复数代数形式的乘除运算
- 格式:ppt
- 大小:179.00 KB
- 文档页数:46
复数代数形式的乘除运算说课稿说课教师:张晶晶一教材分析1、教材的地位和作用《§3.2.2 复数代数形式的乘除运算》是高中数学选修2-2(人教A版)第三章的第二小节,其主要内容是复数代数形式的乘除运算。
前面已学习了《§3.1.1 复数代数形式的加、减运算及其几何意义》, 在此基础上,继续学习复数的乘除运算,让学生认识到实数集中的许多性质在复数集中仍然适用,同时也是对学习复数知识的加深和巩固。
它进一步揭示了虚数与实数辩证统一的关系,对培养学生类比学习的观点和转化的思想起到了一定的帮助作用,为提高学生的推理论证能力和解决问题的能力也起到了十分重要的作用。
2.教学重点与难点教学重点:复数代数形式的乘法与除法运算法则.教学难点:对复数除法运算法则的运用(分母实数化的问题)。
3. 教学目标(1)知识与技能:通过类比学习熟练掌握复数代数形式的乘法与除法运算法则,深刻体会复数的除法运算实质是分母实数化的问题。
(2)过程与方法:通过学生自学、兵教兵、探究等教学形式提高学生分析问题和解决问题的能力。
(3)情感与价值观:在教学中要注重培养学生思维的灵活性,辩证性和创新性,活跃课堂气氛,激发学生学习数学的热情,培养学生学习数学的兴趣,增强他们学习数学的信心。
二教法分析1、要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,形成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。
2、根据上述教材分析和目标分析,在教学中采用“洋思模式”,以学生为主体,学生自学为核心构建课堂教学,培养问题意识,孕育创新精神,提出恰当的对学生的数学思维有适度启发的问题,引导学生自学,培养学生良好的学习方法。
3、“先学后教,当堂训练”:通过展示“自学指导”让学生阅读课本,小组内讨论,结合前面学习的知识来解决提出的问题,强化类比转化的思想。
1 3.2.2 复数的代数形式的乘除运算教学要求:掌握复数的代数形式的乘、除运算。
教学重点:复数的代数形式的乘除运算及共轭复数的概念教学难点:乘除运算教学过程:一、复习准备:1. 复数的加减法的几何意义是什么?2. 计算(1)(14)(72)i i +-+ (2)(52)(14)(23)i i i --+--+ (3)(32)(43)(5)]i i i --+-+-[3. 计算:(1)(1(2⨯ (2)()()a b c d +⨯+ (类比多项式的乘法引入复数的乘法)二、讲授新课:1.复数代数形式的乘法运算①.复数的乘法法则:2()()()()a bi c di ac bci adi bdi ac bd ad bc i ++=+++=-++。
例1.计算(1)(14)(72)i i +⨯- (2)(72)(14)i i -⨯+ (3)[(32)(43)](5)i i i -⨯-+⨯+(4)(32)(43)(5)]i i i -⨯-+⨯+[探究:观察上述计算,试验证复数的乘法运算是否满足交换、结合、分配律?例2.1、计算(1)(14)(14)i i +⨯- (2)(14)(72)(14)i i i -⨯-⨯+(3)2(32)i +2、已知复数Z ,若,试求Z 的值。
变:若(23)8i Z +≥,试求Z 的值。
②共轭复数:两复数a bi a bi +-与叫做互为共轭复数,当0b ≠时,它们叫做共轭虚数。
注:两复数互为共轭复数,则它们的乘积为实数。
练习:说出下列复数的共轭复数32,43,5,52,7,2i i i i i --++--。
=,试写出复数的除法法则。
2.复数的除法法则:2222()()()()()()a bi a bi c di ac bd bc ad a bi c di i c di c di c di c d c d ++-+-+÷+===+++-++ 其中c di -叫做实数化因子例3.计算(32)(23)i i -÷+,(12)(32)i i +÷-+(师生共同板演一道,再学生练习) 练习:计算232(12)i i -+,23(1)1i i -+- 2.小结:两复数的乘除法,共轭复数,共轭虚数。
§一、内容和内容解析内容:复数的乘除运算.内容解析:本节课选自《普通高中课程标准数学教科书必修第二册》(人教A版)第七章第2节第二课时的内容.复数四则运算是本章的重点,复数代数形式的乘法与多项式乘法是类似的,不同的是即必须在所得结果中把i2换成-1,再把实部、虚部分别合并.复数的除法运算法则是通过分子分母同时乘分母的共轭复数,将分母实数化转化为乘法运算而得出的.渗透了转化的数学思想方法,使学生体会数学思想的素材.通过实例,明确复数的乘除运算法则,发展数学运算素养.经历复数四则运算的几何意义的形成过程,提高直观想象的核心素养,发展逻辑推理素养.二、目标和目标解析目标:(1)掌握复数代数形式的乘法和除法运算,培养数学运算的核心素养.(2)理解复数乘法的交换律、结合律和乘法对加法的分配律,会求在复数范围内方程的根,提升数学运算的核心素养.目标解析:(1)与复数的加法法则类似,教学时要引导学生结合引入复数集的过程,在希望保持运算律的指引下,自主探索如何“合理地”规定复数的乘法法则.(2)鉴于复数的乘法法则的形式较为复杂,因此在引入复数的乘法法则后,更应引导学生加强与多项式的乘法进行类比,以发现两者的共性和差异,将复数看作关于i的“一次二项式”,将复数的乘法按多项式乘法进行,只要在结果中把2i换成1,并且把实部和虚部分别合并即可.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在本节课的教学中,推导乘法的运算法则是进行数学类比教学的很好机会.基于上述分析,本节课的教学重点定为:掌握复数的乘法和除法运算.三、教学问题诊断分析教学问题一:学生已经经历了数系扩充的过程,学习了复数的概念及其几何意义,知道复数a+bi和平面上的点Z(a,b)以及向量OZ一一对应;但独立推导复数乘法法则,从思维角度看学生还缺乏经验.解决方案:在讲解本节前,可提前布置一些预习作业,让学生为新课的学习做好知识准备,或者在课上先复习共轭复数和分母有理化等相关知识,再进行新课的学习和探究,这是突破难点的一个重要举措,这样有助于学生理解复数的乘法法则.教学问题二:复数的除法运算是本节课的第二个教学问题.这不仅是本节课的重点,也是教学难点.解决方案:通过复习共轭复数的性质,22z z a b ⋅=+,类比分母有理化帮助学生理解.教学问题三:如何在复数范围内求二次方程的根?这是学生不好理解的一个地方.解决方案:两种方法解决:一是拓展求根公式,当△<0==,从而求解;二是将方程的根设为a bi +,代入方程.利用复数的相等求解.基于上述情况,本节课的教学难点定为:求复数范围内的方程根.四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示.为了让学生通过观察、归纳得到复数的乘、除法法则,应该为学生创造积极探究的平台.可以让学生从被动学习状态转到主动学习状态中来.在教学设计中,采取问题引导方式来组织课堂教学.问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究达到突出教学重点,突破教学难点.在教学过程中,重视复数除法法则的推导理解,让学生体会到类比的基本过程.五、教学过程与设计课堂小结升华认知a是实数,且a1+i+1+i2是实数,则a等于()A.12 B.1 C.322.(1+i)(2-i)=()A.-3-iB.-3+iC.3-iD.3+iz1=2-i,z2=1-3i,则复数iz1+z-25的虚部等于________.z满足:z·z-+2z i=8+6i,求复数z的实部与虚部的和.学生15:学生课后进行思考,并完成课后练习.答案:1.B 2.D 3.1 4.4课后练习是对运算巩固,是对本节知识的一个深化认识,同时也为下节内容做好铺垫.。
复数代数形式的乘除运算1.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数0的两个共轭复数也叫做共轭虚数通常记复数z 的共轭复数为z 。
2.乘法运算规则:设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R)是任意两个复数,那么它们的积(a +bi )(c +di )=(ac -bd )+(bc +ad )i .3.复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y ∈R)叫复数a+bi 除以复数c+di 的商,记为:(a+bi)÷(c+di)或者di c bi a ++例1计算(1-2i)(3+4i)(-2+i) =-20+15i.例2计算:(1)(3+4i) (3-4i) =25;(2)(1+ i)2. =2 i.例3计算(12)(34)i i +÷- 例4例5已知z 是虚数,且z +z 1是实数,求证:11+-z z 是纯虚数.巩固练习:1.设z =3+i ,则z 1等于A.3+iB.3-iC.101103+i D.i 101103+ 2.ai b bia aib bia +-+-+的值是A.0B.iC.-iD.1 3.已知z 1=2-i ,z 2=1+3i ,则复数521z z i +的虚部为 A.1B.-1C.iD.-i 4.设i yi i x-+-=+1231 (x ∈R,y ∈R),则x =___________,y =___________.答案:1.D 2.A 3.A 4.53 , -59。