二、见直角三角形斜边中点与等腰三角形底边中点作中线
- 格式:docx
- 大小:132.46 KB
- 文档页数:6
2012中考数学专题复习5图形的中点问题一.知识要点:线段的中点是几何图形中的一个特殊点,与中点有关的问题很多,添加适当的辅助线、恰当地利用中点是处理中点问题的关键。
涉及中点问题的几何问题,一般常用下列定理或方法:(1)直角三角形斜边上的中线等于斜边的一半;(2)三角形中位线定理;(3)等腰三角形三线合一的性质;(4)倍长中线,构造全等三角形(或平行四边形);(5)平行四边形的性质与判定.二.例题精选1、若一点是直角三角形斜边的中点或等腰三形底边的中点,则常过中点作中线,应用“直角三角形斜边上的中线等于斜边的一半”性质或“等腰三角形三线合一”的性质。
例1. 如图,已知△ABC中,∠B =90°,AB=BC,D在AB上,E在BC上,BD=CE , M是AC的中点,求证:△DEM是等腰直角三角形.提示:连结BM,证明ΔBDM≌ΔCEM,得DM=ME,∠DMB=∠EMC,则∠DME=,得ΔMDM为等腰直角三角形2、三角形中遇到两边的中点,常应用“三角形的中位线定理”,若有一点是三角形一边的中点或梯形一腰的中点,则常过中点作中位线。
例2.如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线分别交MN的延长线于E、F.求证:∠DEN=∠F.提示:连结AC,作AC中点G,连结MG,NG。
则MG=NG,MG∥BC,NG∥AD。
∴∠MGN=∠F ,∠GNM=∠DEN,∠MGN=∠GNM. ∴∠DEN=∠F.3、若有三角形的中线或过中点的线段,则通常加倍延长中线或过中点的线段,以构造两个三角形全等。
例3. 已知:如图2,AD为△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF提示:延长AD至G,使DG=AD,连结BG,则ΔBDG≌ΔCDA,∴AC=BG=BF4、遇到两平行线所截得的线段的中点时,常联想或构造“X字型”全等三角形.例4. 如图,正方形ABCD和正方形CGEF的边长分别是2和3,且点B,C,G在同一直线上,M是线段AE的中点,连结MF,则MF的长为.提示:延长AD、FM交于点H,则AH=EF=3,DH=1=DF,∴FH=MF=5、有关面积的问题中遇到中点,常用“等底等高的两个三角形面积相等”的性质。
三角形中位线中的常见辅助线知识梳理知识点一中点一、与中点有关的概念三角形中线的定义:三角形顶点和对边中点的连线等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形二、与中点有关的辅助线方法一:倍长中线解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。
方法二:构造中位线解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。
方法三:构造三线合一解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口其他位置的也要能看出方法四:构造斜边中线解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。
其他位置的也要能看出常见考点构造三角形中位线考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三角形底边中点、直角三角形斜边中点或其他线段中点;②延长三角形一边,从而达到构造三角形中位线的目的。
“题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用.CEDBA典型例题【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =.举一反三1. 如右下图,在ABC ∆中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.2. 在ABC ∆中,90ACB ∠=︒,12AC BC =,以BC 为底作等腰直角BCD ∆,E 是CD 的中点,求证:AE EB ⊥且AE BE =.EDCBA【例2】 已知四边形ABCD 的对角线AC BD =,E 、F 分别是AD 、BC 的中点,连结EF 分别交AC 、BD于M 、N ,求证:AMN BNM =∠∠.MNF EDCB A举一反三1. 已知四边形ABCD 中,AC BD <,E F 、分别是AD BC 、的中点,EF 交AC 于M ;EF 交BD 于N ,AC 和BD 交于G 点.求证:GMN GNM ∠>∠.GBCDEFM N AMN ABEF DC(N )M F EDCBA2. 已知:在ABC ∆中,BC AC >,动点D 绕ABC ∆的顶点A 逆时针旋转,且AD BC =,连结DC .过AB 、DC 的中点E 、F 作直线,直线EF 与直线AD 、BC 分别相交于点M 、N .(1)如图1,当点D 旋转到BC 的延长线上时,点N 恰好与点F 重合,取AC 的中点H ,连结HE 、HF ,求证: AMF BNE ∠=∠(2)当点D 旋转到图2中的位置时,AMF ∠与BNE ∠有何数量关系?请证明.【例3】 如图,在五边形ABCDE 中,90ABC AED ∠=∠=︒,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.EDFCBA举一反三1.如图所示,在三角形ABC 中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE=DF .过E 、 F 分别作直线CA 、CB 的垂线,相交于点P ,设线段PA 、PB 的中点分别为M 、N .求证: (1)DEM FDN ∆∆≌; (2)PAE PBF ∠=∠.3. 已知:在ABC ∆中,分别以AB 、AC 为斜边作等腰直角三角形ABM ,和CAN ,P 是边BC 的中点.求证:PM PN =PNMCBA4. 如图所示,已知ABD ∆和ACE ∆都是直角三角形,且90ABD ACE ∠=∠=︒,连接DE ,设M 为DE 的中点.(1)求证MB MC =.(2)设BAD CAE ∠=∠,固定Rt ABD ∆,让Rt ACE ∆移至图示位置,此时MB MC =是否成立?请证明你的结论.EMDCBA EM DCBAEDEDBC5. 在△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,M 是BC 边中点中点,连接MD 和ME(1)如图1所示,若AB=AC ,则MD 和ME 的数量关系是(2)如图2所示,若AB≠AC 其他条件不变,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程; (3)在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧作等腰直角三角形,M 是BC 的中点,连接MD 和ME ,请在图3中补全图形,并直接判断△MED 的形状.图1 图2 图3图【例4】 以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90BAD CAE ∠=∠=︒.连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是________;线段AM 与DE 的数量关系是________;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转θ︒(090θ<<)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.图①NM EDCB A图②NMEDCBA举一反三1. (1)如图1,BD 、CE 分别是ABC △的外角平分线,过点A 作AD BD AE CE ⊥⊥、,垂足分别为D E 、,连接DE .求证:()12DE BC DE AB BC AC =++,∥ (2)如图2,BD CE 、分别是ABC △的内角平分线,其他条件不变; (3)如图3,BD 为ABC △的内角平分线,CE 为ABC △的外角平分线,其他条件不变。
三角形中位线中的常见辅助线知识梳理知识点一中点一、与中点有关的概念三角形中线的定义:三角形顶点和对边中点的连线等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形二、与中点有关的辅助线方法一:倍长中线解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。
方法二:构造中位线解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。
方法三:构造三线合一解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口其他位置的也要能看出方法四:构造斜边中线解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。
其他位置的也要能看出常见考点构造三角形中位线考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三角形底边中点、直角三角形斜边中点或其他线段中点;②延长三角形一边,从而达到构造三角形中位线的目的。
“题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用. 典型例题【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =. 举一反三1. 如右下图,在ABC ∆中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.2. 在ABC ∆中,90ACB ∠=︒,12AC BC =,以BC 为底作等腰直角BCD ∆,E 是CD 的中点,求证:AE EB ⊥且AE BE =.【例2】 已知四边形ABCD 的对角线AC BD =,E 、F 分别是AD 、BC 的中点,连结EF 分别交AC 、BD于M 、N ,求证:AMN BNM =∠∠. 举一反三1. 已知四边形ABCD 中,AC BD <,E F 、分别是AD BC 、的中点,EF 交AC 于M ;EF 交BD 于N ,AC 和BD 交于G 点.求证:GMN GNM ∠>∠.2. 已知:在ABC ∆中,BC AC >,动点D 绕ABC ∆的顶点A 逆时针旋转,且AD BC =,连结DC .过AB 、DC 的中点E 、F 作直线,直线EF 与直线AD 、BC 分别相交于点M 、N .(1)如图1,当点D 旋转到BC 的延长线上时,点N 恰好与点F 重合,取AC 的中点H ,连结HE 、HF ,求证: AMF BNE ∠=∠(2)当点D 旋转到图2中的位置时,AMF ∠与BNE ∠有何数量关系?请证明.【例3】 如图,在五边形ABCDE 中,90ABC AED ∠=∠=︒,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.举一反三EDE DB C1.如图所示,在三角形ABC 中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE=DF .过E 、 F 分别作直线CA 、CB 的垂线,相交于点P ,设线段PA 、PB 的中点分别为M 、N .求证:(1)DEM FDN ∆∆≌;(2)PAE PBF ∠=∠.3. 已知:在ABC ∆中,分别以AB 、AC 为斜边作等腰直角三角形ABM ,和CAN ,P 是边BC 的中点.求证:PM PN =4. 如图所示,已知ABD ∆和ACE ∆都是直角三角形,且90ABD ACE ∠=∠=︒,连接DE ,设M 为DE 的中点. (1)求证MB MC =.(2)设BAD CAE ∠=∠,固定Rt ABD ∆,让Rt ACE ∆移至图示位置,此时MB MC =是否成立?请证明你的结论. 5. 在△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,M 是BC 边中点中点,连接MD 和ME(1)如图1所示,若AB=AC ,则MD 和ME 的数量关系是(2)如图2所示,若AB≠AC 其他条件不变,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程;(3)在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧作等腰直角三角形,M 是BC 的中点,连接MD 和ME ,请在图3中补全图形,并直接判断△MED 的形状.图1 图2 图3【例4】 以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90BAD CAE ∠=∠=︒.连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是________;线段AM 与DE 的数量关系是________;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转θ︒(090θ<<)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.举一反三1. (1)如图1,BD 、CE 分别是ABC △的外角平分线,过点A 作AD BD AE CE ⊥⊥、,垂足分别为D E 、,连接DE .求证:()12DE BC DE AB BC AC =++,∥ (2)如图2,BD CE 、分别是ABC △的内角平分线,其他条件不变; (3)如图3,BD 为ABC △的内角平分线,CE 为ABC △的外角平分线,其他条件不变。
第八章中点四大模型模型1【倍长中线或类中线(与中点有关的线段)构造全等三角形】模型分析如图①,AD是△ABC的中线,延长AD至点E使DE=AD,易证:△ADC≌△EDB(SAS)。
如图②,D是BC中点,延长FD至点E使DE=FD,易证:△FDB≌△FDC(SAS)。
当遇见中线或者中点的时候,可以尝试倍长中线或类中线,构造全等三角形,目的是对已知条件中的线段进行转移。
模型实例例1.如图,已知在△ABC中,AD是BC边上的中线,E是AD上一点,连接BE并延长AC于点F,AF=EF。
求证:AC=BE。
热搜精练1.如图,在△ABC 中,AB=12,AC=20,求BC 边上中线AD 的范围。
2.如图,在△ABC 中,D 是BC 的中点,DM⊥DN,如果2222B M C N D M D N +=+。
求证:()22214A D AB AC =+。
模型2【已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”】模型分析等腰三角形中有底边中点时,常作底边的中线,利用等腰三角形“三线合一”的性质得到角相等或边相等,为解题创造更多的条件,当看见等腰三角形的时候,就应想到:“边等、角等、三线合一”。
模型实例例1.如图,在△ABC中,AB=AC-5,BC=6,M为BC的中点,MN⊥AC于点N,求MN的长度。
热搜精练1.如图,在△ABC中,AB=AC,D是BC的中点,AE⊥DE,AF⊥DF,且AE=AF。
求证:∠EDB=∠FDC。
2.已知Rt△ABC 中,AC=BC,∠C=90°,D 为AB 边的中点,∠EDF=90°,∠EDF 绕点D 旋转,它的两边分别交AC、CB(或它们的延长线)于E、F。
(1)当∠EDF 绕点D 旋转到DE⊥AC 于E 时(如图①),求证:12DEF CEF ABC S S S += ;(2)当∠EDF 绕点D 旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S 、CEF S 、ABC S 又有怎样的数量关系?请写出你的猜想,不需证明。
⼆、见直⾓三⾓形斜边中点与等腰三⾓形底边中点作中线⼆、见直⾓三⾓形斜边中点与等腰三⾓形底边中点作中线1、连结直⾓三⾓形斜边上的中线后,得两个等腰三⾓形、三条等线段,并且三顶点共圆;2、特别地,等腰直⾓三⾓形斜边上中线把它分为两全等的等腰直⾓三⾓形,出现4个45°⾓、2组等边、2组长度为1:2的边;3、逆⽤可以判定⼀个三⾓形是直⾓三⾓形.解法归⼀:见直⾓三⾓形斜边上的中点和等腰三⾓形底边的中点,连中线,找边、⾓、线段的相等关系,或借助三点共圆进⾏⾓转化.例3-2-1如图3-2-1,四边形ABCD中,∠ABC=∠ADC=90°,M是AC的中点,MN⊥BD于N点,求证:BN=DN.图3-2-1交流分享:连结MB、MD的⼀个等腰三⾓形.例3-2-2 如图3-2-2,在Rt△POQ中,OP=OQ=4.把三⾓尺的直⾓顶点放在斜边PQ中点M处,以M为旋转中⼼旋转三⾓尺,三⾓尺的两直⾓边与△POQ的两直⾓边分别交于点A、B.(1)求证:MA=MB;(2)连接AB.探究:在旋转三⾓尺的过程中,△AOB的周长是否存在最⼩值.若存在,求出最⼩值;若不存在,请说明理由.图3-2-2交流分享:(1)连结MO,即见斜边的中点,作斜边上的中线;(2)见含⼆次整式的最值,⽤⼆次函数性质,或⽤完全平⽅公式配⽅.例3-2-3 如图3-2-3,△ABC与△DEF都是等腰直⾓三⾓形,∠ACB=∠EDF=90°,AB、EF的中点均为O,连结BF、CD,求证:BF=CD.图3-2-3体验与感悟03-21、如图3-2-4,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则BC=.图3-2-4 图 3-2-52、如图 3-2-5,在等腰梯形ABCD中,AD//BC,AC⊥BD,BC=7,则梯形的⾯积是()A.25 B.50 C.3、如图 3-2-6,DE为△ABC的中位线,点F在DE上,且∠AFB=90°.(1)若AB=5,BC=8,则EF的长为___________;(2)若∠ABC=52°,则∠FAD=°.4、如图3-2-7,有两个互相垂直的滑槽,⼀根没有弹性的⽊棒的两端A、B能在滑槽内⾃由滑动(滑槽及⽊棒的宽度忽略不计),当点A从上向下⾄O的滑动过程中,⽊棒中点P⾛过的轨迹是.5、如图3-2-8,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC= .6、如图3-2-9,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD 于点E,过点A作BD的平⾏线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为.图3-2-97、(1)问题探究如图1,M为△ABC的BC边中点,且2MA=BC,求证:∠BAC=90°.同学们经过思考、讨论、交流得到以下证明思路:思路⼀直接利⽤等腰三⾓形性质和三⾓形内⾓和定理…思路⼆延长AM到D使DM=MA,连接DB,DC,利⽤矩形的知识…思路三以BC为直径作圆,利⽤圆的知识…思路四…请选择⼀种⽅法写出完整的证明过程;(2)结论应⽤要求直接运⽤(1)中命题的结论完成以下两道题:①如图2,线段AB经过圆⼼O,交⊙O于点A,C,点D在⊙O 上,且∠DAB=30°,OA=a,OB=2a,求证:直线BD是⊙0的切线;②如图3,△ABC中,M为BC的中点,BD⊥AC于D,E在AB边上,且EM=DM,连接DE,CE,如果∠A=60°,请求出△ADE 与△ABC⾯积的⽐值.8、在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)如图3-2-11①,当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停⽌;设△DEF的⾯积为y,F点运动的时间为x(x>0),求y与x的函数关系式;(2)如图3-2-11②在(1)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.9、如图3-2-12,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对⾓线BD于F,点G为BC中点,连接EG、AF.。
二、见直角三角形斜边中点与等腰三角形底边中点作中线
1、连结直角三角形斜边上的中线后,得两个等腰三角形、三条等线段,并且三顶点共圆;
2、特别地,等腰直角三角形斜边上中线把它分为两全等的等腰直角三角形,出现4个45°角、2组等边、2组长度为1:2的边;
3、逆用可以判定一个三角形是直角三角形.
解法归一:见直角三角形斜边上的中点和等腰三角形底边的中点,连中线,找边、角、线段的相等关系,或借助三点共圆进行角转化.
例3-2-1如图3-2-1,四边形ABCD中,∠ABC=∠ADC=90°,M是AC的中点,MN⊥BD于N点,求证:BN=DN.
图3-2-1
交流分享:连结MB、MD的一个等腰三角形.
例3-2-2 如图3-2-2,在Rt△POQ中,OP=OQ=4.把三角尺的直角顶点放在斜边PQ中点M处,以M为旋转中心旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.
(1)求证:MA=MB;
(2)连接AB.探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值.若存在,求出最小值;若不存在,请说明理由.
图3-2-2
交流分享:(1)连结MO,即见斜边的中点,作斜边上的中线;(2)见含二次整式的最值,用二次函数性质,或用完全平方公式配方.
例3-2-3 如图3-2-3,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,AB、EF的中点均为O,连结BF、CD,求证:BF=CD.
图3-2-3
交流分享:连结OC、OD,即已知等腰三角形底边中点时连中线,问题迎刃而解.
体验与感悟03-2
1、如图3-2-4,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则BC=.
图3-2-4 图 3-2-5
2、如图 3-2-5,在等腰梯形ABCD中,AD//BC,AC⊥BD,BC=7,则梯形的面
积是()
A.25 B.50 C.
3、如图 3-2-6,DE为△ABC的中位线,点F在DE上,且∠AFB=90°.
(1)若AB=5,BC=8,则EF的长为___________;
(2)若∠ABC=52°,则∠FAD=°.
图 3-2-6 图3-2-7 图3-2-8
4、如图3-2-7,有两个互相垂直的滑槽,一根没有弹性的木棒的两端A、B能在滑槽内自由滑动(滑槽及木棒的宽度忽略不计),当点A从上向下至O的滑动过程中,木棒中点P走过的轨迹是.
5、如图3-2-8,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC= .
6、如图3-2-9,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD 于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为.
图3-2-9
7、(1)问题探究如图1,M为△ABC的BC边中点,且2MA=BC,求证:∠BAC=90°.
同学们经过思考、讨论、交流得到以下证明思路:
思路一直接利用等腰三角形性质和三角形内角和定理…
思路二延长AM到D使DM=MA,连接DB,DC,利用矩形的知识…
思路三以BC为直径作圆,利用圆的知识…
思路四…
请选择一种方法写出完整的证明过程;
(2)结论应用要求直接运用(1)中命题的结论完成以下两道题:①如图2,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求证:直线BD是⊙0的切线;
②如图3,△ABC中,M为BC的中点,BD⊥AC于D,E在AB边上,且EM=DM,连接DE,CE,如果∠A=60°,请求出△ADE与△ABC面积的比值.
8、在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.
(1)如图3-2-11①,当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x(x>0),求y与x的函数关系式;
(2)如图3-2-11②在(1)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.
图3-2-11①图3-2-11②
9、如图3-2-12,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥
CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接
EG、AF.
(1)求EG 的长; (2)求证:CF=AB+AF .
图3-2-12
交流分享:几何证明与计算、方程、函数相结合,是今后命制几何探究题的一种趋势.
10、(1)如图3-2-13① ,△ABC 与△DEF 都是等边三角形,AB 、EF 的中点均为O ,连结BF 、CD ,请你先猜想线段BF 、线段CD 的数量关系,再证明你的结论;
(2)如图3-2-13②,若△ABC 与△DEF 都是等腰三角形,AB 、EF 的中点均为O ,且顶角∠ACB=∠EDF=α,请直接写出CD
BF 的值(用含α的式子表示).
图3-2-13①图3-2-13②
11、(1)如图1,将两块全等的直角三角形纸片△ABC 和△DEF 叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D 与边AB 的中点重合,
DE经过点C,DF交AC于点G.则重叠部分(△DCG)的面积等于.
(2)将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,这时重叠部分(△DGH)的面积等于.
提醒:请回味与感悟一下遇直角三角形斜边上中点与等腰三角形底边上中点时怎样作辅助线.。