第二章 圆锥曲线与方程 第二讲双曲线
- 格式:doc
- 大小:1.43 MB
- 文档页数:11
2.3。
1 双曲线及其标准方程1.双曲线(1)定义错误!平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.(2)双曲线的集合描述设点M是双曲线上任意一点,点F1,F2是双曲线的焦点,则由错误!P={M|||MF1|-|MF2||=2a,0〈2a〈|F1F2|}.2.双曲线的标准方程1.判一判(正确的打“√",错误的打“×")(1)平面内到两定点的距离的差等于非零常数(小于两定点间距离)的点的轨迹是双曲线.( )(2)在双曲线标准方程错误!-错误!=1中,a〉0,b>0且a≠b.( ) (3)双曲线的标准方程可以统一为Ax2+By2=1(其中AB 〈0).()答案(1)×(2)×(3)√2.做一做(请把正确的答案写在横线上)(1)若双曲线错误!-错误!=1上一点M到左焦点的距离为8,则点M 到右焦点的距离为________.(2)双曲线x2-4y2=1的焦距为________.(3)(教材改编P55T1)已知双曲线a=5,c=7,则该双曲线的标准方程为________.(4)下列方程表示焦点在y轴上的双曲线的有________(把序号填在横线上).①x2-错误!=1;②错误!+错误!=1(a<0);③y2-3x2=1;④x2cosα+y2sinα=1错误!.答案(1)4或12 (2) 5 (3)错误!-错误!=1或错误!-错误!=1(4)②③④解析(3)∵a=5,c=7,∴b=错误!=错误!=2错误!。
当焦点在x轴上时,双曲线方程为错误!-错误!=1;当焦点在y轴上时,双曲线方程为错误!-错误!=1。
探究1 双曲线标准方程的认识例1 若θ是第三象限角,则方程x2+y2sinθ=cosθ表示的曲线是()A .焦点在y 轴上的双曲线B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在x 轴上的椭圆[解析] 曲线方程可化为错误!+错误!=1,θ是第三象限角,则cos θ<0,错误!〉0,所以该曲线是焦点在y 轴上的双曲线.故选A.[答案] A拓展提升双曲线方程的认识方法将双曲线的方程化为标准方程的形式,假如双曲线的方程为错误!+y 2n=1,则当mn 〈0时,方程表示双曲线.若错误!则方程表示焦点在x 轴上的双曲线;若⎩⎪⎨⎪⎧m <0,n 〉0则方程表示焦点在y 轴上的双曲线. 【跟踪训练1】 若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( )A .焦点在x 轴上的椭圆B.焦点在y轴上的椭圆C.焦点在y轴上的双曲线D.焦点在x轴上的双曲线答案C解析原方程化为错误!-错误!=1,∵k>1,∴k2-1>0,k+1>0。
圆锥曲线与方程 (2)双曲线1.双曲线定义:在平面内,到两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|) a PF PF 221=-(a 为常数c a <<0)的点的轨迹叫做双曲线. ⑴若2a <21F F ,则动点P 的轨迹是双曲线.⑵若2a =21F F ,则动点P 的轨迹是以F 1,F 2为端点的两条射线(在直线F 1,F 2上). ⑶若2a >21F F ,则动点P 无轨迹.双曲线的第二定义:平面内到定点F(c,0)的距离和到定直线l:x =c a2的距离之比等于常数e =a c(c >a >0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p =c b2,与椭圆相同.2.双曲线的标准方程: 焦点在x 轴上时,方程为12222=-b y a x )00(>>b a , 焦点)0,(1c F -)0,(2c F焦点在y 轴上时,方程为12222=-bx ay )00(>>b a , 焦点),0(1c F -),0(2c F 注:222b a c +=(类比勾股定理)双曲线的一般方程:)0(122<=+mn ny mx注:方程C By Ax =+22(C B A ,,均不为0)表示双曲线的条件:方程变形:122=+BC yAC x,考察二次项系数的正负,若AC 与B C 异号,表示双曲线;若C B A ,,同号且B A ≠,则表示椭圆;若C B A ,,同号且AC =BC ,则表示圆.3.双曲线22221(0,0)x y a b ab-=>>的性质:(1)范围:a x ≥或a x -≤,y R ∈. (2)对称性:关于x 轴、y 轴、原点对称.(3)顶点坐标:双曲线和x 轴有两个交点)0,(),0,(21a A a A -,焦点坐标是)0(,c ±. (4)实轴长2a 、虚轴长2b 、焦距2c ;实半轴a 、虚半轴b 、半焦距c . (5)双曲线12222=-by ax 的准线方程是cax 2±=,准线到中心的距离为2ac,或令双曲线标准方程22ax -22by =1中1为零即得渐近线方程.焦准距:(焦点到对应准线的距离)cb2.通径的长是ab 22,通径的一半(半通径):2ba.(6) 渐近线方程是x ab y ±=① 双曲线22221(0,0)x y a b ab-=>>渐近线方程:令02222=-by ax )0,0(>>b a ,即x ab y ±=;② 渐近线是02222=-bya x(或x a by ±=⇔0=±by a x)的双曲线设为λ=-2222by ax .(λ≠0),k 是待定系数.③(焦渐距)焦点到渐近线的距离恒为b .(7) 等轴双曲线:实轴和虚轴等长的双曲线叫做等轴双曲线. 定义式:a b =. 注:①等轴双曲线的渐近线方程为:x y ±= .②渐近线互相垂直.③等轴双曲线可设为:)0(22≠=-λλy x .(0>λ时焦点在x 轴,0<λ时焦点在y 轴上)(8) 离心率是22221ab ac ac e +=== (1>e )e 越大,开口越开阔;e 越小,开口越扁狭. (9) 半径:若点),(00y x P 是双曲线22221(0,0)x y a b ab-=>>上一点,21F F 、是其左、右焦点,|||)(|||0201ex a cax e PF +=+=, |||)(|||0022ex a x cae PF -=-=即焦半径:点),(00y x p 在左支上 01ex a PF --=和02ex a PF -=.点),(00y x p 在右支上 01ex a PF +=和02ex a PF +-=.4.双曲线的内外部(1) 00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2) 00(,)P x y 在双曲线22221(0,0)x y a b ab-=>>的外部22221x y a b ⇔-<.5.双曲线系方程(1) 双曲线12222=-b y a x 共焦点的双曲线系方程是12222=--+λλb ya x(22b a <<-λ)(2) 双曲线12222=-b ya x共渐近线的双曲线系方程可设为λ=-2222bya x)0(≠λ. (当0>λ时焦点在x 轴,当0<λ时焦点在y 轴上).本节学习要求:学习双曲线的几何性质,可以用类比思想,即象讨论椭圆的几何性质一样去研究双曲线的标准方程,从而得出双曲线的几何性质,将双曲线的两种标准方程、图形、几何性质列表对比,便于掌握.双曲线的几何性质与代数中的方程、平面几何的知识联系密切;直线与双曲线的交点问题、弦长间问题都离不开一元二次方程的判别式,韦达定理等;渐近线的夹角问题与直线的夹角公式.三角函数中的相关知识,是高考的主要内容.通过本节内容的学习,培养同学们良好的个性品质和科学态度,培养同学们的良好的学习习惯和创新精神,进行辩证唯物主义世界观教育.【重点难点解析】1.学习双曲线的几何性质,也可以与椭圆的几何性质对比进行,着重指出它们的联系和区别.2.本节重点是双曲线的几何性质,双曲线的第二定义及其应用,难点是双曲线的渐近线方程,第二定义,几何性质的应用.。
2.3.2 双曲线的几何性质学习目标核心素养1.了解双曲线的简单几何性质.(重点)2.会求双曲线的渐近线、离心率、顶点、焦点坐标等.(重点)3.知道椭圆与双曲线几何性质的区别.1.通过双曲线性质的学习,提升直观想象素养.2.借助性质的应用,提升数学运算素养.1.双曲线的简单几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)性质图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距2c范围x≤-a或x≥a,y∈Ry≤-a或y≥a,x∈R对称轴x轴,y轴对称中心原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b;实半轴长:a,虚半轴长:b离心率e=ca∈(1,+∞)渐近线y=±bax y=±abx(1)实轴和虚轴等长的双曲线叫做等轴双曲线.(2)性质:①等轴双曲线的离心率e=2;②等轴双曲线的渐近线方程为y =±x ,它们互相垂直. 思考:(1)渐近线一样的双曲线是同一条双曲线吗? (2)双曲线的离心率和渐近线的斜率有怎样的关系?[提示] (1)渐近线一样的双曲线有无数条,但它们实轴与虚轴的长的比值一样.(2)e 2=c 2a 2=1+b 2a 2,ba是渐近线的斜率或其倒数.1.双曲线x 24-y 29=1的渐近线方程是( ) A .y =±23xB .y =±49xC .y =±32xD .y =±94xC [双曲线的焦点在x 轴上,且a =2,b =3,因此渐近线方程为y =±32x .]2.双曲线x 216-y 2=1的顶点坐标是( )A .(4,0),(0,1)B .(-4,0),(4,0)C .(0,1),(0,-1)D .(-4,0),(0,-1)B [由题意知,双曲线的焦点在x 轴上,且a =4,因此双曲线的顶点坐标是(-4,0),(4,0).]3.假设双曲线x 24-y 2m =1(m >0)的渐近线方程为y =±32x ,那么双曲线的焦点坐标是________.(-7,0),(7,0) [由双曲线方程得出其渐近线方程为y =±m2x ,∴m =3,求得双曲线方程为x 24-y 23=1,从而得到焦点坐标为(-7,0),(7,0).]4.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =43x ,那么双曲线的离心率为________.53 [因为渐近线方程为y =43x ,所以b a =43, 所以离心率e =ca=1+⎝ ⎛⎭⎪⎫b a2=1+⎝ ⎛⎭⎪⎫432=53.]由双曲线的方程求其几何性质【例1】 求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程,并作出草图.[思路探究] 此题给出的方程不是标准方程,应先化方程为标准形式,然后根据标准方程求出根本量a ,b ,c 即可得解,注意确定焦点所在坐标轴.[解] 将9y 2-4x 2=-36变形为x 29-y 24=1,即x 232-y 222=1, 所以a =3,b =2,c =13, 因此顶点坐标A 1(-3,0),A 2(3,0), 焦点坐标F 1(-13,0),F 2(13,0), 实轴长是2a =6,虚轴长是2b =4, 离心率e =c a =133, 渐近线方程为y =±b a x =±23x .作草图,如下图:用双曲线标准方程研究几何性质的步骤1.将双曲线方程化为标准方程形式; 2.判断焦点的位置; 3.写出a 2与b 2的值; 4.写出双曲线的几何性质.1.求双曲线x 2-3y 2+12=0的实轴长、虚轴长、焦点坐标、渐近线方程和离心率. [解] 将方程x 2-3y 2+12=0化为标准方程为y 24-x 212=1,∴a 2=4,b 2=12,∴a =2,b =23, ∴c =a 2+b 2=16=4,∴双曲线的实轴长2a =4,虚轴长2b =43,焦点坐标为F 1(0,-4),F 2(0,4),顶点坐标为A 1(0,-2),A 2(0,2),渐近线方程为y =±33x ,离心率e =2. 求双曲线的标准方程【例2】 求适合以下条件的双曲线的标准方程. (1)两顶点间的距离为6,渐近线方程为y =±32x ;(2)与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2).[思路探究] 利用待定系数法,当渐近线方程时,可利用双曲线设出方程进展求解. [解] (1)设以直线y =±32x 为渐近线的双曲线方程为x 24-y29=λ(λ≠0),当λ>0时,a 2=4λ,∴2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ,∴2a =2-9λ=6⇒λ=-1. ∴双曲线的标准方程为x 29-y 2814=1或y 29-x 24=1.(2)设与双曲线x 22-y 2=1有公共渐近线的双曲线方程为x 22-y 2=λ(λ≠0),将点(2,-2)代入双曲线方程,得λ=222-(-2)2=-2.∴双曲线的标准方程为y 22-x 24=1.双曲线方程的求解方法1.根据双曲线的几何性质求双曲线的标准方程时,一般采用待定系数法,首先要根据题目中给出的条件,确定焦点所在的位置,然后设出标准方程的形式,找出a ,b ,c 的关系,列出方程求值,从而得到双曲线的标准方程.2.以y =±n m x 为渐近线的双曲线方程可设为x 2m 2-y 2n2=λ(λ≠0),以此求双曲线方程可防止分类讨论.2.求适合以下条件的双曲线的标准方程. (1)一个焦点为(0,13),且离心率为135;(2)渐近线方程为y =±12x ,且经过点A (2,-3).[解] (1)依题意可知,双曲线的焦点在y 轴上,且c =13,又c a =135,∴a =5,b =c 2-a 2=12,故其标准方程为y 225-x 2144=1.(2)法一:∵双曲线的渐近线方程为y =±12x ,假设焦点在x 轴上,设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),那么b a =12.①∵A (2,-3)在双曲线上,∴4a 2-9b2=1. ②由①②联立,无解.假设焦点在y 轴上,设所求双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),那么a b =12.③∵A (2,-3)在双曲线上,∴9a 2-4b2=1. ④由③④联立,解得a 2=8,b 2=32. ∴所求双曲线的标准方程为y 28-x 232=1.法二:由双曲线的渐近线方程为y =±12x ,可设双曲线方程为x 222-y 2=λ(λ≠0).∵A (2,-3)在双曲线上, ∴2222-(-3)2=λ,即λ=-8. ∴所求双曲线的标准方程为y 28-x 232=1.求双曲线的离心率及其取值范围ABC ABC A B C 曲线的离心率为________.(2)双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,假设过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,求双曲线离心率的取值范围.[思路探究] (1)根据图形并由双曲线的定义确定a 与c 的关系,求出离心率;(2)可以通过图形借助直线与双曲线的关系,因为过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,那么必有b a≥tan 60°.(1)1+32 [由题意2c =AB =BC ,∴AC =2×2c ×sin 60°=23c , 由双曲线的定义,有2a =AC -BC =23c -2c ⇒a =(3-1)c , ∴e =c a=13-1=1+32.] (2)[解] 因为双曲线渐近线的斜率为k =b a, 直线的斜率为k =tan 60°=3,故有b a≥3,所以e =ca =a 2+b 2a 2≥1+3=2, 所以所求离心率的取值范围是[2,+∞).双曲线离心率的求法1.求双曲线的离心率就是求a 和c 的关系,一般可以采用几何观察法和代数关系构造法来寻求a ,b ,c 三者中两者的关系,进而利用c 2=a 2+b 2进展转化.2.求双曲线离心率的取值范围,一般可以从以下几个方面考虑:(1)与范围联系,通过求值域或解不等式来完成.(2)通过判别式Δ>0来构造.(3)利用点在双曲线内部形成不等关系.(4)利用解析式的特征,如c >a ,或c >b .3.F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,PQ 是经过F 1且垂直于x 轴的双曲线的弦,如果∠PF 2Q =90°,求双曲线的离心率.[解] 设F 1(c,0),将x =c 代入双曲线的方程得c 2a 2-y 2b 2=1,那么y =±b 2a.由PF 2=QF 2,∠PF 2Q =90°, 知PF 1=F 1F 2,∴b 2a=2c ,∴b 2=2ac ,∴c 2-2ac -a 2=0,∴⎝ ⎛⎭⎪⎫c a 2-2×c a-1=0, 即e 2-2e -1=0.∴e =1+2或e =1-2(舍去). 所以所求双曲线的离心率为1+ 2.1.渐近线是双曲线特有的性质.两方程联系密切,把双曲线的标准方程x 2a 2-y 2b 2=1(a >0,b >0)右边的常数1换为0,就是渐近线方程.反之由渐近线方程ax ±by =0变为a 2x 2-b 2y 2=λ(λ≠0),再结合其他条件求得λ,可得双曲线方程.2.准确画出几何图形是解决解析几何问题的第一突破口.利用双曲线的渐近线来画双曲线特别方便,而且较为准确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的近似图形.1.判断(正确的打“√〞,错误的打“×〞)(1)双曲线虚轴的两个端点,不是双曲线的顶点.( ) (2)等轴双曲线的渐近线是y =±x .( ) (3)双曲线的实轴长一定大于虚轴长.( ) [答案] (1)√ (2)√ (3)×2.双曲线x 2a 2-y 23=1(a >0)的离心率为2,那么a =( )A .2B .62 C .52D .1 D [由题意得e =a 2+3a=2,∴a 2+3=2a ,∴a 2+3=4a 2,∴a 2=1,∴a =1.]3.假设双曲线的渐近线方程为y =±3x ,它的一个焦点是(10,0),那么双曲线的方程是________.x 2-y 29=1 [双曲线的焦点在x 轴上,那么c =10,b a∵a 2+b 2=c 2,解得a 2=1,b 2=9, ∴方程为x 2-y 29=1.]4.求适合以下条件的双曲线的标准方程.(1)焦点在x 轴上,虚轴长为8,离心率为53;(2)两顶点间的距离是6,两焦点的连线被两顶点和中心四等分.[解] (1)设所求双曲线的标准方程为x 2a 2-y 2b 2=1,由题意知2b =8,e =c a =53,从而b =4,c =53a ,代入c 2=a 2+b 2,得a 2=9,故双曲线的标准方程为x 29-y216=1. (2)由两顶点间的距离是6,得2a =6,即a 2c =4a =12,即c =6,于是b 2=c 2-a 2=62-32=27.由于焦点所在的坐标轴不确定,故所求双曲线的标准方程为x 29-y 227=1或y 29-x 227=1.。
第二章 圆锥曲线与方程第二讲 双曲线[知识梳理][知识盘点]1.双曲线的定义:我们把平面内与两个定点21,F F 的距离的差的绝对值等于常数( |,|21F F )的点的轨迹叫做双曲线,用符号表示为 。
这两个定点叫双曲线的 ,两个焦点之间的距离叫做双曲线的 。
2.双曲线的第二定义:平面内,到定点)0,(c F (或(0,)F c )的距离与到定直线:l 的距离之比是常数ac(即 )的动点的轨迹叫做双曲线,这个定点是双曲线的 ,这条定直线叫做双曲线的 ,其中常数ac叫做双曲线的 。
二.双曲线的标准方程3.当双曲线的焦点在x 轴上时,双曲线的标准方程为 ,其中焦点坐标为)0,(1c F ,)0,(1c F -,且2c = ;当双曲线的焦点在y 轴上时,双曲线的标准方程为 ,其中焦点坐标为),0(1c F ,),0(1c F -,且2c = .当且仅当双曲线的中心在坐标原点,其焦点在坐标轴上时,双曲线的方程才是标准形式。
三.双曲线的几何性质方程 22221x y a b -= 22221y x a b -= 图 形范围 x a ≤-或,x a y R ≥∈对称性关于x 轴,y 轴及原点对称关于x 轴,y 轴及原点对称顶点 12(,0),(,0)B b B b -离心率(1)ce e a=> 准线 2a x c=±渐近线a y x b=±[特别提醒]本节的重点是双曲线的定义、方程、几何性质.难点是理解参数a 、b 、c 、e 的关系及渐近线方程、准线方程、第二定义的应用.关键是准确理解和掌握有关概念,灵活地运用数形结合、函数与方程的思想及等价转化的思想.为此建议在复习中注意以下几点: 1.双曲线中有一个重要的Rt △OAB (如下图),它的三边长分别是a 、b 、c .易见c 2=a 2+b 2,若记∠AOB =θ,则e =a c =θcos 1.2.双曲线的定义用代数式表示为||MF 1|-|MF 2||=2a ,其中2a <|F 1F 2|,这里要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|,这两点与椭圆的定义有本质的不同.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; 当2a >|F 1F 2|时,动点轨迹不存在.3.参数a 、b 是双曲线的定形条件,两种标准方程中,总有a >0,b >0;双曲线焦点位置决定标准方程的类型;a 、b 、c 的关系是c 2=a 2+b 2;在方程Ax 2+By 2=C 中,只要AB <0且C ≠0,就是双曲线的方程.4.在运用双曲线的第二定义时,一定要注意是动点P 到焦点的距离与到相应准线距离之比为常数e .若使用的焦点与准线不是对应的,则上述之比就不再是常数了.5.给定了双曲线方程,就可求得确定的两条渐近线.但已知渐近线方程,只是限制了双曲线张口的大小,不能直接写出双曲线方程.但若已知渐近线方程是a x±by =0,则可把双曲线方程表示为22a x -22by =λ(λ≠0),再根据已知条件确定λ的值,求出双曲线的方程.[基础闯关]1.设P 是双曲线22ax -92y =1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点.若|PF 1|=3,则|PF 2|等于( )(A)1或5 (B)6 (C)7 (D)9 2.(2005年北京春)“ab <0”是“曲线ax 2+by 2=1为双曲线”的(A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)既不充分又不必要条件3.过点(2,-2)且与双曲线22x -y 2=1有公共渐近线的双曲线方程是( )(A)22y -42x =1 (B)42x -22y =1 (C)42y -22x =1 (D)22x -42y =14.(2006年陕西卷)已知双曲线2221(2x y a a -=>的两条渐近线的夹角为3π,则双曲线的离心率为 ( )(A )3 (B )3(C (D )2 5.已知圆C 过双曲线92x -162y =1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是____________.6.给出问题:F 1、F 2是双曲线162x -202y =1的焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,求点P 到焦点F 2的距离.某学生的解答如下:双曲线的实轴长为8,由||PF 1|-|PF 2||=8,即|9-|PF 2||=8,得|PF 2|=1或17.该学生的解答是否正确?若正确,请将他的解题依据填在下面横线上;若不正确,将正确结果填在题中的横线上.______________________________________________________.[典例精析]例1.设双曲线与椭圆2212736x y +=有共同的焦点,且与椭圆相交,一个交点的纵坐标为4,求双曲线的方程。
[剖析]由于椭圆的焦点坐标为(0,3)±,且双曲线与椭圆具有相同的焦点,知双曲线的焦点也为(0,3)±,从而知所设双曲线的形式应为22221y x a b-=,围绕定义产生的问题,要注意12||||||2AF AF a -=的三个量之间的关系。
本题抓住“交点A ”在双曲线上,必须满足定义,从而应用定义求出双曲线方程中的基本量。
[解]解法一:由椭圆2212736x y +=,得其焦点为(0,3)-或(0,3),∴双曲线的焦点在y 轴上,设所求的双曲线方程为22221y x a b-=(0,0a b >>). 由已知得双曲线两焦点分别为12(0,3),(0,3)F F -,且与椭圆相交其中一个交点的纵坐标为4,设交点坐标为(,4)m ,从而得21612736m +=,解得m =则2a =12|||||||4AF AF -==解得2a =,由于3c =,得b =22145y x -=即为所求.解法二:由题意设双曲线方程为221(2736)2736x y λλλ+=<<--,将)代入求得0()32λλ==舍或,故所求双曲线方程为22145y x -=.[警示]利用定义法来求解双曲线的标准方程时,一定要抓住题设所给出的独立条件建立,,a b c 之间的等量关系,再利用222c a b =+运用方程的思想来求解,从而得到,a b 的值。
但需注意首先应判断焦点的位置,以便于采用哪种形式的方程。
[变式训练]:1. 根据下列条件,求双曲线方程:(1)与双曲线92x -162y =1有共同的渐近线,且过点(-3,23);(2)与双曲线162x -42y =1有公共焦点,且过点(32,2).例2.设点P 到点M (-1,0)、N (1,0)距离之差为2m ,到x 轴、y 轴距离之比为2,求m 的取值范围.[剖析]由|PM |-|PN |=2m ,得||PM |-|PN ||=2|m |.知点P 的轨迹是双曲线,由点P 到x 轴、y轴距离之比为2,知点P 的轨迹是直线,由交轨法求得点P 的坐标,进而可求得m 的取值 范围.[解]设点P 的坐标为(x ,y ),依题意得||||x y =2,即y =±2x (x ≠0) ①x因此,点P (x,y )、M (-1,0)、N (1,0)三点不共线,得||PM |-|PN ||<|MN |=2. ∵||PM |-|PN ||=2|m |>0,∴0<|m |<1.因此,点P 在以M 、N 为焦点,实轴长为2|m |的双曲线上.故设22mx -221m y -=1. ②将①代入②,并解得x 2=22251)1(m m m --,∵1-m 2>0,∴1-5m 2>0.解得0<|m |<55, 即m 的取值范围为(-55,0)∪(0,55).[警示]求双曲线的方程,关键是求a 、b ,在解题过程中应熟悉各元素(a 、b 、c 、e 及准线)之间的关系,并注意方程思想的应用. [变式训练]2.(2007年上海浦东)已知曲线)4||(1:2≤=-x y y x C .(1)画出曲线C 的图像,(2)若直线1:-=x k y l 与曲线C 有两个公共点,求k 的取值范围; (3)若()()00>p p P ,,Q 为曲线C 上的点,求PQ 的最小值.例3.已知双曲线C 的中心在原点,焦点在x 轴上,点5过点P 作斜率为16的直线交双曲线于,A B 两点,交y 轴于M ,且||PM 是||PA 与||PB 的等比中项.(1)求双曲线C 的渐近线方程; (2)求双曲线C 的方程.[剖析](1)由点(2,0)P -,借助于点到直线的距离公式可求得其渐近线方程;(2)由渐近线方程,可设双曲线方程,再借助于题条件,不难得到双曲线方程。
[解](1)设双曲线的一条渐近线方程为y kx =,由点到直线的距离公式得13k =±,即双曲线的渐近线方程为13y x =±;(2)设双曲线方程为229(0)x y m m -=>,1122(,),(,)A x y B x y ,则直线AB 的方程为1(2)6y x =+.由2291(2)6x y my x ⎧-=⎪⎨=+⎪⎩得234440x x m ---=, 当163(1)0m ∆=-⨯+>即43m >-时,有121244,(1)33x x x x m +==-+ 由2||||||MP PA PB = 可得12|(2)(2)|4x x ++=,从而7m =或1m =.故所求的双曲线方程为229177x y -=或2291x y -=. [警示]渐近线是双曲线特有的,如果说双曲线的方程为22221x y a b -=,则其渐近线方程可记为22220x y a b -=.同时,以22220x y a b -=为渐近线的双曲线,其方程可设为2222x y a bλ-=;若已知双曲线的渐近线方程是以ax ±by =0的形式给出的,则可设双曲线方程为a 2x 2-b 2y 2=λ(λ≠0). [变式训练]3.已知双曲线关于两坐标轴对称,且与圆2210x y +=相交于点(3,1)P -,若此圆过点P 的切线与双曲线的渐近线平行,求此双曲线的方程。
例4.已知直线1y kx =+与双曲线2231x y -=相交于A 、B 两点,那么是否存在实数k 使得,A B 两点关于直线20x y -=对称?若存在,求出k 的值;若不存在,说明理由。