(1):全等三角形的对应边相等、对应角相等。 (2):全等三角形的周长相等、面积相等。 (3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。
SSS、SAS、ASA、AAS、HL(RT△)
方法指引
证明两个三角形全等的基本思路:
(1):已知两边----
找第三边
(SSS)
找夹角
(SAS)
例3:如图,OB⊥AB,OC⊥AC,垂足为B,C,OB=OC AO平分∠BAC吗?为什么?
O
C
B
A
答: AO平分∠BAC
理由:∵ OB⊥AB,OC⊥AC ∴ ∠B=∠C=90° 在Rt△ABO和Rt△ACO中 OB=OC AO=AO ∴ Rt△ABO≌Rt△ACO (HL) ∴ ∠BAO=∠CAO ∴ AO平分∠BAC
E
C
A
B
2
1
D
(2)怎样变换△ABC和△AED中的一个位置,可使它们重合?
(3)观察△ABC和△AED中对应边有怎样的位置关系?
例6:如图所示,AB与CD相交于点O, ∠A=∠B,OA=OB 添加条件 所以 △AOC≌△BOD 理由是
A
O
D
C
B
∠C=∠D
∠AOC=∠BOD
图6
知识应用:
1.已知△ABC和△DEF,下列条件中,不能保证△ABC和△DEF全等的是( ) AB=DE,AC=DF,BC=EF ∠A= ∠ D, ∠ B= ∠ E,AC=DF C.AB=DE,AC=DF, ∠A= ∠D D.AB=DE,BC=EF, ∠ C= ∠ F
F
E
D
C
B
A
例9:如图,已知AC∥EF,DE∥BA,若使△ABC≌△EDF,还需要补 充的条件可以是