复数代数形式的乘除运算 教案
- 格式:doc
- 大小:18.50 KB
- 文档页数:3
复数的乘除运算教学设计教学目标1.掌握复数代数形式的乘法和除法运算,培养数学运算的核心素养;2.理解复数乘法的交换律、结合律和乘法对加法的分配律,提升数学运算的核心素养。
教学重难点1.重点:掌握复数的乘法和除法运算;2.难点:复数的除法运算教学过程(一)新知导入1.创设情境,生成问题两个实数的积、商是一个实数,那么两个复数的积、商是怎样的?怎样规定两个复数的乘除运算,才能使在复数集中的乘法、除法与原实数集中的有关规定相容?2.探索交流,解决问题【问题1】设z1=a+b i,z2=c+d i(a,b,c,d∈R)类比两个多项式相乘,应如何规定两个复数相乘?[提示]z1z2=(a+b i)(c+d i)=ac+bc i+ad i+bd i2=(ac-bd)+(bc+ad)i.(实部相乘减去虚部相乘的差为实部,实部与另一复数虚部相乘的和为虚部)【问题2】复数的乘法满足交换律和结合律吗?[提示]满足.【问题3】设z=a+b i(a,b∈R),则z z的共轭复数等于什么?z z是一个怎样的数?[提示]z=a-b i,z z=a2+b2是一个实数.(二)复数的乘除运算1.复数的乘法运算复数的乘法可以应用实数运算中的乘法公式,如平方差公式、完全平方公式等(1)复数的乘法法则设z 1=a +b i,z 2=c +d i(a ,b ,c ,d ∈R ),则z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i.(2)复数乘法的运算律对任意复数z 1,z 2,z 3∈C ,有交换律z 1·z 2=z 2·z 1结合律(z 1·z 2)·z 3=z 1·(z 2·z 3)乘法对加法的分配律z 1(z 2+z 3)=z 1z 2+z 1z 3(3)例题讲解【例1】计算(3−4i)【例2】计算(1−2i)(3+4i)(−2+i)解:(3−4i)(3+4i)解:(1−2i)(3+4i)(−2+i)=3×3+3×4i −4×3i −4i×4i;=(11−2i)(−2+i);=−20+15i.=25.【变式】计算(12−5i)(12+5i)=22512+=213(三)、复数的除法运算猜想:实数的除法是乘法的逆运算,那么该如何定义复数的除法呢?试试自己猜测,复数的除法法则:(1+2i)÷(3+4i)=(1+2i)×4i +31=4i +32i 1+=4i)-4i)(3+(34i)-2i)(3+(1=22434i)-2i)(3+(1=+注:分母是虚数,怎样变成实数呢?类比“分母有理化”,分子分母同时乘以分母的共轭复数。
【新教材】7.2.2 复数的乘除运算教学设计(人教A版)复数四则运算是本章的重点,复数代数形式的乘法与多项式乘法是类似的,不同的是即必须在所得结果中把i2换成-1,再把实部、虚部分别合并.复数的除法运算法则是通过分子分母同时乘分母的共轭复数,将分母实数化转化为乘法运算而得出的.渗透了转化的数学思想方法,使学生体会数学思想的素材.课程目标:1.掌握复数代数形式的乘法和除法运算;2.理解复数乘法的交换律、结合律和乘法对加法的分配律;3.理解且会求复数范围内的方程根.数学学科素养1.数学抽象:复数乘法、除法运算法则;2.逻辑推理:复数乘法运算律的推导;3.数学运算:复数四则运算;4.数学建模:结合实数范围内求根公式和复数四则运算,解决复数范围内的方程根问题.重点:复数代数形式的乘法和除法运算.难点:求复数范围内的方程根.教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练.教学工具:多媒体.一、情景导入前面学习了复数的加法、减法运算,根据多项式的乘法、除法运算法则猜测复数的乘法、除法满足何种运算法则?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本77-79页,思考并完成以下问题1、复数乘法、除法的运算法则是什么?2、复数乘法的多项式运算与实数的多项式运算法则是否相同?如何应用共轭复数解决问题?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.复数代数形式的乘法法则已知z1=a+b i,z2=c+d i,a,b,c,d∈R,则z1·z2=(a+b i)(c+d i)=(ac-bd)+(ad+bc)i.[提示]复数的乘法与多项式乘法是类似的,有一点不同即必须在所得结果中把i2换成-1,再把实部、虚部分别合并.2.复数乘法的运算律对于任意z(a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -adc 2+d 2i(c +d i≠0)四、典例分析、举一反三题型一 复数的乘法运算例1 计算下列各题.(1)(1-2i)(3+4i) (-2+i);(2)(2-3i)(2+3i);(3)(1+i )2 .【答案】(1) -20+15i. (2) 13. (3) 2i.【解析】(1)原式=(11-2i)(-2+i)=-20+15i.(2)原式=(2-i)(-1+5i)(3-4i)+2i =4-9i 2=4+9=13.(3)原式=1+2i +i 2=1+2i -1=2i.解题技巧(复数乘法运算技巧)1.两个复数代数形式乘法的一般方法(1)首先按多项式的乘法展开.(2)再将i 2换成-1.(3)然后再进行复数的加、减运算,化简为复数的代数形式.2.常用公式(1)(a +b i)2=a 2-b 2+2ab i(a ,b ∈R).(2)(a +b i)(a -b i)=a 2+b 2(a ,b ∈R).(3)(1±i)2=±2i.跟踪训练一1.计算:(1-i)2-(2-3i)(2+3i)= ( )A .2-13iB .13+2iC .13-13iD .-13-2i【答案】D.【解析】 (1-i)2-(2-3i)(2+3i)=1-2i +i 2-(4-9i 2)=-13-2i.2.若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是()A .(-∞,1)B .(-∞,-1)C .(1,+∞)D .(-1,+∞)【答案】B.【解析】因为z =(1-i)(a +i)=a +1+(1-a )i ,所以它在复平面内对应的点为(a +1,1-a ),又此点在第二象限,所以⎩⎪⎨⎪⎧ a +1<0,1-a >0,解得a <-1.题型二 复数的除法运算例2计算(1+2i)÷(3-4i).【答案】−15+25i. 【解析】 原式=1+2i 3−4i =(1+2i )(3+4i )(3−4i )(3+4i )=−5+10i 25=−15+25i. 解题技巧: (复数的除法运算技巧)1.两个复数代数形式的除法运算步骤(1)首先将除式写为分式;(2)再将分子、分母同乘以分母的共轭复数;(3)然后将分子、分母分别进行乘法运算,并将其化为复数的代数形式.2.常用公式(1)=-i ;(2)=i ;(3)=-i.跟踪训练二1.复数z =11+i(i 为虚数单位),则|z |=________. 【答案】22. 【解析】∵z =11+i =1(1)(1)i i i -+-=1-i 2=12-12i , ∴|z |=⎝⎛⎭⎫122+⎝⎛⎭⎫-122=22. 2.计算:1+i4+3i 2-i 1-i=________. 【答案】-2+i.【解析】(1)(43)(2)(1)i i i i ++--=1+7i 1-3i =(17)(13)10i i ++=-2+i. 题型三 复数范围内的方程根问题例3 在复数范围内解下列方程:(1)220x +=;(2)20ax bx c ++=,其中,,a b c ∈R ,且20,40a b ac ≠∆=-<.【答案】 (1)方程220x +=的根为2x i =±.(2)方程的根为()242b ac b x a --=-±.【解析】(1)因为222(22==-,所以方程220x +=的根为2x i =±. (2)将方程20ax bx c ++=配方,得222424b b ac x a a -⎛⎫+= ⎪⎝⎭,2b x a +=.所以原方程的根为2b x a =-±.解题技巧(解决复数方程根问题的技巧)与复数方程有关的问题,一般是利用复数相等的充要条件,把复数问题实数化进行求解.根与系数的关系仍适用,但判别式“Δ”不再适用.跟踪训练三1、已知1+i 是方程x 2+bx +c =0的一个根(b ,c 为实数).(1)求b ,c 的值;(2)试判断1-i 是否是方程的根.【答案】(1)b =-2,c =2. (2)1-i 也是方程的一个根.【解析】(1)因为1+i 是方程x 2+bx +c =0的根,∴(1+i)2+b (1+i)+c =0,即(b +c )+(2+b )i =0.∴⎩⎪⎨⎪⎧ b +c =0,2+b =0,得⎩⎪⎨⎪⎧b =-2,c =2.∴b =-2,c =2. (2)将方程化为x 2-2x +2=0,把1-i 代入方程左边x 2-2x +2=(1-i)2-2(1-i)+2=0,显然方程成立,∴1-i 也是方程的一个根.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本80页练习,80页习题7.2的剩余题.本节课主要是在学生了解复数的加减运算及共轭复数的基础上,类比多项式的乘除运算法则探讨得出复数的乘除运算法则,使学生对知识更加融会贯通.尤其在例3,使学生对方程的根有了更深刻的认识.。
探究二:复数代数形式的加、减运算的几何意义[典例2]如图所示,平行四边形OABC 的顶点O ,A ,C 分别表示0,3+2i ,-2+4i.求:(1)AO ―→表示的复数; (2)对角线CA ―→表示的复数;四、新知再探:新知4.复数代数形式的乘法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1·z 2=(a +b i)(c +d i)= . 新知5.复数乘法的运算律 对任意复数z 1,z 2,z 3∈C ,有新知6.共轭复数已知z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ,则:_______________________新知7:复数代数形式的除法法则: (a +b i)÷(c +d i)=a +b ic +d i =________________(c +d i ≠0).交换律 z 1·z 2= 结合律 (z 1·z 2)·z 3=z 1·(z 2·z 3) 分配律 z 1(z 2+z 3)=运用所学的知识解决问题,在具体题目中体会数形结合思想的重要性。
学生独立思考后,再小组交流自己的观点。
学生回答。
教师点评。
这一部分有、由师生共同完成学情分析:1、学生已经了解复数的概念与定义以及复数在数域内的地位。
2、学生已经通过课前预习案预习过复数代数形式的加减法法则3、学生知识经验与学习经验较为丰富,以具有类比知识点的学习方法。
4、学生积极性高,已初步形成对数学问题的合作探究能力。
5、学生层次参差不齐,个体差异比较明显。
效果分析:本节课采用循序渐进由易到难的方法进行推进,并在课前进行知识铺垫,使学生在思想上,方法上,知识上都做了充足的准备。
在上课的过程中与老师的配合度较好。
在课后与学生的交流中,学生反映上课的效果不错,都能听懂,课后作业也能顺利地完成。
教材分析数系的扩充与复数的引入是人教A版选修1-2与选修2-2的内容,复数的内容是高中数学课程中的传统内容,对于复数,《课标》要求在问题情境中了解数系的扩充过程,体会实际需求与数学的内部矛盾在数系扩充中的作用。
复数代数形式的乘除运算导学案一、引言复数是数学中一个重要的概念,它是由实数和虚数组成的。
复数的乘除运算是复数运算中最基本也是最重要的操作之一、本导学案将重点介绍复数的乘除运算的基本方法和性质。
二、复数的乘法复数乘法的表达式为:(a+bi)(c+di),其中a、b、c、d为实数。
如何做复数的乘法呢?我们可以采用分配率的方法,即将每一个实数与另一个复数的实部和虚部相乘,然后再整合实部和虚部。
(a+bi)(c+di) = ac + adi + bci + bdi²由于i²=-1,所以得到:(a+bi)(c+di) = ac + adi + bci - bd将表达式简化为:(ac-bd) + (ad+bc)i这就是复数乘法的最终结果。
可以看出,复数乘法的结果仍然是一个复数。
实例:计算(2+3i)(4-5i)。
解:按照乘法的表达式,我们有:(2+3i)(4-5i)=(2×4)+(2×(-5i))+(3i×4)+(3i×(-5i))计算得:8-10i+12i-15i²由于i²=-1,所以进一步简化得到:8-10i+12i+15整理得:23+2i所以,(2+3i)(4-5i)的结果是23+2i。
三、复数的除法复数除法是指将一个复数除以另一个复数的运算。
对于复数的除法,我们需要引入一个特殊的技巧,即将被除数和除数同时乘以除数的共轭复数。
复数的共轭复数,是指只改变虚部的正负号的复数。
例如,对于复数a+bi,其共轭复数为a-bi。
因为共轭复数的乘积满足以下性质:(a+bi)(a-bi) = a² - abi + abi - bi²由于i²=-1,所以我们有:(a+bi)(a-bi) = a² - b²i² = a² + b²这样,我们就可以得到复数的除法公式:(a+bi)/(c+di) = [(a+bi)(c-di)] / [(c+di)(c-di)]再利用乘法法则进行计算,得到:(a+bi)/(c+di) = (ac + bd) / (c² + d²) + [(bc - ad)i] / (c² + d²)这就是复数的除法结果。
§一、内容和内容解析内容:复数的乘除运算.内容解析:本节课选自《普通高中课程标准数学教科书必修第二册》(人教A版)第七章第2节第二课时的内容.复数四则运算是本章的重点,复数代数形式的乘法与多项式乘法是类似的,不同的是即必须在所得结果中把i2换成-1,再把实部、虚部分别合并.复数的除法运算法则是通过分子分母同时乘分母的共轭复数,将分母实数化转化为乘法运算而得出的.渗透了转化的数学思想方法,使学生体会数学思想的素材.通过实例,明确复数的乘除运算法则,发展数学运算素养.经历复数四则运算的几何意义的形成过程,提高直观想象的核心素养,发展逻辑推理素养.二、目标和目标解析目标:(1)掌握复数代数形式的乘法和除法运算,培养数学运算的核心素养.(2)理解复数乘法的交换律、结合律和乘法对加法的分配律,会求在复数范围内方程的根,提升数学运算的核心素养.目标解析:(1)与复数的加法法则类似,教学时要引导学生结合引入复数集的过程,在希望保持运算律的指引下,自主探索如何“合理地”规定复数的乘法法则.(2)鉴于复数的乘法法则的形式较为复杂,因此在引入复数的乘法法则后,更应引导学生加强与多项式的乘法进行类比,以发现两者的共性和差异,将复数看作关于i的“一次二项式”,将复数的乘法按多项式乘法进行,只要在结果中把2i换成1,并且把实部和虚部分别合并即可.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在本节课的教学中,推导乘法的运算法则是进行数学类比教学的很好机会.基于上述分析,本节课的教学重点定为:掌握复数的乘法和除法运算.三、教学问题诊断分析教学问题一:学生已经经历了数系扩充的过程,学习了复数的概念及其几何意义,知道复数a+bi和平面上的点Z(a,b)以及向量OZ一一对应;但独立推导复数乘法法则,从思维角度看学生还缺乏经验.解决方案:在讲解本节前,可提前布置一些预习作业,让学生为新课的学习做好知识准备,或者在课上先复习共轭复数和分母有理化等相关知识,再进行新课的学习和探究,这是突破难点的一个重要举措,这样有助于学生理解复数的乘法法则.教学问题二:复数的除法运算是本节课的第二个教学问题.这不仅是本节课的重点,也是教学难点.解决方案:通过复习共轭复数的性质,22z z a b ⋅=+,类比分母有理化帮助学生理解.教学问题三:如何在复数范围内求二次方程的根?这是学生不好理解的一个地方.解决方案:两种方法解决:一是拓展求根公式,当△<0==,从而求解;二是将方程的根设为a bi +,代入方程.利用复数的相等求解.基于上述情况,本节课的教学难点定为:求复数范围内的方程根.四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示.为了让学生通过观察、归纳得到复数的乘、除法法则,应该为学生创造积极探究的平台.可以让学生从被动学习状态转到主动学习状态中来.在教学设计中,采取问题引导方式来组织课堂教学.问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究达到突出教学重点,突破教学难点.在教学过程中,重视复数除法法则的推导理解,让学生体会到类比的基本过程.五、教学过程与设计课堂小结升华认知a是实数,且a1+i+1+i2是实数,则a等于()A.12 B.1 C.322.(1+i)(2-i)=()A.-3-iB.-3+iC.3-iD.3+iz1=2-i,z2=1-3i,则复数iz1+z-25的虚部等于________.z满足:z·z-+2z i=8+6i,求复数z的实部与虚部的和.学生15:学生课后进行思考,并完成课后练习.答案:1.B 2.D 3.1 4.4课后练习是对运算巩固,是对本节知识的一个深化认识,同时也为下节内容做好铺垫.。
3.2.2复数代数形式的乘除运算中心备课人:【学习目标】1.知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算;2.过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题;【重点难点】重点:复数代数形式的除法运算.难点:对复数除法法则的运用.【学法指导】复数乘法运算是按照多项式与多项式相乘展开得到,在学习时注意将2i 换成1-;除法是乘法的逆运算,所以复数的除法运算可由乘法运算推导获得,但是也可由互为共轭复数的两个复数的乘积为实数,先将复数的分母实数化,再化简可得,学习时注意体会第二种方法的优势和本质.【知识复习】已知两复数bi a z +=1, di c z +=2(a ,b ,c ,d 是实数) 则 ()()()()a bi c di a c b d i +±+=±++即:两个复数相加(减)就是实部与实部,虚部与虚部分别相加(减).【问题探究】探究一、复数的乘法运算引导:乘法运算规则设bi a z +=1、di c z +=2()R d c b a ∈,,,是任意两个复数, 规定复数的乘法按照以下的法则进行:=⋅21z z ()()a bi c di ++= 点拨:两个复数的积仍然是一个复数.其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成-1,然后实、虚部分别合并. 【典例分析1】例1计算()()()i i i +-+-24321引导:可先将前两个复数相乘,再与第三个复数相乘.【练习】1.(76)(3)i i --2.(34)(23)i i +-- ()()3.3434i i +-4.▲共轭复数:实部相等,虚部互为相反数的两个复数叫做互为共轭复数.▲复数z a bi =+的共轭复数记作,z z a bi =-记且z 与z 的乘积为一实数探究二、复数的除法运算引导:除法运算规则:()()di c bi a +÷+=dic bi a ++= =提示:利用()()22d c di c di c +=-+,类比多项式的分母有理化,将dic bi a ++“分母实数化” 点拨:利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数di c +与复数di c -,相当于我们初中学习的23+的对偶式23-,它们之积为1是有理数,而()()22d c di c di c +=-+是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法【典例分析2】例2计算(12)(34)i i +÷-引导:可按照复数除法运算方法,先将除式写成分式,再将分母实数化,然后化简即可.【练习】11.1i i +- 12.i【小结】1.复数乘法的运算①与多项式的乘法是类似的 ②结果中把2i 换成-1 ③实部虚部合并2.复数除法的运算①把除式写成分式的形式 ②分子与分母都乘以分母的共轭复数【分母实数化】 ③化简后写成代数形式。
复数代数形式的乘除运算导学案【学习目标】1.知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算;2.过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题;3.情感、态度与价值观:复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系.【重点难点】重点:复数代数形式的除法运算.难点:对复数除法法则的运用.【学法指导】复数乘法运算是按照多项式与多项式相乘展开得到,在学习时注意将2i 换成1-;除法是乘法的逆运算,所以复数的除法运算可由乘法运算推导获得,但是也可由互为共轭复数的两个复数的乘积为实数,先将复数的分母实数化,再化简可得,学习时注意体会第二种方法的优势和本质.【知识链接】1.复数1z 与2z 的和的定义:()()()()i d b c a di c bi a z z +++=+++=+21;2.复数1z 与2z 的差的定义:()()()()i d b c a di c bi a z z -+-=+-+=-21;3.复数的加法运算满足交换律:1221z z z z +=+;4.复数的加法运算满足结合律: ()()321321z z z z z z ++=++;5.复数()R b a bi a z ∈+=,的共轭复数为bi a z -=.探究一、复数的乘法运算:设bi a z +=1、di c z +=2()R d c b a ∈,,,是任意两个复数, 规定复数的乘法按照以下的法则进行:=⋅21z z 引导2:试验证复数乘法运算律(1)1221z z z z ⋅=⋅ (2)()()321321z z z z z z ⋅⋅=⋅⋅ (3)()3121321z z z z z z z ⋅+⋅=+⋅探究二、复数的除法运算:引导1:复数除法定义:满足()()()bi a yi x di c +=++的复数()R y x yi x ∈+,叫复数bi a +除以复数di c + 的商,记为:()()di c bi a +÷+或者dic bi a ++()0≠+di c . 点拨:利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数dic +与复数di c -,相当于我们初中学习的23+的对偶式23-,它们之积为1是有理数,而()()22d c di c di c +=-+是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法例1:计算ii i i 4342)1)(41(++++-【当堂检测】1.复数22i 1+i ⎛⎫ ⎪⎝⎭等于( ) A .4i B .4i - C .2i D .2i - 2.设复数z 满足12i i z +=,则z =( ) A .2i -+B .2i --C .2i -D .2i + 3*.复数32321⎪⎪⎭⎫ ⎝⎛+i 的值是( ) A.i - B.i C.1- D.14.已知复数z 与()i z 822-+都是纯虚数,求z = . 5.(1)试求87654321,,,,,,,i i i i i i i i 的值.(2)由(1)推测()*N n i n ∈的值有什么规律?并把这个规律用式子表示出来. 提示:通过计算,观察计算结果,发现规律.【总结提升】复数的乘法和除法运算是复数的基本运算,在学习时注意运算法则和方法,在乘法运算中注意把2i 换成-1,在除法运算中注意方法的本质依据,计算时注意准确性.【教学反思】。
3.2。
2 复数代数形式的乘除运算
一、教学目标:
1、知识与技能:掌握复数代数形式的乘除运算的法则,熟练进行复数的乘法和除法运算;理解复数乘法的交换律、结合律、分配律;了解共轭复数的定义及性质.过程与方法:2、过程与方法:运用类比方法,经历由实数系中的乘除法到复数系中乘除法的过程;培养学生发散思维和集中思维的能力,以及问题理解的深刻性、全面性.
3、情感、态度与价值观:通过实数的乘、除法运算法则及运算律,推广到复数的乘、除法,使同学们对运算的发展历史和规律,以及连续性有一个比较清晰完整的认识,同时培养学生的科学思维方法.
二、重点难点:
重点: 掌握复数代数形式的乘除运算的法则,熟练进行复数的乘法和除法运算.
难点:复数除法的运算法则.
三、教学过程
【知识链接】
1.复数与的和的定义:;
2.复数与的差的定义:;
3。
复数的加法运算满足交换律:;
4.复数的加法运算满足结合律:;
5。
复数的共轭复数为.
【问题探究】
探究一、复数的乘法运算
引导1:乘法运算规则
设、是任意两个复数,
规定复数的乘法按照以下的法则进行:
其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数。
引导2:试验证复数乘法运算律
(1)
(2)
(3)
点拨:两个复数相乘,类似两个多项式相乘,在所得的结果中把换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.
探究二、复数的除法运算
引导1:复数除法定义:
满足的复数叫复数除以复数的商,记为:或者。
引导2:除法运算规则:
利用。
于是将的分母有理化得:
原式=。
∴(a+bi)÷(c+di)=。
点拨:利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数与复数,相当于我们初中学习的的对偶式,它们之积为1是有理数,而是正实数。
所以可以分母实数化. 把这种方法叫做分母实数化法
【典例分析】
例1计算
引导:可先将前两个复数相乘,再与第三个复数相乘。
点拨:在复数的乘法运算过程中注意将换成-1.
例2计算:(1) ; (2)。
引导:按照复数乘法运算展开即可。
点拨:注意体会互为共轭复数的两个复数的乘积是一个实数,记住一些特殊形式代数式的运算结果,便于后续学习的过程中的化简、代换等.
例3计算
引导:可按照复数除法运算方法,先将除式写成分式,再将分母实数化,然后化简即可。
点拨:本题可将除法运算转化为乘法运算,但是相对麻烦,易于采用先将除式写成分式,再将分母实数化,然后化简的办法,学习时注意体会总结,寻求最佳方法.
例4计算
引导:可先将分子化简,再按照除法运算方法计算,注意计算的准确性。
点拨:对于混合运算,注意运算顺序,计算准确。
【目标检测】
1。
复数等于()
A.B.C.D.
2。
设复数满足,则( )
A.B.C.D.
3.复数的值是()
A. B. C。
D.1
4.已知复数与都是纯虚数,求。
提示:复数为纯虚数,故可设,再代入求解即可。
5。
(1)试求的值.
(2)由(1)推测的值有什么规律?并把这个规律用式子表示出来。
提示:通过计算,观察计算结果,发现规律.
【总结提升】
复数的乘法和除法运算是复数的基本运算,在学习时注意运算法则和方法,在乘法运算中注意把换成-1,在除法运算中注意方法的本质依据,计算时注意准确性.。