链机构,还有一个像门一样的阀瓣自由地靠在倾斜的 阀座表面上。为了确保阀瓣每次都能到达阀座面的合适位置,阀瓣设计在铰链机构,以便阀瓣具有足够有旋启空间,并使阀瓣真正的、全面的与阀座接触。阀瓣可以全部用金属制成,也可以在金属上镶嵌皮革、橡胶、或者采用合成覆盖面,这取决于使用性能的要求。旋启式止回阀在完全打开的状况下,流体压力几乎不受阻碍,因此通过阀门的压力降相对较小。升降式止回阀的阀瓣座落位于阀体上阀座密封面上。此阀门除了阀瓣可以自由地升降之外,其余部分如同截止阀一样,流体压力使阀瓣从阀座密封面上抬起,介质回流导致阀瓣回落到阀座上,并切断流动。根据使用条件,阀瓣可以是全金属结构,也可以是在阀瓣架上镶嵌橡胶垫或橡胶环的形式。像截止阀一样,流体通过升降式止回阀的通道也是狭窄的,因此通过升降式止回阀的压力降比旋启式止回阀大些,而且旋启式止回阀的流量受到的限制很少。 3、旋启式单向阀原理:液体在阀体内直通,依靠压力顶开一侧的旋转阀瓣,压

力失去后,阀瓣依靠自重回位,反向的液体压力封闭阀瓣。

顺序阀

顺序阀 顺序阀利用油路压力来控制其他液压元件动作的先后顺序,以实现油路系统的自动控制。该阀还可作为卸荷阀和背压阀使用。 液压阀 电磁换向阀、溢流阀、单向阀、节流阀、调速阀、叠加阀、电液阀、顺序阀、手动阀、截止阀、卸荷阀、减压阀、油缸、滤网、滤清器、滤油器、液位计、冷却器、蓄能器、压力表开关、压力继电器、液压系统等系列液压元件 首先,这三种阀都是压力控制阀,他们的工作原理基本相同,都是以压力油的控制压力来使阀口启闭。 不同之处在于,溢流阀是控制系统压力的大小,在液压设备中主要起定压溢流作用和安全保护作用; 顺序阀是在具有二个以上分支回路的系统中,根据回路的压力等来控制执行元件动作顺序,可以控制液压元件的启动顺序(顺序阀压力调定低的液压元件首先卸荷,停止动作); 减压阀是将进口压力减至某一需要的出口压力,并依靠介质本身的能量,使出口压力自动保持稳定,避免系统中的压力过高,造成液压元件的损毁。 他们的图形符号如下:

5 减压阀、溢流阀和顺序阀的区别? 一种液压压力控制阀。在液压设备中主要起 定压溢流作用和安全保护作用。 顺序阀顺序阀是在具有二个以上分支回路的系统中,根据回路的压力等来控制执行元件动作顺序的阀。 根据控制压力来源的不同,它有内控式和外控式之分。其结构也有直动型和先导型之分 减压阀减压阀(reducing valve)是采用控制阀体内的启闭件的开度来调节介质的流量,将介质的压力降低,同时借助阀后压力的作用调节启闭件的开度,使阀后压力保持在一定范围内,在进口压力不断变化的情况下,保持出口压力在设定的范围内,保护其后的生活生产器具. 顺序阀 sequence valve;priority valve

顺序动作回路工作原理

顺序动作回路工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

顺序动作回路 顺序动作回路的作用是保证执行元件按照预定的先后次序完成各种动作。按照控制方式不同,可以分为行程控制和压力控制两种。 1.行程控制顺序动作回路 图7.32为行程阀控制的动作回路,在图示状态下,1, 2两油缸活塞均在左端。当推动手柄,使阀3左位工作,缸1的活塞右行,完成动作①;当缸1的活塞运动到终点后挡块压下行程阀4,缸2右行,完成动作②;手动换向阀C复位后,实现动作③;随着挡块的后移,阀4复位,缸2活塞退回,实现动作④。利用行程阀控制的优点是位置精度高、平稳可靠;缺点是行程和顺序不容易更改 图7. 33为行程开关控制的动作回路,在图示状态下,1, 2两油缸活塞均在左端。电磁阀1YA通电时使阀左位工作,缸I的活塞右行,完成动作①;当缸1的活塞运动到终点后触动行程开关2S,使电磁阀2YA通电换到左位,缸2的活塞右行,完成动作②;当缸2的活塞运动到终点后触动行程开关4S,电磁阀1YA断电复位,实现动作③;油缸1的活塞运动到终点后触动行程开关15,电磁阀2YA断电复位,缸2的活塞退回实现动作④。行程开关控制的顺序动作回路优点是位置精度高,调整方便,且可以更改顺序,所以应用较广,适合于工作循环经常要更改的场合。

2.压力控制顺序动作回路 利用液压系统中的工作压力变化控制各个执行元件的顺序动作是液压系统独具的控制特性。压力控制的优点是动作灵敏,安装布置比较方便;缺点是可靠性不高,位置精度低。 图7.34为顺序阀控制的动作回路。当换向阀左位接入回路且顺序阀4的调定压力大于液压缸活塞伸出最大工作压力时,顺序阀4关闭,压力油进入液压缸1的左腔,缸1的右腔经顺序阀3的单向阀回油,实现动作①;当缸1的伸出行程结束到达终点后,压力升高,压力油打开顺序阀4进人液压缸2的左腔,缸2的右腔回油,实现动作②;同样道理,当换向阀右位接入回路且顺序阀3的调定压力大于液压缸活塞缩回最大供油压力时,顺序阀3关闭,压力油进入缸2的右腔,缸2的左腔经顺序阀2的单向阀回油,实现动作③;当液压缸2的缩回行程结束到达终点后,压力升高,压力油打开顺序阀3进入缸1的右腔,缸I 的左腔回油,实现动作④。为了保证顺序动作的可靠性,顺序阀的压力调定值应比前一个动作的最大工作压力高出0. 8MPa-1.OMPa,以免系统中的压力波动使顺序阀出现误动作,所以这种回路只适应于油缸数目不多且阻力变化不大的场合。 图7. 35为压力继电器控制的顺序动作回路。其T作过程如下:当电磁铁 1YA通电时,换向阀5左位接入油路,压力油进入液压缸的I左腔,缸1的右腔回油,实现动作①;当液压缸1的伸出行程结束到达终点后,压力升高,继电器3发出电信号,使电磁铁3YA通电,压力油进入液压缸2的左腔,缸2的右腔回油,实现动作②;同样道理,当3YA断电、 4YA通电时,换向阀6右位接入油路,压力油进入液压缸2右腔,实现动作③;当缸2的缩回行程结束到达终

气动阀门执行器的控制方式及工作原理

气动阀门执行器的控制方式及工作原理 气动执行器结构 在实际工业生常和工业控制中,用来控制气动执行机构的方法也很多,常用的有以下几种。 (一)基于单片机开发的智能显示仪控制 智能显示仪是用来监测阀门工作状态,并控制阀门执行期工作的仪器,它通过两路位置传感器监视阀门的工作状态,判断阀门是处于开阀还是关阀状态,通过编程记录阀门开关的数字,并且有两路与阀门开度对应的4~20mA输出及两足常开常闭输出触点。通过这些输出信号,控制阀门的开关动作。根据系统的要求,可将智能阀门显示仪从硬件上分为3部分来设计:模拟部分、数字部分、按键/显示部分。 1、模拟电路部分主要包括电源、模拟量输入电路、模拟量输出电路三部分。 电源部分供给整个电路能量,包括模拟电路、数字电路和显示的能源供应。为了实现阀门开读的远程控制,需要将阀门的开度信息传送给其他的控制仪表,同时控制仪表能从远方制定阀门为某一开度,系统需要1路4~20mA的模拟量输入信号和1~2路4~20mA的模拟量输出信号。模拟量输入信号通过A/D转换变成与阀门开度相对应的数字信号后送给数字部分的单片机,在单片机中对它进行滤波处理后就可以输出了。阀门的开度信息通过D/A转换后变成模拟信号输出,用来接显示仪显示阀门开度或连接其他的控制设备。在本设计系统中,所有的数字量数据均采用串行的输入输出方式,为了节省芯片资源和空间,输入的4~20mA 的模拟量在转化为数字量时,采用已有的4路DA芯片与单片机的系统资源相结合作8位的AD使用。

2、数字电路部分主要包括:单片机、掉电保护、两路监测脉冲输入信号、两路常开常闭转换触点输出。 在设计方案中选用目前普遍使用的51系列单片机AT89C4051。AT89C4051是一款低电压、高性能的CMOS8位微控制器,它具有4K字节的可擦除、可重复编程的只读闪存。通过在单芯片内复合一个多功能的8位CPU闪存,在性能、指令设定和引脚上与80C51和80C52完全兼容。 考虑到在系统掉电或重新启动时,需要保持先前在仪表中设置的一些阀门参数,而单片机中的数据存储器不具备掉电存储功能,所以在片外扩展了一个具有掉电保存功能的芯片X5045。X5045是一种集看门狗、电源监控和串行EEPROM3种功能于一身的可编程电路,这种组合设计可以减少电路对电路板空间的需求,X5045中的看门狗为系统提供了保护,当系统发送故障而超过设定时间时,电路中的看门狗将通过RESET信号向CPU作反应。X5045提供了三个时间值供用户选择使用。它所具有的电压监控功能还可以保护系统免受低电压的影响,当电源电压降到允许范围以下时,系统将复位,直到电源电压返回到稳定值为止。X5045的存储器与CPU可通过串行通信方式接口。共4069位,可以按512×8个字节来放置数据。 X5045的管脚排列,它共有8个引脚,各个引脚的功能如下: CS:电路选择端,低电平有效; SO:串行数据输出端; SI:串行数据输入端; SCK:串行时钟输出端; WP:写保护输入端,低电平有效; RESET:复位输出端; Vcc:电源端; Vss:接地端。 INA为输入信号,是由光电传感器采集到的阀门脉冲信号(<10mA)。该信号经旁路电容滤波后送入光耦,转换成了输出的OUT电压信号送入单片机。输出的电压可直接进入单片机的I/O口。在控制中,要求A、B两路脉冲都接收到的时候,才认为是由信号输入,AB为正转,BA为反转。只有一路信号输入时不计数。 两路常开、常闭转换触点输出。用来连接电磁阀,通过控制电磁阀的吸合来控制气动执行机构作相应的开阀或关阀动作。 3、显示部分主要包括:单片机、4位LED显示、3只状态指示灯(自动、正转、反转)、3

方向控制阀工作原理

第13章气动控制阀(Pneumatic control valves) 气动控制阀是控制、调节压缩空气的流动方向、压力和流量的气动元件,利用它们可以组成各种气动回路,使气动执行元件按设计要求正常工作。 13.1常用气动控制阀(Common pneumatic control valves) 和液压控制阀类似,常用的基本气动控制阀分为:气动方向控制阀、气动压力控制阀和气动流量控制阀。此外还有通过改变气流方向和通断以实现各种逻辑功能的气动逻辑元件。 13.1.1 气动方向控制阀(Pneumatic direction control valves) 气动方向控制阀是用来控制压缩空气的流动方向和气流通、断的气动元件。 13.1.1.1 气动方向控制阀的分类 气动方向控制阀和液压系统的方向控制阀类似,也分为单向阀和换向阀,其分类方法也基本相同。但由于气压传动具有自己独有的特点,气动方向控制阀可按阀芯结构、控制方式等进行分类。 1.截止式方向控制阀 芯的关系如图13.1 阀口开启后气流的流动方向。 点: 1) 构紧凑的大口径阀。 2 胶等)密封,当阀门关闭后始终存在背压,因此,密封性好、泄漏量小、勿须借助弹簧也能关闭。 3)因背压的存在,所以换向力较大,冲击力也较大。不适合用于高灵敏度的场合。 4)比滑柱式方向控制阀阻力损失小,抗粉尘能力强,对气体的过滤精度要求不高。 2. 滑柱式方向控制阀 滑柱式气动方向控制阀工作原理与滑阀式液压控制元件类似,这里不具体说明。 滑柱式方向控制阀的特点: 1)阀芯较截止式长,增加了阀的轴向尺寸,对动态性能有不利影响,大通径的阀一般不易采用滑柱式结构; 2)由于结构的对称性,阀芯处在静止状态时,气压对阀芯的轴向作用力保持平衡,容易设计成气动控制中比较常用的具有记忆功能的阀; 3)换向时由于不受截止式密封结构所具有的背压阻力,换向力较小;

液控单向阀的结构和工作原理

液控单向阀的结构和工作原理 单向阀、液控单向阀、SV/SL型液控单向阀、叠加式液控单向阀的结构和工作原理 单向阀又称止回阀或逆止阀。用于液压系统中防止油流反向流动。单向阀有直通式和直角式两种。如图15、图16所示。 SV和SL型液控单向阀都是座式阀,由液压开启,能给出反向流。 这种阀用来隔离局部压力回路,即作为在管子破裂时防止负载降落的保护,也可防止负载下爬。这种液控单向阀主要包括阀体(1)、主阀(2)、先导阀(3)、压缩弹簧(4)和控制活塞(5)。SV型阀(无泄油口)——泄漏油内部回油 由A口至B口始终可以流动。反方向上则导阀(3)和主阀(2)被压缩弹簧(4)和系统压力保持在阀座上。若X口供给压力油则控制活塞(5)被推向右。这首先打开导阀(3),然后打开主阀(2)。于是油液先通过导阀,然后通过主导阀。为了保证用控制活塞(5)能可靠地操纵,需要一定的最低控制压力,如图18。SL型阀(带泄油口)——泄漏油外部回油 在原理上,此阀与SV型有相同的功能。不同之处在于增加了泄油口Y,这就可使控制活(5)的环形面积与A口隔离。A口来的油压只作用在控制活塞(5)的面积A4上,从而有效地降低此条件下所需的控制压力,如图19。 Z2S型叠加式液控单向阀如图20、21、22、23所示

Z2S型单向阀是叠加式液控单向阀。它可用于关闭一个或两个工作油口,无泄漏持续时间长,稳定性好。 油液从A到A1或B到B1自由流通,反向则被截止。如果油流通过阀,例如从A到A1,压力油作用在阀芯(1)上,阀芯则向右运动并推动钢球(2)离开阀座。单向阀(3)被控制油打开时,油可从B1到B流通。压力在B1腔卸荷,单向阀(3)全部开启。为保证两个主单向阀在换向阀中位时能可靠的关闭,阀的A、B口与回油路连接。

顺序阀

新型顺序阀及其应用 [摘要]简要介绍了两种新型顺序阀——常开式和复合式顺序阀的结构、原理、特点和它们在组合机床液压系统中的应用。 [关键词]顺序阀; 常闭式; 常开式; 复合式; 组合机床; 液压系统 1 新型顺序阀的结构原理 顺序阀的功用是利用液压系统中的压力变化来控制油路的通断, 从而实现多个液压元件按一定的顺序动作。顺序阀按结构分为直动型和先导型; 按控制油来源又有内控式和外控式;还可以按常态时油口的连通状态进行分类, 可分为常闭式( 已有顺序阀) 、常开式和复合( 新型顺序阀, 本文将介绍) ; 内控式还可以以控制油来自进油口还是出油口之别, 可进油口控制式和出油口控制式。 图1( a) 所示为一般顺序阀的结构原理图, 常态时, 油口A B 不通, 本文称之为常闭式。 图2( a) 所示为新型顺序阀的结构原理图之一, 常态时, 油口A 与B 相通, 本文称之为常开式。 图3( a) 所示为新型顺序的结构原理图之二, 常态时, 油A与B 不通, 而A 与C 油口相通, 本文称之为复合式。 这三种顺序阀, 当压力油由 进油口A 阀体4 和下盖7 的小孔 流到控制活塞6 的下方, 使阀芯 5 受到一个向上的推力作用。当 进油口油压较低时, 阀芯在弹簧 2 的作用下处于下部位置, 此时 进出油口: 在图1( a) 中, A、B 不通; 在图2( a) 中, A、B 连通; 在图3( a)中, A、B 不通, A、C 连 通。当进口油压增大到预调的数 值以后, 阀芯底部受到的推力大 于弹簧力, 阀芯上移, 此时进出 油口: 在图1( a) 中, A、B 连通; 在图2( a)中, A、B 不通; 在图3( a) 中, A、B 连通, 同时A、C 不通;压力油就从连通的油口流过顺序阀。可以用调压螺钉1 移动顺序阀的阀芯来调节压力的大小。 在这些阀中, 控制活塞的直径很小, 因而阀芯受到的向上推力不大, 所

比例调节阀工作原理

比例调节阀工作原理 一、各个部件介绍:1 反馈杆1、1 连接销钉1、2 连接卡子2、1 喷嘴, 正作用(> >)2、2 喷嘴, 反作用(< >)3 膜片连杆(档板)4 测量弹簧5测量比较膜片6、1 量程调整螺钉6、2 零调整螺丝7 正反作用调整器8 比例/增益Xp9气源压力调整针阀10 气动放大器11 输出气量调整Q12电磁阀(可选件) 13 I/P转换器 二、工作原理:输入控制电流信号的变化被I/P转换器按比例转换为气动控制信号Pe送给气动单元,作为控制给定值,来调整阀杆的行程。气动控制信号pe在测量比较膜片(5)上的作用力与范围弹簧(4)的力(阀位反馈力)相比较。如果输入控制信号引起气动控制信号pe变化或阀位引起反馈杆(1)变化,膜片连杆使杠杆/挡板(3)与喷嘴(2、1或2、2)的间隙发生变化,产生与偏差相对应的喷嘴背压。可调整气路转换块(7)决定哪个喷嘴工作即决定阀门定位器正反作用。气源供给气动放大器(10)和气源压力调整针阀(9),调整后的气源经比例/增益调整Xp(8)和气路转换块(7)到喷嘴(2、1 或2、2),控制信号或阀位反馈杆(1)变化引起挡板与喷嘴间隙变化,使喷嘴背压变化并传到气动放大器(10),经放大产生输出信号压力Pst,再经输出气量调整(11)传送到气动执行器,使阀位定位在控制信号要求值。对于直行程控制阀,阀行程是由连接销钉(1、1)传

递给反馈杆(1)的;对于角行程控制阀,是在反馈杆上加一个随动轮,并随安装在执行器传动轴上的凸轮的转动而位移。最终,反馈杆的线性运动被转换为范围弹簧(4)的作用力。若用于双作用执行器,阀门定位器则再装一个反向输出气动放大器,将输出两个相反的输出信号压力(Pst1和Pst2)。可调比例/增益Xp (8)和输出气量调整针阀Q(11)用来优化定位控制。两个调整螺钉(6、1和6、2)用来调整零点和量程。作用方向当气动控制信号(Pe)增加,输出信号压力(Pst)可选择为增加-增加(正作用>>)或增加-减小(反作用<>)。作用方向由气路转换块(7)的位置决定,并有相应标记。可在现场调整改变作用方向。

水力控制阀的结构与工作原理

水力控制阀的结构与工作原理 水力控制阀是人们日常生活中极为常见的阀门之一,与人们的生活息息相关。水力阀广泛地应用于楼宇管道、工业供水、消防设施、暖通空调和灌溉系统等各个方面,一般作为减压,持压,泄压,调节流量,控制水位和预防水锤等之用。 水力控制阀是一种靠液压动力和隔膜驱动的控制阀,主阀一般由基本阀体和驱动装置组成。水力阀的主阀有单腔式和双腔式两种。 单腔式主阀(图1)由隔膜将驱动装置分为上、下两个控制腔,上控制腔通过配管与上游连接,下控制腔即下游。阀门主要靠上、下腔的压差操作隔膜的运动(图2) 。 1 阀盖 2 阀盖导套 3 弹簧 4 导杆 5 膜片上压板 6 隔膜片 7 支架(阀瓣) 8 阀体 9 支架(阀瓣) 10 密封圈11 导向压板12 阀座13 O形圈 图1 单腔式主阀

( a)当进口端压力进入上腔,同时球阀关闭时,主阀处于全关位置 ( b)当调节球阀之开度,使流经针阀和流经球阀的水流达到平衡,主阀处于浮动 状态 ( c)当球阀全开,上腔的压力释放到大气中,主阀处于全开位置 图2 单腔式主阀工作原理 双腔式主阀(图3)是在密封阀瓣与隔膜之间添加一块隔离盘,这样就有上、中、下三个控制腔,上控制腔通过配管与上游连接,中控制腔可以任意连接动力源,下控制腔仍连接下游。阀门主要靠上、中腔的压差操作隔膜的运动。 1 阀盖 2 阀盖导套 3 弹簧 4 导杆 5 膜片上压板 6 隔膜片 7 膜片下压板 8 中间体 9 中间体导套10 阀体11 阀瓣 12 密封圈13 导向压板 14 阀座15 O形圈

图3 双腔式主阀 水力阀常见的连接形式是法兰型和螺纹型,也有少量是榫槽型和对夹型。水力阀主要部件用材料见表1。

气动电磁阀工作原理

电气转化组件将电讯号转化为气动讯号,电气讯号输入控制了气动输出。最常用的电-气转换组件是电磁阀(Solenoid actuated valves) 。电磁阀既是电器控制部分和气动执行部分的接口,也是和气源系统的接口。电磁阀接受命令去释放,停止或改变压缩空气的流向,在电-气动控制中,电磁阀可以实现的功能有:气动执行组件动作的方向控制,ON/OFF开关量控制,OR/NOT/AND 逻辑控制。在电磁阀家族中,最重要的是电磁控制换向阀(Solenoid actuated directional control valves) 。 电磁控制换向阀的工作原理 在气动回路中,电磁控制换向阀的作用是控制气流通道的通、断或改变压缩空气的流动方向。主要工作原理是利用电磁线圈产生的电磁力的作用,推动阀芯切换,实现气流的换向。按电磁控制部分对换向阀推动方式的不同,可以分为直动式电磁阀和先导式电磁阀。直动式电磁阀直接利用电磁力推动阀芯换向,而先导式换向阀则利用电磁先导 阀输出的先导气压推动阀芯换向。

图4.2a表示3/2(三路二位)直动式电磁阀(常断型)结构的简单剖面图及工作原理。线圈通电时,静铁芯产生电磁力,阀芯受到电磁力作用向上移动,密封垫抬起,使1、2接通,2、3断开,阀处于进气状态,可以控制气缸动作。当断电时,阀芯靠弹簧力的作用恢复原状,即1、 2断,2、3通,阀处于排气状态。

图4.2b表示5/2(五路二位)直动式电磁阀(常断型)结构的简单剖面图及工作原理。起始状态,1,2进气﹔4,5排气﹔线圈通电时,静铁芯产生电磁力,使先导阀动作,压缩空气通过气路进入阀先导活塞使活塞启动,在活塞中间,密封圆面打开通道,1,4进气,2,3排气﹔当断电时,先导阀在弹簧作用下复位,恢复到原来的状态。 阀的功能:(Function) 电磁阀的菜单示它的电-气转换复杂性。阀的功能由两个数字表示:M和N,称为M路N位电磁阀,“N位”表示换向阀的切换位置,也表示阀的状态。阀的位置数目就是N的数值,如二位阀有两个位置选择亦即有两种状态,三位阀则有三个位置选择亦即有三种不同的状态。“M路”表示阀对外接口的通路,包括进气口,出气口和排气口,通路的数目便是M的数值,如二路阀,三路阀等。图4.1a例子中的阀为3/2直动式电磁阀,念作“三路二位阀” ,表示该阀有两个位,即“通”和“断” 两个状态,有三个气口,分别为1:进气口,2:出气口, 3:排气口。

相关主题
文本预览
相关文档 最新文档