基因克隆主要载体系统
- 格式:ppt
- 大小:948.00 KB
- 文档页数:41
基因克隆技术的基本步骤随着科技的不断发展,基因克隆技术越来越成为生命科学研究的重要手段。
在生命科学、医学等领域,基因克隆技术的应用十分广泛。
本文将介绍基因克隆技术的基本步骤。
一、选择载体DNA在基因克隆中,载体DNA是将外源DNA(待克隆DNA)转化进细胞的基础。
目前主要的载体DNA是质粒,其一般大小在1至20 kb之间。
质粒的选择应遵循以下几个原则:1. 合适的选体标识。
大多数载体都有一些明显的特征,例如特定的抗生素抗性或颜色,因此选择能够用于筛选的选体标识是基本原则之一。
2. 合适的克隆位点。
载体DNA上应具有克隆位点,以便将待克隆DNA插入到其中。
3. 可重复复制。
质粒必须带有在细胞内自我复制所必需的序列。
二、切割DNA通过限制性内切酶切割将待克隆DNA和载体DNA裂解成短的DNA片段。
这些片段在电泳时可以按照大小区分开,以便以后的克隆工作。
三、将外源DNA插入载体DNA外源DNA和载体DNA的连接需要使用DNA连接酶,如DNA ligase。
方法是将两个DNA片段的末端和连接起来形成一个完整的DNA分子。
连接成功后,形成了一个混合DNA。
由于载体的复制和传递,待克隆DNA也可以被大量复制。
四、将混合DNA转化进宿主细胞将混合DNA转化进宿主细胞是整个克隆过程中至关重要的一步,因为宿主细胞受到质粒的干扰,催化质粒遗传信息的传递与表达。
大多数质粒都需要在易感受性细胞中才能存在并复制。
宿主细胞的选择是非常重要的,有些宿主细胞对外源DNA的吸收和扩增效率非常高,充分利用每一个获得的外源DNA分子。
五、筛选克隆基因最后一步是克隆基因的筛选,筛选克隆基因需要具有合适的筛选方法。
常用的筛选方法是使用抗生素抗性,因为载体上通常带有抗生素基因,能够筛选那些携带载体克隆块的细胞。
克隆基因的筛选方法不止于抗生素抗性,还可以根据不同的克隆目标进行选择。
例如,当克隆目标是蛋白质时,可以使用融合蛋白法克隆兴趣的编码DNA,并利用其蛋白质结构的特点分离出融合蛋白。
基因克隆的质粒载体在大肠杆菌的各种菌体中找到了许多种不同类型的质粒,其中已经作了比较详尽研究的主要有F质粒、R质粒和Col 质粒。
①F质粒又叫F因子或性质粒( sex plasmid )。
它们能够使寄主染色体上的基因和F 质粒一道转移到原先不存在该质粒的受体细胞中去。
②R质粒通称抗药性因子。
它们编码有一种或数种抗菌素抗性基因,并且通常能够将此种抗性转移到缺管该质粒的适宜的受体细胞,使后者也获得同样的抗菌素抗性能力。
③Col 质粒即所谓产生大肠杆菌素因子。
它们编码有控制大肠杆菌素合成的基因。
大肠杆菌是一类可以使不带有Col 质粒的亲缘关系密切的细菌菌株致死的蛋白质。
第一节质粒的一般生物学特性、质粒DNA细菌质粒是存在于细胞质中的一类独立于染色体的自主复制的遗传成份。
绝大多数的质粒都是由环形双DNA组成的复制子 (图4-1) 。
质粒 DNA 分子可以持续稳定地处于染色体外的游离状, 但在一定的条件下又 可逆地整合到寄主染色体上, 随着染色体的复制而复制, 并通过细胞分裂传递到 后代。
环形双链的质粒 DNA 分子具有三种不同的构型 : 1.当其两条多核苷酸链均保持着完整的环形结构时,称之为共价闭合环形 DNA (cccDNA ),这样的 DNA 通常呈现超螺旋的 SC 构型 ;2.如果两条多核苷酸链中只有一条保持着完整的环形结构,另一条链出现 有一至数个缺口时,称之为开环 DNA (ocDNA ),此即 OC 构型 ;3.若质粒 DNA 经过适当的核酸内切限制酶切割之后,发生双链断裂形成线 性分子( IDNA ),通称 L 构型(见图 4-2 )。
在琼脂糖凝胶电泳中,不同构型的同一种质粒 DNA ,尽管分子量相同,仍具 有不同的电泳迁移就绪。
其中走在最前沿的是 SC DNA ,其后依次是 L DNA 和OCDNA(图4-3 )。
凡经改建而适于作为基因克隆载体的所有质粒DNA分子,都必定包括如下三种共同的组成部分,即复制基因(replicator )、选择性记和克隆位点。
简述基因克隆载体的主要类型
基因克隆载体是指一类可以携带外源DNA片段并能够被复制的DNA分子。
常用于基因工程中,将特定基因序列克隆到载体DNA上,进而进行转化和表达。
根据不同的功能和应用,基因克隆载体可以分为多种类型,以下是主要的几种:
1. 质粒(Plasmid):质粒是最常用的基因克隆载体之一,通常起源于细菌,具有自主复制的能力,易于操作和扩增。
质粒通常被用于基因表达、基因敲除和基因突变等领域。
2. 病毒载体(Viral Vector):病毒载体是一类通过改造病毒而成的基因克隆载体,具有高度的转染效率和生物安全性。
病毒载体通常被用于基因治疗、免疫治疗和癌症治疗等领域。
3. 人工染色体(Artificial Chromosome):人工染色体是一种可以模拟天然染色体结构和功能的基因克隆载体,通常具有高度的稳定性和扩增性能。
人工染色体通常被用于基因组学研究和治疗复杂遗传病等领域。
4. 原核表达载体(Prokaryotic Expression Vector):原核表达载体是一类专门用于大肠杆菌等原核生物中进行基因表达的基因克隆载体。
原核表达载体通常具有高度的表达效率和易于操作的特点,被广泛应用于蛋白质制备和生物技术研究等领域。