人教版中职数学8.3.2圆的一般方程
- 格式:ppt
- 大小:740.00 KB
- 文档页数:13
中职数学第八章直线方程和圆知识点直线方程和圆1.两点间距离公式:设点A(x1,y1)和点B(x2,y2),则AB的长度为AB = √[(x2-x1)²+(y2-y1)²]。
当x1=x2时,AB = |y2-y1|。
当y1=y2时,AB = |x2-x1|。
2.中点坐标:设点A(x1,y1)和点B(x2,y2),则线段AB的中点M的坐标为[(x1+x2)/2,(y1+y2)/2]。
当x1≠x2时,M的纵坐标为(y2-y1)/(x2-x1)×(x-x1)+y1.3.直线的倾斜角和斜率:直线的倾斜角α∈[0,π)。
直线的斜率k=tanα (α≠π/2)。
当α=30°时,k=√3/3;当α=45°时,k=1;当α=60°时,k=√3;当α=120°时,k=-√3;当α=150°时,k=-√3/3.4.直线方程:点斜式:设直线过点A(x1,y1),斜率为k,则直线的点斜式方程为y-y1=k(x-x1)。
斜截式:设直线与y轴交点为b,则直线的斜截式方程为y=kx+b。
两点式:设直线过点A(x1,y1)和点B(x2,y2),则直线的两点式方程为(x-x1)/(x2-x1)=(y-y1)/(y2-y1)。
截距式:设直线与x轴和y轴的截距分别为a和b,则直线的截距式方程为x/a+y/b=1 (a≠0,b≠0)。
一般式:设直线的一般式方程为Ax+By+c=0 (A和B不同时为0)。
5.两直线的位置关系:当两直线斜率都不存在时,若它们的截距不相等,则两直线平行;若它们的截距相等,则两直线重合。
当两直线斜率都存在时,若它们的斜率相等且截距不相等,则两直线平行;若它们的斜率相等且截距相等,则两直线重合;若它们的斜率乘积为-1,则两直线垂直。
当一条直线斜率不存在时,另一条直线斜率存在且不为0时,它们不可能平行或垂直。
当两直线斜率都存在且不为0时,若它们的斜率不相等,则它们相交,且夹角为arctan|k1-k2|;若它们的斜率相等且截距不相等,则它们平行;若它们的斜率相等且截距相等,则它们重合。
中职直线与圆的方程知识点总结一、直线的方程在二维平面上,直线可以由一元一次方程表示,其一般形式为:Ax + By + C = 0其中 A、B 和 C 是实数且 A 和 B 不同时为 0。
斜截式方程:斜率为 k,截距为 b 的直线方程可以表示为:y = kx + b其中 k 是斜率,b 是截距。
点斜式方程:已知直线上一点(x₁, y₁)和直线的斜率 k,可以使用以下点斜式方程表示直线:y - y₁ = k(x - x₁)二、圆的方程在二维平面上,圆可以由圆心的坐标 (h, k) 和半径 r 表示,其标准方程为:(x - h)² + (y - k)² = r²三、直线与圆的关系直线与圆有以下几种关系:1.直线与圆相切:当直线与圆只有一个交点时,即直线与圆相切。
相切的直线与圆的切线相切于圆的一点。
2.直线与圆相离:当直线与圆没有交点时,即直线与圆相离。
3.直线与圆相交:当直线与圆有两个交点时,即直线与圆相交。
相交的直线与圆会穿过圆的两个点。
4.直线在圆上:当直线经过圆心时,即直线在圆上。
四、直线与圆的方程求解1.判断直线与圆的位置关系:–将直线方程代入圆的标准方程,得到一个一元二次方程;–计算一元二次方程的判别式;–根据判别式的值得出直线与圆的位置关系。
2.求直线与圆的交点坐标:–将直线方程代入圆的标准方程,得到一个二元一次方程组;–解方程组,求得交点坐标。
五、举例例 1:判断直线与圆的位置关系,直线方程为 y = 2x + 1,圆的标准方程为 (x - 3)² + (y - 4)² = 9。
将直线方程代入圆的标准方程得到:(x - 3)² + (2x + 1 - 4)² = 9化简得:5x² - 14x + 9 = 0计算判别式 D = (-14)² - 4 * 5 * 9 = 4,判别式大于 0,因此直线与圆相交。
数学人教版必修二圆的方程知识点
数学人教版必修二中关于圆的方程的内容主要涉及以下几个知识点:
1. 圆的标准方程:圆的标准方程为:(x - a)² + (y - b)² = r²,其中(a, b)为圆心的坐标,r为圆的半径。
2. 圆的一般方程:圆的一般方程为:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。
一般方程推导出标准方程的方法是完成平方并合并同类项。
3. 圆的参数方程:若圆的圆心为(a, b),半径为r,则圆的参数方程为x = a + rcosθ,y = b + rsinθ,其中θ为参数。
4. 圆的切线方程:过圆上的一点M(x₁, y₁)的切线方程为xx₁ + yy₁ = r²,其中r为圆的半径。
5. 过圆心的直线方程:过圆心的直线方程为x/a + y/b = 1,其中a和b分别为圆心的横纵坐标。
6. 圆与直线的位置关系:可以利用圆的一般方程和直线的方程,通过解方程组来判断
圆与直线的位置关系。
以上是数学人教版必修二中有关圆的方程的主要知识点。
希望对你有所帮助!。
圆的一般方程说课稿【一】教材分析1.教材所处的地位和作用《圆的一般方程》安排在职业中学数学基础模块下册第八章第三节二小节第一课时。
圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。
圆的一般方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是思想方法上都有着深远的意义,所以本课内容在整个解析几何中起着承前启后的作用。
2.学情分析圆的一般方程是学生在掌握了求直线方程一般方法的基础上,在学习过圆的标准方程之后进行研究的, 但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。
另外我们职业中学的学生运算能力普遍较弱,学生在探究问题的能力,合作交流的意识以及数学学习的自信心都有待加强。
根据上述教材所处的地位和作用分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标知识与技能:(1)掌握圆的一般方程及一般方程的特点(2)能将圆的一般方程化成圆的标准方程,进而求圆心和半径(3) 能用待定系数法由已知条件求出圆的方程过程与方法:(1)在师生合作以及小组合作中进一步培养学生用代数方法研究几何问题的能力;(2)探索圆的一般方程的过程中加深对数形结合思想的理解和加强待定系数法的运用;情感态度与价值观:(1)培养学生主动探究知识、合作交流的意识;(2)培养学生勇于思考,探究问题的精神。
(3)在体验数学美的过程中激发学生的学习兴趣,增强数学学习的自信心。
根据以上对教材、学情及教学目标的分析,我确定如下的教学重点和难点:4.教学重点与难点重点:(1)圆的一般方程。
(2) 待定系数法求圆的方程。
难点:(1)圆的一般方程的应用(2)二元二次方程与圆的一般方程的关系。
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法分析为了充分调动学生学习的积极性,本节课采用“探究”教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我利用多媒体课件进行辅助教学,借助信息技术创设问题情境,利用多媒体教学的直观节省时间提高教学效率。