3载体与宿主系统介绍
- 格式:pdf
- 大小:1.20 MB
- 文档页数:16
2.载体的分类
按功能分成:
(1)克隆载体: 都有一个松弛的复制子,能带动外源基因,在宿主细胞中复制扩增。
它是用来克隆和扩增DNA片段(基因)的载体。
(2)表达载体:具有克隆载体的基本元件(ori,Ampr,Mcs等)还具有转录/翻译所必需的DNA 顺序的载体。
3各自特点
克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。
克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。
表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。
表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。
4.区别标识
是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。
·作为一个理想的载体,应具备以下条件:1.具有对受体细胞的可转移性2.具有与特定受体细胞相适应的复制位点或整合位点3.具有多种单一的核酸酶切位点4.具有合适的选择标记5.具有较好的安全性,不能任意转移6.具有较高的外源DNA的载装能力·克隆载体(cloning vector):主要是对目的基因克隆,建立DNA文库和cDNA文库,其上有复制子即可;·表达载体(expression vector):能使目的基因在宿主细胞中表达的一类载体。
这类载体既有复制子,更要有强启动子;·穿梭载体(shuttle vector):这类载体可以在原核细胞中复制,也可在真核细胞中扩增和表达。
·细菌质粒(plasmid) 包括三种组成部分:复制必须区、选择标记基因、限制性核酸内切酶的酶切位点(克隆位点,MCS).·质粒DNA分子具有三种构型:超螺旋共价闭环DNA,cccDNA,SC构型开环DNA,ocDNA ,OC构型线性DNA,cDNA,L构型·严紧型和松驰型质粒严紧型质粒:在宿主细胞中的拷贝数较少,一般只有1~3个松驰型质粒:其拷贝数较多,一般20~60个,多的可达200~300个·转移型和非转移型质粒转移型,结合型(conjugative plasmid)是指一些质粒在不同的菌株中可以相互转移非转移型质粒(non-conjugative plasmid)则只能在一种寄主中生存(常用于构建克隆载体)·质粒的不相容性任何两种含有相似复制子结构的不同质粒,不能同时存在于一个细胞中,这种现象称为质粒的不相容性。
·人工组建的质粒的第一个字母是质粒英文名字(plasmid)的第一个字符p,用小写。
p后有2个字母是大写,表示质粒的作者和实验室名称,再其后为质粒的编号。
·实验室一般使用下列三种方法制备质粒DNA:①氯化铯密度梯度离心法:质粒DNA纯度高、周期长、设备要求高、溴乙锭污染;②碱裂解法(最常用):质粒DNA纯度、操作周期介于氯化铯法和沸水浴法之间;③沸水浴法:质粒DNA纯度底、快速、操作简便。
酵母表达系统基因表达是分子生物学领域的重要内容之一,人们利用基因表达技术制备各种目的基因的重组蛋白质,在分析基因的表达与调控、基因的结构与功能、基因治疗以及生物制药等领域均取得了令人振奋的成果。
其中,酵母表达系统拥有转录后加工修饰功能,操作简便,成本低廉,适合于稳定表达有功能的外源蛋白质,而且可大规模发酵,是最理想的重组真核蛋白质生产制备用工具。
1、酵母表达系统的特点酵母是一种单细胞低等真核生物,培养条件普通,生长繁殖速度迅速,能够耐受较高的流体静压,用于表达基因工程产品时,可以大规模生产,有效降低了生产成本。
酵母表达外源基因具有一定的翻译后加工能力,收获的外源蛋白质具有一定程度上的折叠加工和糖基化修饰,性质较原核表达的蛋白质更加稳定,特别适合于表达真核生物基因和制备有功能的表达蛋白质。
某些酵母表达系统具有外分泌信号序列,能够将所表达的外源蛋白质分泌到细胞外,因此很容易纯化。
应用酵母表达系统生产外源基因的蛋白质产物时也有不足之处,如产物蛋白质的不均一、信号肽加工不完全、内部降解、多聚体形成等,造成表达蛋白质在结构上的不一致。
解决内部降解的方法有三:一是在培养基中加入富含氨基酸和多肽的蛋白胨或酪蛋白水解物,通过增加酶作用底物来缓解蛋白水解作用;二是将培养基的pH值调成酸性(酵母可在pH3.0~8.0的范围内生长),以抑制中性蛋白酶的活性;三是利用蛋白酶缺失酵母突变体进行外源基因的表达。
另外,还时常遇到表达产物的过度糖基化情况。
因此,表达系统应根据具体情况作适当的改进。
2、常用酵母表达系统(宿主-载体系统)(1)酿酒酵母(Saccharomyces cerevisiae)表达系统酿酒酵母难于高密度培养,分泌效率低,几乎不分泌分子量大于30 kD的外源蛋白质,也不能使所表达的外源蛋白质正确糖基化,而且表达蛋白质的C端往往被截短。
因此,一般不用酿酒酵母做重组蛋白质表达的宿主菌。
酿酒酵母本身含有质粒,其表达载体可以有自主复制型和整合型两种。
基因⼯程复习资料⼀、绪论1、简述基因⼯程的概念。
答:基因⼯程是指按照⼈们的设计,⽤⽣物技术直接操作⽣物的基因组。
通过分离和拷贝⽬的基因或⼈⼯合成外源基因,在体外将外源基因插⼊到载体分⼦中,成为重组DNA,再导⼊宿主细胞内,进⾏扩增和表达。
此过程所涉及的⽅法学称为重组DNA技术,也称分⼦克隆或基因操作。
2、列举基因⼯程中常⽤的⼀些技术。
答:(1)基因敲⼊:以ES细胞培养技术和同源重组为基础,通过转基因将外源基因整合到特定的靶位点,利⽤靶位点全套的表达调控元件以实现特异性的异位表达。
(2)基因敲除:将⼀个特地设计的DNA⽚段导⼊⽣物体中,通过同源重组使靶基因被置换出⽽失活的实验技术。
(3)基因敲落:是⽤反义技术,RNAi等降低或抑制靶基因的表达活性。
(4)基因打靶:是⽤同源重组来瞄准希望改变的特定内源基因。
(5)基因组编辑:⽤基因组编辑核酸酶,如锌指核酸酶(ZFN)、归巢核酸内切酶、转录激活⼦样效应物(TALE)和成簇间隔短回⽂重复(CRISPR)进⾏剪切。
⼆、基因⼯程的分⼦遗传学基础(⼀)名词解释1、基因表达:指DNA分⼦经转录产⽣互补的RNA分⼦。
2、半保留复制:亲代DNA双链分离后的两条单链均可作为新链合成的模板,复制完成后的⼦代DNA分⼦的核苷酸序列均与亲代DNA分⼦相同,但⼦代DNA分⼦的双链⼀条来⾃亲代,另⼀条为新合成的链,故称为半保留复制。
3、半不连续复制:是指DNA复制时,前导链上DNA的合成是连续的,后随链上是不连续的,故称为半不连续复制。
半不连续模型是DNA复制的基本过程。
4、DNA的变性:指核酸双螺旋碱基对的氢键断裂,双链变成单链,从⽽使核酸的天然构象和性质发⽣改变。
变性DNA常发⽣⼀些理化及⽣物学性质的改变:溶液粘度降低、溶液旋光性发⽣改变、增⾊效应。
5、DNA的复性:指变性DNA在适当条件下,两条互补链全部或部分恢复到天然双螺旋结构的现象,是变性的⼀种逆转过程。
热变性DNA⼀般经缓慢冷却后即可复性,此过程称之为“退⽕”。
2.植物遗传转化的载体系统。
作为植物遗传转化的载体必须是能进入宿主细胞内进行复制和表达的核酸分子。
目前的载体系统有病毒的载体系统和质位的载体系统两大类。
(1)病毒载体系统:植物病毒作为植物遗传转化的载体系统是由植物病毒的侵染特性所决定的。
以病毒作载体的表达系统为瞬时表达系统,其一般不能把外源基因整合到植物细胞基因组中。
植物病毒的感染率很高,在较短时间内可获得较大的表达量。
但因以病毒为载体的表达系统每个宿主材料都要接种病毒载体,故瞬时表达系统不易起始。
作为病毒载体的病毒最好是双链DNA植物病毒。
目前已有十几种植物病毒被改造成不同类型的外源蛋白表达载体中;包括椰菜叶病毒(CaMV)、烟草花叶病毒(TMV)、豇豆花叶病毒(CPMV)和马铃薯X病毒(PVX)等。
其中在TMV载体中成功表达的外源病毒至少有150种以上。
(2)农杆菌质粒载体系统:质粒载体系统中最常用的质粒有:Ti质粒和Ri质粒。
Ti 质粒存在于根癌农杆菌(Agrobacterium tumefaciens)中,Ri质粒存在于发根农杆菌(Agrobacterium rhizogenis)中。
Ti质粒和Ri质粒在结构和功能上有许多相似之处,具有基本一致的特性。
但实际工作中,绝大部分采用Ti质粒。
农杆菌质粒是一种能实现DNA转移和整合的天然系统。
Ti质粒有两个区域:T-DNA区(是质粒上能够转移整合入植物受体基因组并能在植物细胞中表达从而导致冠瘿瘤的发生,且可通过减数分裂传递给子代的区域)和Vir区(编码能够实现T-DNA转移的蛋白)。
T-DNA长度为12-24kb之间,两端各有一个含25hp重复序列的边界序列,在整合过程中左右边界序列之间的T-DNA可以转移并整合到宿主细胞基因组中,研究发现只有边界序列对DNA的转移是必需的,而边界序列之间的T-DNA并不参与转化过程,因而可以用外源基因将其替换。
Vir区位于T-DNA以外的一个35kb内,其产物对T-DNA的转移及整合必不可少。