当前位置:文档之家› 外部变形观测设施激光准直安装

外部变形观测设施激光准直安装

外部变形观测设施激光准直安装

外部变形观测设施激光准直安装

检验项目检验方法检验数量

真空激光准直安装

真空管道内壁清理观察

在安装前、后,以及正式投入运行前反复进

行数次

测点箱与

法兰管的焊接

焊接质量量测

每1测点箱和每段管道焊接处至少量测

1次

效果检查

检测,可采用充气、涂肥皂

水观察法

每1测点箱和每段管道焊接完成后至少量测

1次

点光源的小孔光缆、激

光探测仪和端点观测墩

检测全数

波带板与准直线测量

全面

观测墩的位置

观察

:保护管的安装

大气激光准直安装

点光源的小孔光缆、激

光探测仪和端点观测墩

检测

全数「波带板与准直线量测

测点观测墩的位置

观察全面「保护管的安装

激光准直仪操作规程(内容清晰)

激光准直仪操作规程 激光准直测量系统由半导体激光器、光学分光及转向系统、光电接收系统及液晶显示模块组成。激光光束经转向系统后出射两条相互平行的基准光束,作为导轨的安装检测基准。该系统利用二维PSD作为光电接收器件,采用液晶显示模块显示导轨偏差,可快速、直接、准确地测量导轨安装的偏移量,从而提高导轨安装的精度和速度。实验结果显示测量系统在X,Y方向上的标准偏差分别为: 0.002mm,0.005mm。 1、主要参数 序号项目单位指标 1 工作范围m 2-50 2 激光光轴与主机机械轴的同轴 度 mm ±0.05+0.002L 3 激光光轴漂移量mm/h 0.005 4 激光波长nm 635 5 电源电压V 3 6 系统准备时间min 15 7 环境温度℃5-40 8 环境湿度% ≤90 2、主机由半导体激光器、空间位相调制器、壳体、底座、和电源所组成。 3、激光准直仪的特点与工作原理 1)仪器的特点是采用了空间位相调制器。激光束在任意测距上,其横截面均为一组良好的、红黑反差很大的同心圆环,中心光斑亮且小,利于定位。而且在不同测距进行测量时是不用调焦的,实现了无调焦运行差。 中心光斑直径随着工作距离的增大而增大,符合下列参数: L=2.5米时?0.1mm L=20米时?1.2mm L=50米时?2.5mm 2)将仪器固定在主机的回转轴上后用百分表测量仪器端部的测环在盘车处于不同位置时的差值,通过调整仪器底座上的调整螺钉,使其差值越来越小,只要主机轴系配合良好,可以调至±0.02~0.03mm。然后利用置于远离主机15米左右的平面反射镜,将仪器射出的激光束反射至位于仪器附近的测微光靶。在主机盘车时调整仪器壳体上的四只调整螺钉,(必要时适当调整反射镜的角度),使反射回来的激光束画的圆的半径越来越小,最后调至±0.1mm以内为止,此时应再次检查盘车360°时,百分表所显示波动值的范围和测微光靶的测量差值,准确无误时即可用此光轴代替主机的机械轴。

激光准直技术

激光准直技术在工业生产生活中的应用 摘要: 激光由于具有亮度高、方向性强、单色性好、相干性强等特点,在工程、医疗等方面得到了广泛的应用。因此,对激光准直技术的研究具有重要意义与广泛的前景。这里就激光准直技术的工作原理及其在基本建设工程施工测量中的应用做简单介绍。 关键词:激光、准直仪、准直基线 1、引言 随着世界工业技术的迅猛发展,对各项几何参数的测量精度要求越来越高。直线度测量是集合计量领域里最基本的计量项目之一,直接影响仪器精度、性能、质量,也是机械加工中常见又重要的测量项目。在精密仪器制造与检测、大尺寸测量、大型仪器安装与定位、军工产品制造等领域中有着广泛应用。 2、原理 激光准直的原理如图1所示,由激光器L发出一束单横模的激光(一般为可见光,通常采用氦氖激光器的0.633μm波长的光),利用倒置的望远镜系统S,将光束形成直径很细的(约为几毫米)的平行光束,或者将光束在不同距离上聚焦成圆形小光斑。此平行光束中心的轨迹为一条直线,即可作为准直和测量的基准线。在需要准直的位置处用光电探测器接受准直光束。该光电探测器为四象限光电探测器D(即由4块光电池组成),激光束照射到光电探测器上时,每块光电池会产生电压V1,V2,V3,V4。当激光束中心照射在光电探测器中心处,由于4块光电池收到相同的光能量,产生的电压值相等;而当激光束中心偏离光电探测器中心时,将有偏差电压信号Vx和Vy;Vx= V1 -V3,Vy= V2 - V4 由此偏差电压即可知道接收点位置的偏移大小和方向。 图1 激光准直仪结构图 按检测原理激光准直技术大致可分为三个类型:

(一)振幅(光强)测量型 由于激光漂移、光线弯曲、大气扰动以及光束横截面内光强分布的不对称性的影响,直接利用激光本身作准直基线,稳定性最好也只能达到10?5量级。为提高准直精度,必须有效地克服上述影响,于是出现了多种设计方案。 1、菲涅尔波带片法 激光束通过Fresnel波带片形成十字形的能量分布。以十字线的中心作为准直基线,来克服光强分布不对称的影响,但因为波带片有确定的焦距,不可能在很长距离上都得到清晰的十字像。 图2 菲涅耳波带片成像原理 2、相位板法 采用二维非对称位相板,它的四个象限上每两个相邻的象限具有二相位差,所形成的直边衍射图是亮背景上的一个暗十字。这种方法很适合于对中控制,但由于衍射的作用,测量范围不可能太大。 图3 位相板准直系统 3、双光束准直法 两光束是由一个空间棱镜分出的。当激光器的出射光束漂移时,经过棱镜之后的两光束漂移方向相反。采用两光束的平分线作为准直基线可以克服激光器的漂移影响,但该系统对双光束的平行性要求较高,在长距离范围内不易实现。

半导体激光器准直管物镜设计

课程设计报告 课程工程光学课程设计 题目半导体激光器准直物镜设计 学院物理与电子工程学院 年级2010 专业光电信息工程 班级0503101 学号0503101 学生姓名 指导教师职称讲师 设计时间2012. 12. 24 ~ 2013. 2. 24

设计任务书

目录 1.题目设计与方案论证 (4) 1.1设计题目 (4) 1.2课题分析 (4) 2.半导体激器准直物镜设计与分析 (5) 2.1设定参数 (5) 3. 仿真结果及相关分析 (9) 3.1优化前的性能分析 (9) 3.2优化后的性能特性 (10) 4.小结与领悟 (16) 参考文献 (17)

第一章题目设计与方案论证 1.1设计题目 半导体激光器准直物镜设计 1.1.1题目要求 采用双胶合结构,D/f=1/3;通光口径5mm,半视场角0°,设计波长656nm。 1.2课题分析 1.2.1 ZEMAX的简单介绍】1【 ZEMAX是美国RandantZemax公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型。是一套综合性的光学设计仿真软件,它不只是透镜设计软件而已,更是全功能的光学设计分析软件,具有直观、功能强大、灵活、快速、容易使用等优点,它也是一个完整的光学设计软件,是将实际光学系统的设计概念,优化,分析,公差以及报表集成在一起的一套综合性的光学设计仿真软件。包括光学设计需要的所有功能,可以在实践中对所有光学系统进行设计,优化,分析,并具有容差能力,所有这些强大的功能都直观的呈现于用户界面中。ZEMAX功能强大,速度快,灵活方便,是一个很好的综合性程序。 ZEMAX能够模拟连续和非连续成像系统及非成像系统。 1.2.2半导体激光器准直物镜的相关参数 D/f=1/3;通光口径5mm,即D为5mm,f为15mm,半视场角0°,设计波长656nm

44瓦超高功率808nm半导体激光器设计和制作

44瓦超高功率808 nm半导体激光器设计与制作 仇伯仓,胡海,何晋国 深圳清华大学研究院 深圳瑞波光电子有限公司 1. 引言 半导体激光器采用III-V化合物为其有源介质,通常通过电注入,在有源区通过电子与空穴复合将注入的电能量转换为光子能量。与固态或气体激光相比,半导体激光具有十分显著的特点:1)能量转换效率高,比如典型的808 nm高功率激光的最高电光转换效率可以高达65%以上 [1],与之成为鲜明对照的是,CO2气体激光的能量转换效率仅有10%,而采用传统灯光泵浦的固态激光的能量转换效率更低, 只有1%左右;2)体积小。一个出射功率超过10 W 的半导体激光芯片尺寸大约为0.3 mm3, 而一台固态激光更有可能占据实验室的整整一张工作台;3)可靠性高,平均寿命估计可以长达数十万小时[2];4)价格低廉。半导体激光也同样遵从集成电路工业中的摩尔定律,即性能指标随时间以指数上升的趋势改善,而价格则随时间以指数形式下降。正是因为半导体激光的上述优点,使其愈来愈广泛地应用到国计民生的各个方面,诸如工业应用、信息技术、激光显示、激光医疗以及科学研究与国防应用。随着激光芯片性能的不断提高与其价格的持续下降,以808 nm 以及9xx nm为代表的高功率激光器件已经成为激光加工系统的最核心的关键部件。高功率激光芯片有若干重要技术指标,包括能量转换效率以及器件运行可靠性等。器件的能量转换效率主要取决于芯片的外延结构与器件结构设计,而运行可靠性主要与芯片的腔面处理工艺有关。本文首先简要综述高功率激光的设计思想以及腔面处理方法,随后展示深圳清华大学研究院和深圳瑞波光电子有限公司在研发808nm高功率单管激光芯片方面所取得的主要进展。 2.高功率激光结构设计 图1. 半导体激光外延结构示意图

激光加工光学系统

激光加工机的光学系统--激光束传输.聚焦和观察系统

激光基础知识 1.1 激光的产生 三要素:1.具有亚稳态能级的激活介质——激光工作物质; 2.能量泵浦源——提供能量以实现粒子数反转; 3.激光谐振腔——多次光放大维持激光振荡;

1.2 激光光束的特性 1)高光亮度——激光束发散角很小,光能量集中,光强度很高例如:太阳光亮度 3 x 102 W / (cm2.sr) ;气体激光器的光亮度106W / (cm2. sr);固体激光器的光亮度可达1011W / (cm2.sr); 若进一步将激光束聚焦(空间上集中)或压缩脉冲宽度(时间上集中),则激光束更有极高的光亮度 2)高方向性——由于谐振腔对光束方向的限制,激光束发散角很小。例如He-Ne 激光器的发散角10-1 mrad; 固体激光器的发散角1-10 mrad(毫弧度) 3)高单色性——激光的谱线宽度极窄——准单色光;若进一步采用稳频和选取单一纵模,更可大大压缩谱线宽度,可视为单波长。 4)高相干性——由于激光的谱线宽度极窄,传播中能产生相干的两点的时间间隔很大(时间相干性好);又激光发散角很小,方向性很高,激光束波前面内任意两点均相干(空间相干性好)

1.3激光器的输出特性 1)激光波长——激光器输出准单色光; 不同激光器输出激光波长不同,材料吸收特性各不同;对不同材料用不同的激光来加工。 2)激光输出的能量和功率 连续激光: 激光功率P = 激光能量/ 秒 脉冲激光: 峰值功率P = 脉冲能量E / 脉冲宽度T m 脉冲激光: 平均功率P=脉冲能量E x 脉冲频率f

3)激光束的空间分布特性—— 基模(TEM00)高斯光束——光场振幅按高斯函数分布; 振幅值下降到1/e(=0.368)强度下降到中心强度1/e2 的光斑宽度定义为光斑半径;对应的全角宽度定义为光束发散角; 为了改善发散角可用小孔选模,非稳腔选模,拉长谐振腔等方法 高斯光束的参数: 束腰; 等相位面; 发散角;

半导体激光器光束准直技术研究

半导体激光器光束准直技术研究 摘要:相较于其他激光器,半导体具有结构简单、功耗低、操作方便等优点, 且目前已广泛应用于激光领域,例如:激光通信、激光测距等。基于半导体激光 器的基本结构,在垂直于结平面方向上,它发出的光束的发射角大小大约为30o;而在平行于结平面方向上,它的发射角大约为10o。正是由于两者的发射角相差 太大,所以半导体激光器在应用过程中,利用特殊的光学系统对其输出光束进行 准直是非常有必要的。 本文开篇部分主要介绍了半导体激光器的发展现状和准直意义,中间部分主 要讲述了半导体激光器的基本原理与结构分类,最后大概介绍了一些半导体激光 器光束准直方法。 关键词:半导体激光束;准直;整形 一、半导体激光器的发展现状和准直意义 半导体激光器从二十世纪六十年代开始发展,较其他激光器落后几年,如今 半导体激光器的技术已相当成熟。二十世纪七十年代开始,人们重点研究了半导 体激光器的动态特性,使其主要朝着两个方面发展,其一是功率型激光器,主要 以提高光功率为主;其二是信息型激光器,主要以传递信息为主。近年来,人们 也研发出了高功率半导体激光器,其指的是脉冲输出功率在5W以上,且连续输 出功率在100mW以上。二十世纪九十年代,在泵浦固体激光器的作用下,高功 率半导体激光器的研发取得了实质性进展,主要指半导体激光器的连续输出功率 可以达到5W~30W左右,得到了很大的提高。现在,高功率半导体激光器在国内 外的发展已相当白热化,其中国外商品化的大功率半导体激光二极管阵列已达到 千瓦级别,而国内的样品器件要稍微落后一点,但也已达到了600W。 现如今,半导体激光器已广泛应用于各行各业,但是在应用过程中,出现了 一些问题,主要是由于半导体激光器的波导结构造成的。这些问题主要表现在三 个方面:其一,半导体激光束在快轴方向和慢轴方向的发射角之间相差太大,其 中在慢轴方向的发射角大概在10o左右,而在快轴方向上的发射角甚至可以达到60o左右;其二,半导体激光器具有固有像散,即半导体激光器在慢轴和快轴两 个方向上的束腰不在同一地方;其三,半导体激光器的远场的光斑为椭圆形的。 基于这些特点,在那些条件较高的领域,几乎都要利用特殊的光学系统对输出光 束进行准直。 二、半导体激光器的基本原理与结构分类 半导体激光器是利用半导体中的电子光跃迁导致光子受激辐射从而产生的光 振荡器和光放大器的统称。 受激辐射是指若入射光的能量满足式(2-1)且大于带隙能量Eg时,则导带 中的电子将发生跃迁以及价带中的空穴将发生光子辐射。而自发辐射是指没有入 射光的光子发射。式(2-1)如下, (2-1) 其中,h是普朗克常量,是角频率。 假如系统具有数量较多的电子,那么在热平衡状态下,低能级的电子数小于 高能级的电子数,即电子的能量分布是服从费米-狄拉克分布的,所以基本来讲, 光还是被吸收的。半导体激光束发挥作用主要依靠的是激光辐射,而激光作用的 基本原理就是光放大,其是靠系统的能量分布产生反转而形成的净的光辐射产生的。对于半导体激光器来说,其与别的激光器的基本原理是无本质差别的,且阈

半导体激光器驱动电路设计(精)

第9卷第21期 2009年11月1671 1819(2009)21 6532 04 科学技术与工程 ScienceTechnologyandEngineering 2009 Sci Tech Engng 9 No 21 Nov.2009 Vol 通信技术 半导体激光器驱动电路设计 何成林 (中国空空导弹研究院,洛阳471009) 摘要半导体激光驱动电路是激光引信的重要组成部分。根据半导体激光器特点,指出设计驱动电路时应当注意的问题,并设计了一款低功耗、小体积的驱动电路。通过仿真和试验证明该电路能够满足设计需求,对类似电路设计有很好的借鉴作用。 关键词激光引信半导体激光器窄脉冲中图法分类号 TN242; 文献标志码 A 激光引信大部分采用主动探测式引信,主要由发射系统和接收系统组成。发射系统产生一定频率和能量的激光向弹轴周围辐射红外激光能量,而接收系统接收处理探测目标漫反射返回的激光信号,而后通过信号处理系统,最终给出满足最佳引爆输出信号。由此可见,激光引信的探测识别性能很大程度上取决于激光发射系统的总体性能,即发射激光脉冲质量。而光脉冲质量取决于激光器脉冲驱动电路的质量。因此,半导体激光器驱动电路设计是激光引信探测中十分重要的关键技术。 图1 驱动电路模型 放电,从而达到驱动激光器的目的。 由于激光引信为达到一定的探测性能,通常会要求激光脉冲脉宽窄,上升沿快,一般都是十几纳秒甚至几纳秒的时间。因此在选择开关器件时要求器件开关速度快。同时,由于激光器阈值电流、工作电流大 [1] 1 脉冲半导体激光器驱动电路模型分析 激光器驱动电路一般由时序产生电路、激励脉冲产生电路、开关器件和充电元件几个部分组成,如图1。 图1中,时序产生电路生成驱动所需时序信号,一般为周期信号。脉冲产生电路以时序信号为输入条件。根据其上升或下降沿生成能够打开开关器件的正激励脉冲或负激励脉冲。开关器件大体有三种选择:双极型高频大功率晶体管、晶体闸流管电路和场效应管。当激励脉冲到来时,开关器件导通,

半导体激光束准直系统的研究

第20卷 第1期 1999年 应 用 光 学 V ol.20,No.1 1999半导体激光束准直系统的研究X 王秀琳 黄文财 郭福源 (福建师范大学激光研究所,福州,350007) 【摘要】 根据二维高斯光束的传输与变换特性,从波像差理论出发,合理设计半导体激光束的准直物镜,并利用几何光学方法推导出正确的校正像散及旋转对称化变换的计算公式。 关键词 半导体激光束 准直 校正像散 旋转对称化 引言 随着半导体激光器技术的不断发展,半导体激光器已逐步取代He-Ne激光器,广泛应用于各个领域。但由于半导体激光器输出光束为像散椭圆高斯光束,必须经过校正像散后获得共腰椭圆高斯光束才可应用。在科研、准直等应用领域中,要求光束为圆光斑高斯光束,才能取代He-Ne激光器。因此,必须对校正像散后的光束进行旋转对称化。本文通过详细分析半导体激光束束内功率的分布特性,确定准直物镜的数值孔径,合理设计准直物镜的光学结构及参数,利用几何光学方法正确推导出实现像散校正的柱面透镜的焦距计算公式,并从理论上分析了柱面透镜位于准直物镜之前和之后两种校正像散方案的优缺点。最后采用结构简单的棱镜实现椭圆光斑旋转对称化。 1 半导体激光束准直系统 1.1 半导体激光束经圆形光孔的耦合效率 半导体激光器输出的光束为像散椭圆高斯光束,如图1所示。弧矢平面的曲线被旋转90°后绘制于子午平面上,其光强分布为 I=I0ex p -2 x2 X2s+ y2 X2 t (1)式中,I0为光阑面上光束中心点强度;X s、X t 分别为弧矢和子午方向上光束半径。 图1 半导体激光束特性示意图 由(1)式可知,半导体激光束半强度处的全宽度角H1/2与远场发散角H0=K/P X0的关系如下: H0=H1/2/2ln2(2) 在高斯光束传播过程,远场区X=Z?H0,则子午和弧矢方向上光束半径之比X t/X s 可由子午和弧矢方向上半强度处全宽度角之 1 X福建省自然科学基金资助项目

半导体激光器设计

半导体激光器设计 摘要:半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围宽,相干性增强,使半导体激光器开启了激光应用发展的新纪元。 关键词:受激辐射;光场;同质结;异质结;大功率半导体激光器 、八— 0刖言 半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD), 是20世纪60年代发展起来的一种激光器。半导体激光器的工作物质有几十种,例如砷化傢(GaAs),硫化镉(CdS)等,激励方式主要有电注入式,光泵式和高能电子束激励式三种。半导体激光器从最初的低温(77K)下运转发展到室温下连续工作;从同质结发展成单异质结双异质结,量子阱(单,多量子阱)等多种形式。半导体激光器因其波长的扩展,高功率激光阵列的出现以及可兼容的光纤导光和激光能量参数微机控制的出现而迅速发展.半导体激 光器的体积小,重量轻,成本低,波长可选择,其应用遍布临床,加工制造,军事,其中尤以大功率半导体激光器方面取得的进展最为突出。 1半导体激光器的工作原理 1.1激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件:(1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激

十激光光学系统演示型

[实验十] 激光光学系统(演示型实验) 一、实验目的 1.了解激光器的种类 2.掌握激光器的发光原理 二、实验内容 掌握实验步骤,观察各种激光器产生的光斑现象。 三、实验仪器 CO 2 激光器、半导体甭浦激光器、Ar+激光器、He-Ne激光器、Nd:YAG激光器、导轨、小孔光阑、调节架、针孔(25μ)、显微物镜、透镜及夹持器 四、实验原理 具有代表性的典型激光器主要有气体激光器、固体激光器、半导体激光器、染料激光器等。气体激光器是以气体或蒸气作为工作物质的激光器。它是利用气体原子、分子或离子的分离能级进行工作的。气体激光器常用的泵浦方法是电激励,即令足够大的电流通过气体介质来完成泵浦的。由于气体的光学均匀性较好,较之固体激光器和半导体激光器其输出光束的质量(如单色性、相干性等)也较好。气体激光器中又包括由原子激光器、离子激光器和分子激光器。原子激光器是利用气体或蒸气形式下的中性原子作为工作物质,常见的有He-Ne激光器;离子激光器是利用气体离子激发态之间的跃迁来产生激光的一种气体激光器,常见的有Ar+激光器;分子激光器是利用未电离的气体份子作为工作物质的一种气体 激光器,如:CO 2 激光器。 固体激光器的基本组成包括工作物质、泵浦系统、谐振腔、冷却与滤光系统四部分。其中,工作物质是激光器的核心,固体工作物质是把金属离子掺入基质而形成的,发光粒子就是工作物质中的金属离子(称为激活离子),工作物质的物理、化学性能主要决定于基质材料,而它的光谱特性则主要由激活离子的能级结 构所决定。常见的有掺钕钇铝石榴石(Nd3+:YAG)激光器 ,这是在基质Y 3Al 5 O 12 (YAG) 中掺入钕离子(Nd3+),部分取代YAG中的钇离子(Y3+)而成为Nd3+:YAG。另外还有半导体激光泵浦激光器也属于固体激光器。 半导体激光器是以半导体材料作为激光工作物质的激光器,它具有超小型、高效率、结构简单、价格便宜以及可以高速工作等一系列优点。 每一种激光器的发光机理各不相同,具体问题可具体分析。

课程设计半导体激光器

郑州轻工业学院 课程设计任务书 题目半导体激光器原理及应用 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 完成期限: 指导教师签名: 课程负责人签名: 年月日

郑州轻工业学院半导体激光器课程设计 郑州轻工业学院 课程设计说明书题目:半导体激光器原理及应用 姓名:王森 院(系):技术物理系 专业班级:电子科学与技术09-1 学号:540911010132 指导教师:运高谦 成绩: 时间:年月日至年月日 I

郑州轻工业学院半导体激光器课程设计 摘要 本文主要讲的是半导体激光器的发展历史、工作原理及应用。半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有合适的光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,首先产生激光的具体过程有许多特殊之处,其次所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围变宽,相干性增强,可以说是半导体激光器开启了激光应用发展的新纪元。 关键词激光技术;半导体激光器;受激辐射;光场 II

郑州轻工业学院半导体激光器课程设计 Abstract This article is mainly about the history of the development of semiconductor lasers, working principle and applications. Semiconductor lasers produce laser mechanism, which must be established between the specific laser energy state population inversion, and a suitable optical resonator. As the physical structure of the semiconductor material in which electron motion specificity and particularity, while the specific process of producing laser has many special features, the other produced by the laser beam has a unique advantage to make it widely used in all sectors of society . From homo-junction to the heterojunction, the power from the information type to type, is also becoming increasingly apparent superiority of the laser, spectral range, coherence enhanced semiconductor lasers opened a new era in the development of laser applications. Keywords: Laser technique;Semiconductor lasers;Stimulated emission;Optical field III

激光光学系统演示型

[实验十一] 傅立叶光学系统(演示型实验) 一、实验目的 1.了解傅立叶变换理论; 2.掌握联合变换相关器的使用方法 二、实验内容 掌握仪器的开关顺序,观测通过装置所产生的实验结果。 三、实验装置 光电混合联合变换相关器、电脑控制系统 四、实验原理 1.傅里叶变换 傅立叶变换形式如下: ?∞∞--= dx e x g f G fx j π2)()( (1) ?∞ ∞-=df e f G x g fx j π2)()( (2) 这两个积分即傅立叶积分。)(f G 称为)(x g 的傅立叶变换或频谱。若)(x g 表示某空间域的物理量,)(f G 则是该物理量在频率域的表示形式,)(x g 和)(f G 构成傅立叶变换对。 二维傅立叶变换是一维傅立叶变换的推广: dxdy y f x f j y x g f f G y x y x )(2exp[),(),(+-=∞ ∞ -??π (3) y x y x y x df df y f x f j f f G y x g )](2exp[),(),(+=∞ ∞-??π (4) 2.联合变换相关器原理 联合变换相关的主要特征是参考图像与目标图像同时输入光学运算系统,在第一个傅立叶变换平面上记录联合变换功率谱,联合变换功率谱经过第二次傅立叶变换后,获得一对相关输出。 将准直的相干单位振幅光入射到物体),(y x w 上,物体被写入光空间调制器,设输入图像为: ),(),(),(y x h y x t y x w += (5) (),(),(y x h y x t ≠) 其中),(y x t 是目标图像,),(y x h 是复杂背景图像,另设参考模板为),(y x r ,这样,通过目标),(y x t 与参考模板),(y x r 的光学相关得到的相关峰函数t r ?或者r t ?,

基于ZEMAX的半导体激光准直仿真设计

引言 半导体激光器( laser diode, LD) 以其体积小效率高易于集成可高速直接调制等优点,被广泛用于激光雷达激光测量激光照明激光制导激光打印以及高密度信息记录与读取等领域。但是半导体激光器发射的激光光束具有在垂直和平行于结平面两个方向发散角不同光斑形状不规则( 如一般是椭圆型或长条型) 存在固有像散等缺点,这使得半导体激光3 维扫描成像雷达的测程测距精度大大受影响,为了适用于远距离空间激光测距,必须对半导体激光发散光束进行准直。作者主要采用椭圆面柱透镜,对905nm 的半导体激光做准直整形处理,使得激光的发散角尽可能的小,接收物体表面的激光光斑尽可能的小,而且规则,从而达到提高测程和测距精度的目的。 1.理论分析及计算 采用 OSARM 公司的型号为 SPL LL90 _3 的半导体激光器查看使用说明书得 到: SPL LL90_3 型号的半导体激光器在弧矢( 平行于结平面) 方向上的发散角 = 15°,在子午( 垂直于结平面) 方向上的发散角= 30°,整个激光器的峰值功率为70W半导体激光器有源区只有约 0. 1 m ~ 0. 2 m 的厚度,可以近似看作沿慢轴方向的线光源根据半导体激光束两个方向的发散角不同的特点,采用两个互相垂直的柱透镜组分别对两个方向的光束进行准直,选用的两个柱面镜面型为椭圆面如图1 所示,半导体激光器发出的子午光线先经过母线平行于激光束慢轴方向的柱透镜后变成准平行光束( 平行光束不可能实现) 由于第 2 个柱透镜 M2对于子午光线的发散角无影响,可看作平板玻璃图2 显示弧矢光线经过第1 个透镜 M1 时,光束会发生偏移,但不会影响光束的发散角,在经过第 2 个柱透镜时,弧矢光也同样得到准直,输出准平行光。

半导体激光器的设计

半导体激光器设计 半导体激光器产生激光的机理,即必须建立特定激光能态间的粒 子数反转,并有光学谐振腔。由于半导体材料物质结构的特异性和 其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广 泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈 发明显,光谱范围宽, 相干性增强,使半导体激光器开启了激光应用 发展的新纪元。 1半导体激光器的工作原理 激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具 备三个基本条件: (1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在 半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处 在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠 给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子 数反转状态的大量电子与空穴复合时,便产生受激发射作用。 (2)要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内 得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自

然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜.对F—p腔 (法布里一珀罗腔)半导体激 光器可以很方便地利用晶体的与P—n结平面相垂直的自然解理面 一[110]面构成F—P腔。 (3)为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场.这就必须要有足够强的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即要求必须满足一定的电流阀值条件.当激光器达到阀值时,具有特定波长的光就能在腔内谐振并被放大,最后形成激光而连续地输出. 可见在半导体激光器中,电子和空穴的偶极子跃迁是基本的光发射和光放大过程。 1.2 双异质结基本结构 将有源层夹在同时具有宽带隙和低折射率的两种半导体材料之间,以便在垂直于结平面的方向(横向)上有效地限制载流子和光子。用此结构于1970年实现了GaAlAs/GaAs激射波长为0.89 μm 的半导体激光器在室温下能连续工作。 图表示出双异质结激光器的结构示意图和相应的能带图在正向 偏压下

基于半导体激光光纤组件的激光准直仪

基于半导体激光光纤组件的激光准直仪 冯其波 刘依真 张斌 崔建英 (北京交通大学理学院 北京 100044) 摘要 本文介绍一种基于半导体激光光纤组件的激光准直仪,讨论了使用角锥棱镜作为活动靶镜的测量原理,给出了准直仪的软硬件设计方案。通过各种实验表明,本准直仪可直接应用于工业测量。 关键词 激光准直,半导体激光光纤组件,直线度测量,四象限光电接收器 中文分类号:TN247 A Simple Laser Collimator Based on A Single-mode Fiber-Coupled Laser Module Feng Qibo Liu Yizhen Zhang Bin Cui Jianying (School of Science, Northern Jiaotong University, Beijing 100044) Abstract A simple laser collimation system based on a single-mode fiber-coupled laser module was put forward, principle of using a corner retroreflector as the moving target in the laser collimator was discussed in this paper. The hardware and software design of the system was also discussed. Comparison results of straightness measurement between our laser collimator and a dual frequency laser interferometer and other experimental results were given, and these experimental results show that the laser collimator can be used for industrial applications. Key words Laser collimator, Sing-mode fiber-coupled laser module, Straightness measurement, Quadrant photo-diode detector 1 引 言 目前国内外出现了许多激光准直方法和装置[1],但这些激光准直装置存在如下不足:⑴.测量靶镜带有跟随光电接收器的电缆,测量不方便;⑵.激光准直头大多采用He-Ne激光器,造成测量头体积大;⑶.受诸多因素影响,造成准直精度不高。采用单模光纤和He-Ne 激光器的准直装置,对减少激光器本身的漂移和提高激光准直精度有好处[2],但采用分离元件来耦合激光器和光纤,造成出射光强的不稳定。近年来,出现了采用半导体激光准直的方法[3]-[4],可减少激光测量头的体积,但同样采用分离元件耦合激光与光纤,造成激光光束稳定性差。本论文提出一种简单的基于半导体激光光纤组件的准直方法,同时通过角锥棱镜将光电接收器固定在激光发射头上,实现了测量靶镜上无电缆连接,使得测量装置具有体积小、测量方便、测量稳定性高等优点,可在工业测量中得到普遍使用。

激光扩束系统设计

光学设计 Optical design 题目名称:准直扩束系统的设计 学校:长春理工大学 学院:光电工程学院 专业:光电信息工程 学号: 100212338 姓名:魏松岩 2014.01.08

目录 第一章绪论 (1) 1.1引言 (1) 1.2激光束及其准直扩束的原理 (1) 1.2.1激光高斯光束的特性 1.2.2激光束准直扩束的原理 1.3折射型扩束器基本结构 (4) 1.3.1开普勒扩束镜 1.3.2伽利略扩束镜 第二章光学设计软件ZEMAX概述 (5) 第三章激光准直扩束系统设计 (9) 3.1 准直扩束系统的参数确定 (9) 3.2确定激光扩束系统的初始结构 (9) 3.3 ZEMAX的优化 (11)

第一章绪论 1.1引言 激光扩束系统是激光干涉仪、激光测距仪、激光雷达等诸多仪器设备的重要组成部分,其光学系统多采用通过倒置的望远系统,来实现对激光的扩束,其主要作用是压缩激光束的空间发散角,使扩束后的激光束口径满足其他系统的要求。 激光器发出的光束直径很细小,通常只有零点几到几毫米,激光束的这些特性在某些方面是很有用的。然而在一些应用领域中需要的确是宽光束,如激光全息、光信息处理、激光照明、激光测距等。例如在激光干涉仪的应用中,它要照射比激光束口径大得多的被测物体,然后通过光束的干涉来实现测量。又如在激光的全息应用中,它要照射比激光束口径大得多的全息记录介质,以实现信息的记录和重现。因此需要使用激光扩束系统来实现激光束的准直扩束。 1.2激光束及其准直扩束的原理 1.2.1激光高斯光束的特性 激光束的性质是由激光共振腔的几何形状和尺寸决定的,激光束具有特殊的结构,光束呈双曲线形,光束的截面上最小处称束腰(见图2.1),其半径为 其中,b为共振腔的共振参数。共振腔的共焦参数b可由下式求得: 其中,R为共振腔球面镜的曲率半径,d为共振腔二镜面之间的距离。 1.2.2激光束准直扩束的原理 最通用的扩束镜起源于伽利略望远镜,通常包括一个输入负透镜和一个输出正透镜。输入镜将一个虚焦点光束传送给输出镜,两个透镜是虚共焦结构。一般小于20倍的扩束镜都用该原理制造,因为它简单、体积小、价格也低。尽可能

激光器QBH接头及准直系统(内容清晰)

上图为IPG高功率光纤激光器输出端,OBH。OBH的型号为国际标准型号,由于其本身具备一些电气特性,并且输出的激光为发散光,故需要与准直系统配套使用,把QBH插入准直系统即可,所有的准直系统制造商都有IPG的QBH的型号,结构,及电气原理。国内厂商还不具备制造与QBH连接的准直系统的能力。我们的客户也不需要清楚QBH的核心构 造,只需知道QBH是比较方便插拔的一种光纤输出端子就好。

上图为准直器,collimator。此准直器为IPG总部提供给我们北京公司的,也是IPG外购的,IPG自己并不生产准直器。大部分情况下准直系统都是和切割头或焊接头一起配送给客户的,切割头或焊接头制造商都具备生产准直器的能力,而且不同生产厂商有各自的设计理念,客户只需要向制造商提出要求,比如:我希望准直后的光斑直径是多少就可以,至于细节问题,这些制造商也不会提供。 这是把QBH插入到collimator中,它的输出光是平行光,客户可以根据用途要求供应商提供相应的准直器。用此准直器输出的光斑大小大约为10毫米。 我们根据这个准直器自己做了个简易切割头,这个切割头极其简单,故不适合工业应用。

这是Lasermech生产的切割头。带高度传感装置,自带电机。 此部分为准直系统。

好的,这款为专门为光纤激光准备的切割头。 这部分是与QBH连接的准直系统。

综上所述,客户可根据不同需求(对光斑大小的要求不同)寻找切割头或焊接头生产厂家,向这些生产厂家提出要求,至于QBH的尺寸则不需要过多了解,只需知道QBH是标准接头就好。总之准直系统必须要采购(个人意见)。我们可以提供现有的一套供实验用,但需要经过公司领导同意,而且也未必符合客户的需求。

激光准直技术分类

1.2激光准直技术分类 按检测原理激光准直技术大致可分为三个类型。 (一)振幅(光强)测量型 利用激光本身的方向性,以激光光强分布中心作为准直基线,是这类准直方法的最初型式。当用位敏光电器件或CCD作为探测器时-可同时实现二维测量,这是振幅测量型激光准直仪的优点。然而如前面所述,由于激光漂移、光线弯曲、大气扰动以及光束横截面内光强分布的不对称性的影响,直接利用激光本身作准直基线,稳定性最好也只能达到5 10 量级。为提高准直精度,必须有效地克服上述影响,于是出现了多种设计方案,如菲涅尔波带法、零级条纹干涉法、零级衍射同心圆法、不对称位相板法 ]、海定格非定位干涉条纹法 ]、对称双光束法、单模光纤法等。这些方法在克服激光漂移及光强不对称分布的影响方面起到了好的效果-然而对大气扰动的影响仍无法解决 1、 Fresnel波带片法 激光束通过Fresnel波带片形成十字形的能量分布。以十字线的中心作为准直基线,来克服光强分布不对称的影响,但因为波带片有确定的焦距,不可能在很长距离上都得到清晰的十字像。 2、位相板法 采用二维非对称位相板,它的四个象限上每两个相邻的象限具有二相位差,所形成的直边衍射图是亮背景上的一个暗十字。这种方法很适合于对中控制,但由于衍射的作用,测量范围不可能太大。 3、双光束准直法 两光束是由一个空间棱镜分出的。当激光器的出射光束漂移时,经过棱镜之后的两光束漂移方向相反。采用两光束的平分线作为准直基线可以克服激光器的漂移影响,但该系统对双光束的平行性要求较高,在长距离范围内不易实现。 4、反馈控制法 利用闭环反馈技术,实时修正各种因素而致的漂移误差,来提高准线精度,进而实现高精度的激光准直测量。 反馈控制法准直系统在出现光束漂移时,反馈系统的接收装置(控制用探测器)接收到该信号。并将其转换为相应的电信号,此信号再经驱动放大,作用于驱动机构(压电陶瓷),来对激光束的方向进行二维调整,从而实现对光束漂移量的实时修正,提高准线的精度。该系统经实验测试表明:准直距离为5m,相对精度为

激光准直仪操作规程

激光准直仪操作规 程

激光准直仪操作规程 激光准直测量系统由半导体激光器、光学分光及转向系统、光电接收系统及液晶显示模块组成。激光光束经转向系统后出射两条相互平行的基准光束,作为导轨的安装检测基准。该系统利用二维PSD作为光电接收器件,采用液晶显示模块显示导轨偏差,可快速、直接、准确地测量导轨安装的偏移量,从而提高导轨安装的精度和速度。实验结果显示测量系统在X,Y方向上的标准偏差分别为:0.002mm,0.005mm。 1、主要参数 2、主机由半导体激光器、空间位相调制器、壳体、底座、和电源所组成。 3、激光准直仪的特点与工作原理 1)仪器的特点是采用了空间位相调制器。激光束在任意测距上,其横截面均为一组良好的、红黑反差很大的同心圆环,中心光斑亮且小,利于定位。而且在不同测距进行测量时是不用调焦的,实现了无调焦运行差。

中心光斑直径随着工作距离的增大而增大,符合下列参数: L=2.5米时?0.1mm L=20米时?1.2mm L=50米时?2.5mm 2)将仪器固定在主机的回转轴上后用百分表测量仪器端部的测环在盘车处于不同位置时的差值,经过调整仪器底座上的调整螺钉,使其差值越来越小,只要主机轴系配合良好,能够调至±0.02~0.03mm。然后利用置于远离主机15米左右的平面反射镜,将仪器射出的激光束反射至位于仪器附近的测微光靶。在主机盘车时调整仪器壳体上的四只调整螺钉,(必要时适当调整反射镜的角度),使反射回来的激光束画的圆的半径越来越小,最后调至±0.1mm以内为止,此时应再次检查盘车360°时,百分表所显示波动值的范围和测微光靶的测量差值,准确无误时即可用此光轴代替主机的机械轴。 3)二维测微光靶 二维测微光靶是用来记录与测量主机盘车时光轴的变化量。 二维测微光靶是由光靶和在X、Y两个自由度上测微的百分表所组成,光靶本身带有卡具和折射棱镜,为安装和读数提供了方便条件。测微光靶的工作范围是±4.5mm。测量精度为±0.01mm。4)平面反射镜 平面反射镜是用来反射激光束的附件,本身带有卡具,用户能够自行设计固定架,然后将平面反射镜固定在它的上面。

激光光束实时监测与自动准直系统设计

第28卷 第8期光 学 学 报 Vol.28,No.82008年8月 ACTA OP TICA SINICA August ,2008 文章编号:025322239(2008)0821590206 激光光束实时监测与自动准直系统设计 尉鹏飞1,2 刘 军1 李晓芳1 陈晓伟1 刘 鹏1 李儒新1 徐至展1 (1中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海201800; 2 中国科学院研究生院,北京100049) 摘要 设计了一个激光光斑实时监测与光路自动准直装置,能够实时监测激光光斑并自动准直激光输出方向。基于透镜成像原理,使用CCD 探测器获得光斑的二维成像,并根据两点确定一条直线原理和使用压电陶瓷电动调整架实现光路自动准直;监测控制程序采用虚拟仪器开发软件Lab View 编写,可以实时监测激光光斑模式与光斑位置抖动情况,并进行反馈控制。经测试,设计装置的调整精度达0.5μrad ,反馈控制频率约1Hz ,完全可降低或消除抖动周期在1s 以上的光斑飘移。 关键词 光学设计;实时监测;自动准直;程控 中图分类号 TP242;TP273.2 文献标识码 A doi :10.3788/AOS20082808.1590 Des i g n of L as e r B ea m Real 2Ti me Moni t ori n g a n d A dap t i ve Colli m a t i o n S ys t e m Wei Pengfei 1,2 Liu J un 1 Li Xiaofang 1 Chen Xiaowei 1 Liu Peng 1 Li Ruxin 1 Xu Zhizhan 1 1 St a te Key L abor a tor y of High Fiel d L aser Physics ,S ha nghai Instit ute of Op tics a n d Fi ne Mecha nics , Chi nese Aca dem y of sciences ,S ha nghai 201800,Chi n a 2 Gr a d ua te U niversit y of Chi nese Aca dem y of Scie nces ,Beiji ng 100049,Chi n a Abs t r act A new device is developed for real 2time monitoring of laser beam quality and adaptive collimating of laser beam direction.Based on lens imaging p rinciple ,the device is composed of one CCD camera for two 2dimensional imaging of laser spot and two piezoelect rically drived mirrors to correct laser beam shift by the p rinciple of two points exactly defining a line in space.The adaptive cont rol is performed through a home 2made comp uter p rogram using Lab View software.The system can collimate the beam direction in a resolution of 0.5μrad and 1Hz adjusting f requency ,and correct the laser spot shift of period above 1s. Key w or ds otpical system design ;real 2time monitoring ;adaptive collimation ;p rogram cont rol 收稿日期:2007211212;收到修改稿日期:2008203227 基金项目:中国科学院知识创新工程重要方向性项目(KGCX 2YW 241722)、国家基金重点项目(2006CB806001)和上海市浦江人才计划项目(07pj14091)资助课题。 作者简介:尉鹏飞(1981-),男,博士研究生,主要从事原子分子与激光强场相互作用等方面的研究。 E 2mail :personinjoy @https://www.doczj.com/doc/b916720721.html, 导师简介:李儒新(1969-),男,博士,博士生导师,从事强激光与物质相互作用等方面的研究。 E 2mail :ruxinli @https://www.doczj.com/doc/b916720721.html, 1 引 言 在大型高功率激光核聚变装置中,如美国诺瓦 装置(Nova )、日本激光212(GE KKO 212),我国的“神光2Ⅲ”装置等,为了确保振荡器发出的激光束能够稳定、精确地穿过预放大器、主放大器、倍频器、靶室,并精确地照射到微型靶丸上,均配置了光路自动准直系统。但在中小型高重复频率的激光装置中, 如超快飞秒激光装置,自动准直系统并不多见,但光束的空间指向稳定性对超快激光物理实验研究非常 重要,如空心光纤脉冲自压缩[1,2]、载波包络相位稳定[2,3]、超快抽运探测[4]等要求光束的空间指向在较长时间内保持稳定。然而由于环境温度变化引起镜架的热胀冷缩、实验仪器震动引起实验平台的震动以及空气的扰动等因素都会使激光光束的方向发生

相关主题
文本预览
相关文档 最新文档