第一章放射性及其衰变规律
- 格式:docx
- 大小:9.36 KB
- 文档页数:4
要点一、原子核的衰变半衰期(一)原子核的衰变1.定义:原子核自发地放出α粒子或β粒子,而变成另一种原子核的变化。
2.衰变类型(1)α衰变:原子核放出α粒子的衰变.进行α衰变时,质量数减少4,电荷数减少2,238 92U 的α衰变方程:238 92U→234 90Th+42He。
(2)β衰变:原子核放出β粒子的衰变.进行β衰变时,质量数不变,电荷数加1,234 90Th 的β衰变方程:234 90Th→234 91Pa+0-1e。
3.衰变规律:电荷数守恒,质量数守恒。
(二)半衰期1.定义:放射性元素的原子核有半数发生衰变所需的时间。
2.特点:(1)不同的放射性元素,半衰期不同,甚至差别非常大。
(2)放射性元素衰变的快慢是由核内部自身的因素决定的,跟原子所处的化学状态和外部条件没有关系。
3.适用条件:半衰期描述的是统计规律,不适用于少数原子核的衰变。
要点二、核反应放射性同位素及其应用(一)核反应1.定义:原子核在其他粒子的轰击下产生新原子核或者发生状态变化的过程.2.原子核的人工转变:卢瑟福用α粒子轰击氮原子核,核反应方程14 7N+42He→178O+11H. 3.遵循规律:质量数守恒,电荷数守恒.(二)放射性同位素及其应用1.放射性同位素:具有放射性的同位素.2.应用:(1)射线测厚仪:工业部门使用放射性同位素发出的射线来测厚度.(2)放射治疗.(3)培优、保鲜.(4)示踪原子:一种元素的各种同位素具有相同的化学性质,用放射性同位素代替非放射性的同位素后可以探测出原子到达的位置.(三)辐射与安全1.人类一直生活在放射性的环境中.2.过量的射线对人体组织有破坏作用.在使用放射性同位素时,必须严格遵守操作规程,注意人身安全,同时,要防止放射性物质对水源、空气、用具等的污染.要点突破一:衰变半衰期(1)方法:设放射性元素A Z X 经过n 次α衰变和m 次β衰变后,变成稳定的新元素A ′Z ′Y ,则衰变方程为:A ZX →A ′Z ′Y +n 42He +m 0-1e根据电荷数守恒和质量数守恒可列方程:A =A ′+4n ,Z =Z ′+2n -m以上两式联立解得:n =A -A ′4,m =A -A ′2+Z ′-Z由此可见,确定衰变次数可归结为解一个二元一次方程组。
放射性衰变原理:原子核自发地放射出射线或粒子的过程引言放射性衰变是一种自然现象,指的是原子核自发地放射出射线或粒子的过程。
这一过程是不可逆的,且其速率是不受外界因素影响的。
放射性衰变具有重要的科学和实际意义,是现代核物理研究的基石之一。
本文将介绍放射性衰变的基本原理、衰变类型以及其在科学和技术领域的应用。
第一章放射性衰变的基本原理放射性衰变是指放射性同位素在一定时间后自发地变为其他同位素的过程。
这一过程是由于原子核中的粒子重新排列所导致的。
在原子核中,质子和中子通过强相互作用相互结合形成核力,而核力的作用范围仅限于原子核的范围内。
然而,核力无法克服质子之间的静电排斥力,因此原子核中的质子和中子的数量要保持相对平衡。
当一个原子核的质子和中子之间的平衡被打破时,核力无法维持核的稳定,于是核会经历衰变。
放射性衰变的过程可以分为三种类型:α衰变、β衰变和γ衰变。
在α衰变中,原子核会放出一个α粒子,即由两个质子和两个中子组成的氦离子。
在β衰变中,质子会转化为中子或中子会转化为质子,同时放出一个β粒子,即高速运动的电子或正电子。
γ衰变是指原子核通过放出γ射线来释放能量。
第二章放射性衰变的衰变类型α衰变是放射性同位素最常见的衰变类型之一。
许多重元素的同位素会经历α衰变来变得更稳定。
α衰变的过程中,原子核的质量数减少4,原子序数减少2。
这种衰变过程释放出大量的能量,因为α粒子具有很高的动能。
α粒子的质量很大,因此其穿透能力较弱,很容易被阻挡。
β衰变是指原子核中的一个质子或中子转化为另一种粒子的过程。
在β衰变的过程中,质子转化为中子时会放出一个正电子,而中子转化为质子时会放出一个电子。
这种衰变过程是由于弱相互作用所导致的,释放的能量相对较小。
β粒子具有较高的速度和较小的质量,因此其穿透能力比α粒子要强。
γ衰变是放射性同位素中最常见的衰变类型。
在γ衰变中,原子核并不改变其质子和中子的数量,而是通过释放γ射线来释放能量。
原子核衰变放射性衰减规律解释放射性衰变是指放射性物质由于原子核内部发生变化而释放出射线的过程。
在这个过程中,原子核可以发生α衰变、β衰变和γ衰变等不同类型的衰变。
放射性衰变的规律是基于核物理的研究,深入理解这一规律对于核能应用、医疗诊断和放射治疗等领域具有重要意义。
首先,我们来探讨α衰变。
α衰变是指放射性核素中,原子核从一个放射性同位素向另一个不同同位素转变的过程。
在α衰变中,原子核会释放出一个α粒子。
α粒子由两个质子和两个中子组成,其带电量为+2,质量数为4。
α衰变常见于重核素,如铀、锕、镎等。
衰变时,原子核的质量数减少4个单位,原子序数减少2个单位,因此衰变后的新核素比衰变前的核素质量更小、原子序更小。
接下来,我们来解释β衰变。
β衰变是指放射性核素中,原子核中的中子或质子转变为一个在核外的新粒子的过程。
β衰变又可分为β+衰变和β-衰变两种类型。
在β+衰变中,原子核中的一个质子转变为一个正电子和一个中子,与此同时,还会释放出一个新粒子——轻子中微子。
在β-衰变中,原子核中的一个中子转变为一个电子和一个质子,同样伴随着轻子中微子的释放。
β衰变可以导致原子核的质量数保持不变,但原子序数增加或减少一个单位。
最后,我们来讨论γ衰变。
γ衰变是指原子核由高激发态向低激发态或基态跃迁时释放出γ射线的过程。
γ射线是电磁辐射的一种,具有波长极短、能量极高的特点。
相对于α衰变和β衰变,γ衰变并不改变原子核的质量数和原子序数,而只是释放能量的形式之一。
放射性衰变规律的解释可以通过核物理学中的半衰期概念来帮助理解。
半衰期是指放射性核素衰变至原来数量的一半所需的时间。
通过严格的数学推导,可以得到半衰期公式:\[N(t) = N_0 \cdot 2^{-\frac{t}{T_{\frac{1}{2}}}}\]其中,\[N(t)\]表示时间\[t\]后剩余的原子核数,\[N_0\]表示初始时的原子核数,\[T_{\frac{1}{2}}\]表示半衰期。
放射性衰变规律知识点总结放射性衰变是一种自然界中普遍存在的现象,它涉及到原子核的变化,并释放出各种射线和粒子。
理解放射性衰变规律对于研究原子核物理、地质年代测定、医学诊断和治疗等领域都具有重要意义。
下面让我们来详细了解一下放射性衰变规律的相关知识点。
一、放射性衰变的定义与类型放射性衰变指的是不稳定的原子核自发地转变为另一种原子核,并同时释放出射线和粒子的过程。
主要的衰变类型包括α衰变、β衰变和γ衰变。
α衰变是指原子核放出一个α粒子(即氦核),从而使原子核的质量数减少 4,原子序数减少 2。
例如,铀 238 经过α衰变会变成钍234 。
β衰变则分为β⁻衰变和β⁺衰变。
β⁻衰变时,原子核中的一个中子转变为一个质子,并放出一个电子和一个反中微子;而β⁺衰变中,一个质子转变为一个中子,同时放出一个正电子和一个中微子。
γ衰变通常发生在原子核从激发态跃迁到基态时,会放出高能γ光子,原子核的质子数和质量数都不发生改变。
二、放射性衰变的规律1、指数衰变规律放射性物质的衰变遵循指数规律。
假设初始时刻(t = 0 )放射性原子核的数目为 N₀,经过时间 t 后,剩余的原子核数目为 N ,则它们之间的关系可以表示为: N = N₀ e^(λt) ,其中λ为衰变常数。
衰变常数λ表示单位时间内一个原子核发生衰变的概率,其大小取决于原子核的种类和内部结构。
2、半衰期半衰期(T₁/₂)是指放射性原子核数目衰减到原来一半所需的时间。
它与衰变常数λ的关系为: T₁/₂= 0693 /λ 。
不同的放射性同位素具有不同的半衰期,短的可以只有几微秒,长的可以达到数十亿年。
例如,碘 131 的半衰期约为 8 天,而铀 238 的半衰期约为 45 亿年。
三、放射性衰变的应用1、地质年代测定通过测量岩石中放射性同位素及其衰变产物的含量,可以确定岩石的形成年代。
比如,利用铀铅法测定岩石的年龄。
2、医学领域在医学诊断中,放射性同位素可以用于标记某些化合物,注入人体后通过检测其在体内的分布和代谢情况,帮助诊断疾病。
放射性元素的衰变规律放射性元素的衰变规律是一个重要的物理学现象,它对于我们了解原子核结构和核反应过程具有重要意义。
放射性元素的衰变过程是指它们通过自发放射粒子或电磁辐射从不稳定转变为稳定的过程。
首先,让我们了解一下放射性元素。
放射性元素是指具有不稳定原子核的元素,其原子核中的质子数或中子数与稳定核的比例不匹配。
这种不平衡状态导致原子核脱离平衡态并试图通过衰变来恢复稳定。
放射性元素有三种衰变方式:α衰变、β衰变和γ衰变。
在α衰变中,放射性元素释放出一个α粒子,即由两个质子和两个中子组成的氦离子。
通过释放α粒子,放射性元素的原子核质量减少4个单位,原子序数减少2个单位。
α衰变是一种常见的衰变方式,例如铀238衰变为钍234。
β衰变是指放射性元素释放出一个β粒子,即一个电子或一个正电子。
当核子数目较多时,中子可能转变成质子释放出电子,并转变成一个新的元素。
当质子数目较多时,质子可以转变为一个中子并释放出正电子。
β衰变可以改变原子核内部的中子和质子比例,使放射性元素转变为一个新元素。
例如,碳14经过β衰变转变为氮14。
γ衰变是通过从原子核中释放出高能γ射线来实现的。
γ射线是一种电磁波,能量非常高,具有很强的穿透力。
通过释放γ射线,放射性元素的核能量得到释放,并且没有核变化。
根据放射性元素的衰变规律,每种放射性元素衰变的速率是按照指数函数衰减的。
衰变速率可以用半衰期来描述。
半衰期是指衰变掉一半的时间,具有固定的数值。
对于放射性元素,它们的半衰期可以从几微秒到数十亿年不等。
放射性元素衰变可以通过放射性衰变方程来描述。
该方程可以用于确定放射性元素在特定时间内的剩余量。
放射性衰变方程可以表示为:N(t) = N(0) * (1/2)^(t/T) 其中N(t)是时间为t时剩余的放射性元素数量,N(0)是初始放射性元素的数量,T是半衰期。
放射性元素的衰变规律在核能领域具有重要应用。
核能的产生和控制都涉及到放射性元素的衰变过程。
放射性元素的衰变规律放射性元素的衰变规律是一个复杂的概念,但它也可以用于科学研究和工业应用。
下面我们来学习放射性元素的衰变规律:一,什么是放射性衰变?放射性衰变是指放射性元素(如铀,钚,钴等)的核子在变成新的元素时会发射出能量,释放出微粒子,这种能量和微粒子的结合就叫做放射性衰变。
它按照规律衰变,即物质的稳定性会逐渐减少,因此会产生放射性衰变,而这种衰变导致的放射性微粒子也叫放射性衰变产物。
二,放射性元素衰变的类型有哪些?放射性元素的衰变类型有放射性α衰落、β衰变和γ衰变等三种。
1、放射性α衰落放射性α衰落是放射性元素原子的核素衰变的一种,其特点是它会失去α粒子(包含2个质子和2个中子的原子核),并伴有少量的放射性能量释放出来;它在生物系统中属于敏感性放射性,并能在很短的距离内进入生物体,受到损伤。
2、放射性β衰变放射性β衰变是放射性元素原子核衰变的一种,它会释放β粒子,并伴有少量的放射性能量释放出来;同α衰变一样,它也具有比较高的放射性能量,并能产生较大的影响在生物体内。
3、放射性γ衰变放射性γ衰变是放射性元素原子核衰变的一种,它会伴有较多的放射性能量释放出来,但不同的是这种能量是以电磁波形式发出的。
本质上它就是一种高能量的电磁波,用于抗拒辐射或者在放射治疗中有其特殊作用。
三,放射性元素衰变的等离子体还原放射性元素衰变可以利用等离子体还原技术使之恢复到非放射性元素。
这是一种发展迅速的新技术,它可以把稳定元素从放射性材料中分离出来,并通过核反应将其转化为稳定元素。
这是一项具有重大潜在社会价值的革新性技术,可以使相关经济活动的成本大大降低。
四,放射性元素衰变的应用放射性衰变是一个自然发生的过程,但它也在日常生活中起到重要作用,是社会应用重要的利益相关者。
其中,它最常用来探测放射性材料,侦查盗尉犯等企业和机构中;此外,它还可以用于关键行业,例如核能水电站,放射性治疗,能源和医疗领域等,其他方面也以被越来越多地使用,为社会发展提供了重要的保证。
原子核物理——放射性衰变简介天津师范大学物理与电子信息学院王桐瑞095060131 放射性、衰变1.1 放射性放射性是指元素从不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成稳定的元素而停止放射(衰变产物),这种现象称为放射性。
衰变时放出的能量称为衰变能量。
原子序数在83(铋)或以上的元素都具有放射性,但某些原子序数小于83的元素(如锝)也具有放射性。
1.2 衰变放射性衰变都有一定的周期,并且一般不因环境而改变,这也就是放射性可用于确定年代的原因。
由于一个原子的衰变是自然地发生,即不能预知何时会发生,因此会以机率来表示。
假设每颗原子衰变的机率大致相同,例如半衰期为一小时的原子,一小时后其未衰变的原子会剩下原来的二分之一,两小时后会是四分之一,三小时后会是八分之一。
原子的衰变会产生出另一种元素,并会放出α粒子、β粒子或中微子,在发生衰变后,该原子也会释出伽马射线。
衰变后的实物粒子静止质量的总合会少于衰变前实物粒子静止质量的总和,根据质能方程,能量可以表现出质量。
当物体的能量增加E,其质量则增加E/C²,当物体的能量减少E,其质量也减少E/C²,如果一个原子核衰变后放出实物粒子,假设该原子核在衰变前相对于某一贯性参照物静止,衰变后的新原子核和所放出的实物粒子相对于该惯性参照物运动,即对于该惯性参照物而言,新原子核和所放出的实物粒子具有动能,当新原子核或所放出的实物粒子与其他粒子发生碰撞,它便会失去能量。
因此,衰变前和衰变后质量和能量都是守恒的,粒子的静止质量则不守恒。
如果该原子核放出光子,同样的,光子也具有质量,但没有静止质量。
通常衰变所产生的产物多也是带放射性,因此会有一连串的衰变过程,直至该原子衰变至一稳定的同位素。
发生核衰变的放射性元素有的是在自然界中出现的天然放射性同位素,如碳14,但其衰变只会经过一次β衰变转为氮14原子,并不会一连串地发生。
也有很多是经过粒子对撞等方法人工制造的元素。
第一章放射性及其衰变规律
Radioactivity and discipline of disintegrating
学时:io学时
基本内容:
①基本概念:半衰期、衰变常数、放射性核素、放射性、照射量率
②基础知识:a衰变、B衰变、丫衰变、铀系衰变特点、钍系衰变特点、锕铀系衰变特点、 单个放射性核素
的衰变规、掌握两个放射性核素的衰变规律及其应用、 放射性活度与比活度
的单位、放射性辐射剂量单位、放射性测量的标准源和标准模型。
重点、难点:a衰变、丫衰变、铀系的衰变、单个放射性核素的衰变规律的推导、两个
放射性核素的衰变规律、放射性的测量单位及标准源。
教学思路:先介绍原子核的结构与原子核衰变的有关知识, 然后重点讲解三种常见的衰
变类型和三大放射性系列以及放射性的标准源和标准模型。 其中,衰变类型和三大放射性系
列等部分详细讲解。
主要参考书:
① 程业勋、王南萍等编著,《核辐射场与放射性勘查》,地质出版社,
2005.
② 吴慧山主编《核技术勘查》,原子能出版社,
1998.
复习思考题:
1、 1g 238U在一秒钟内放出1.24 104个a粒子,计算238U
得半衰期。
2、 在一个密封玻璃瓶内,装入1g
镭。放置一个氡的半衰期,瓶内积累多 少氡?
3、 氡衰变成RaA,现有10毫居里(mCi)氡密封于容器中,经过50h后,氡 和RaA
各有多少,以
活度(Bq)表示。
4
、 为什么3射线能量是连续谱?
5
、 什么是放射性系平衡?什么是放射性动平衡?
2 22 2 2 2
6、 Rn的半衰期是3.825d,试求 Rn的衰变常数?每1mg
在每秒内放出 多少a粒子?合多少贝
可?
7、 从镭源中收集氦,假定Ra与各子体达到放射性平衡,而Ra
的活度为
10
3.7 10
Bq ,试计算一年内产生多少氦?
教学内容提要:
第一节核衰变及放射性核素
、原子结构及原子核衰变
、三种常见的放射性核素衰变系列
a
衰变
冰、
丫 4 Q
3
衰变
+ 、 • 、.
1
) 3衰变
Z
U-
Q
2
) 3-衰变
* ZA
Y *e Q
电子俘获
A 0 A
Z X _i e " Z -1
丫 v Q
丫跃迁
:X + 0b
ZAY + V+Q
三、天然放射性系列
三个天然放射性系列:铀系、钍系、锕系
三个放射性系列的共同特点。
第二节 放射性核素的衰变与积累规律
一、衰变规律
放射性核素的衰变规律为:
N = N
0
e—'t
二、系列放射性核素的衰变与积累规律
若如果两个放射性核素衰变:
dN
B
d
t
—'ANA -
1
B N B
解得:
N
B = N oBeABt + 从 N OA e® k _ e~PB JA
)]
(九B - X A )
多个核素同样会得出结论。
三、放射性测量单位与标准源
1
、 放射性活度与比活度
2
、 放射性辐射剂量的单位
3
、 放射性标准源
4
、 放射性标准模型