光学系统简介
- 格式:ppt
- 大小:12.82 MB
- 文档页数:44
投影機光學系統簡介第一章:前言如圖中所示,為一液晶投影器顯示系統之簡圖。
在此中,我們將其分為三個部分,1.照明系統、2.投影顯示系統、3.量測在照明系統部份中,我們要討論的是呈像與非呈像光學,另外,也會探討極化光學的部分。
在第二個部份中,要讓學員了解到液晶的工作原理和鏡頭呈像的工作原理。
另外在鏡頭呈像出去到屏幕的上方,我們要了解到一些繞射光學的概念。
第三,在量測部分,學員必須具備光度學與色度學的基本概念,才可以分析出呈像品質的好壞。
2-1 依顯示元件分類接下來在第一部份中,我們就依照顯示元件,將其分為LCD,LCOS 和DLP。
如圖中顯示是LCD 的實物圖,以及其之對應投影機的光機架構示意圖。
LCD為Liquid Crystal Display的簡稱,為穿透式之面板,這種微型面板技術開發最早,迄今已經有相當成熟的產品,主要有SHARP,EPSON,SONY三大廠牌,其中SHARP的3.6吋與6.4吋LCD面板,以及SONY的1.6吋LCD面板主要是搭配單片光機設計,而三片式光機引擎則採用1.8吋、1.3吋、0.9吋、0.7吋、0.5吋等LCD為其面板。
而此類型之光機面板則主樣有SONY、或EPSON兩家廠商所供應。
如圖中所示是LCOS之實物圖,以及他所對應之投影機光機架構示意圖,LCOS為Liquid Crystal on Silicon之簡稱,不同於穿透式之面板,其為反射式之面板。
在看好未來背投影是電視以及液晶投影之市場發展潛力下,國內廠商繼大使吋TFT之後,已經注意到液晶投影器關鍵零組件、反射式單精細,也就是LCOS面板的開發。
而由於LCD與DLP僅有少數幾家日本以及美國公司能夠供應,是屬於寡占的市場,因此這種使用半導體為機版的LCOS,史的台灣在發展上有著較大之優勢,也因此吸引較多的廠商來投注開發。
如圖中所示為DMD之實物圖,以及其以及他所對應之投影機光機架構示意圖。
DMD為Digital Micro-mirror Device 之簡稱,是由美國德州儀器TI,其利用微積電,mans之製程方式所研發的微型顯示器,DMD面板加上TI提供的驅動電路板,統稱為DLP,也就是所謂的Digital Light Process 技術。
单个折射球面(或反射球面)单薄透镜对细小平面以细光束成完善像实际光学系统对具有一定大小的物(视场)以宽光束(孔径)一个光学系统必须由若干元件组成,经反复精密计算,使其成像接近完善。
开始时,首先将系统瞧成就是理想的§4-1理想光学系统及其原始定义[返回本章要点]理想光学系统——像与物就是完全相似的物空间像空间点——>共轭点直线——>共轭直线直线上的点——>共轭直线上的共轭点理想光学系统理论——高斯光学§4-2理想光学系统的基点与基面一、焦点F,F’与焦平面[返回本章要点]物方无穷远A F’: 后焦点,像方焦点轴上物点 F A’( 处)F:前焦点,物方焦点A→ F’:物方无穷远垂轴平面的共轭平面为通过 F’的垂轴平面(后焦平面,像方焦面)F’→A:像方无穷远垂轴平面的共轭平面为物方过 F 的垂轴平面(前焦平面,物方焦面)注意:这里F与F’不为共轭点,A与A’也不为共轭点二、主点H,H’与主平面[返回本章要点]延长TE1,FS1交于QH,H’亦为一对共轭点延长SkR,EkF’交于Q’点H,H'——物(像)方主点,前(后)主点,QH,Q'H'——物(像)方主面,前(后)主面,且HQ与H'Q'共轭,β = 1,物、像方主面就是一对β=1的物像共轭面光学系统总包含一对主点(主平面),一对焦点(焦平面),前者就是一对共轭点(面),后者不就是像方焦距,后焦距物方焦距,前焦距只要一对主点、一对焦点的相对位置一定,一个光学系统的理想模型就定了。
单个折射球面、球面镜与薄透镜都相当于两个主面重合在一起的情况。
单个折射球面球面镜薄透镜H,H’,F,F’四点称为光学系统的基点三、节点与节平面——γ= 1的一对共轭点[返回本章要点]由全等得同理当光学系统的f'=-f时系统的节点与主点重合§4-3物像位置与三种放大率、两种焦距与光焦度一、理想光学系统的物像位置关系与横向放大率β[返回本章要点]1、以 F,F’为原点牛顿公式2、以 H,H’为原点由代入牛顿公式得高斯公式此时由高斯公式后面会瞧到单个折射球面公式具有普遍性当n'= n 时,化为与单个透镜物像公式相同,这时β与l,l'有关。
光学系统的解释和概念光学系统是指由光源、光学元件和检测器等组成的系统,用于控制、操控和测量光的性质和行为。
光学系统的核心概念是光的传播、折射、反射、干涉、衍射和散射等现象,以及光场的性质和光学元件的设计与制造。
光学系统是研究光的传播和转换行为的重要工具,广泛应用于光学显微镜、望远镜、光纤通信、激光、光电子器件等各个领域。
在物理学、工程学、生物学、医学以及材料科学等领域中,光学系统被广泛应用于研究、开发和应用。
光学系统的主要组成部分包括光源、光学元件和检测器。
光源是光学系统的能量源,常见的光源包括天然光源(如太阳、火焰等)和人工光源(如白炽灯、荧光灯、激光器等)。
光源的稳定性和强度决定了光学系统的稳定性和检测灵敏度。
光学元件是对光进行控制和操控的器件,包括光学透镜、凸透镜、凹透镜、棱镜、反射镜等。
光学元件能够通过透射、反射、干涉、衍射等方式改变光的方向、形状和能量分布。
光学元件的种类和性质决定了光学系统的功能和性能。
检测器是光学系统中用于接收和测量光的器件,常见的检测器有光电二极管、光电倍增管、光电二极管阵列等。
检测器能够将光信号转换为电信号,并通过信号处理技术得到有关光的信息。
光学系统的行为和性质可以使用光学理论来描述和解释。
光学理论是研究光的传播、传输、转换和相互作用规律的理论体系,包括几何光学、物理光学和量子光学等。
几何光学主要研究近似光线传播的规律和光学元件的设计和使用;物理光学主要研究光的波动性质和干涉、衍射等现象;量子光学主要研究光的微粒性质和激光等应用。
光学系统的设计和优化是将光学理论应用于实际问题的关键步骤。
在设计光学系统时,需要考虑光源的特性、光学元件的种类和性质、光学系统的结构和布局等因素,以实现所需的光学功能和性能。
通过光学设计软件和光学测试设备,可以对光学系统进行模拟、优化和验证。
光学系统在现代科学技术中发挥着重要作用。
在生物医学领域,光学系统被用于显微镜、光谱分析等应用,用于观察和研究生物体的结构和功能;在通信领域,光学系统被用于光纤通信,实现大容量、高速度的信息传输;在材料科学领域,光学系统被用于材料分析和制备,用于研究材料的光学性质和应用;在激光技术领域,光学系统被用于激光器和激光加工设备,实现激光束的控制和操控。
眼睛系统视网膜上成倒像,由于视神经系统内部作用,我们感觉还是正像。
主平面H 和H’距离角膜顶点后约1.3mm 和1.6mm 眼睛的焦距约为 f =-17mm ,f’ =23mm ,屈光度为+43D 视场可达150°,清晰视场只有视轴周围的6 ° ~8 °明视距离是正常眼在正常照明(约50勒克斯)下最方便和最习惯的工作距离,等于250 mm 。
(1)视度调节当肌肉完全放松时,眼睛所能看清的最远的点称为远点,其相应的距离称为远点距离,以 lr 表示,单位 m 当肌肉在最紧张时,眼睛所能看清的最近的点称为近点,其相应的距离称为近点距离,以 lp 表示,单位 m用lr 的倒数和lp 的倒数之差来表示人眼的视度调节能力lr (单位为m )的倒数表示近视或远视的程度,称为视度,单位为屈光度(D ,Dioptre ),通常医院把 1D 称作 100度. 近视/远视眼镜的作用都是将无限远的物点与视网膜形成共轭.近视/远视只和远点距离有关,和近点距离无关。
(2)眼睛的分辨率人眼刚能将两点分开的视角称为眼睛的极限分辨角或视角鉴别率。
在没有调节的放松状态下,眼睛的极限分辨角为1’,人眼的分辨能力与极限分辨角成反比关系。
(3)人眼的对准精度对准精度一般用角度值来表示,即两线宽的几何中心线对人眼的张角小于某一角度值α时,虽然还存在着不重合,但眼睛认为已经是完全重合,这时α角度值即为人眼对准精度。
对准精度和极限分辨角是两个概念,又有一定联系,经验证明,人眼的最高对准精度约为极限分辨角的1/6~1/10(4)眼睛的景深当眼睛调焦在某一对准平面时,眼睛不必调节就能同时看清对准平面前和后某一距离的物体,称作眼睛的景深。
11r pA R P l l =-=-21221212,P PP P P P pD pD D p D p p p p D p p p p p p D p εεεεεε==+-=-=-=∆=+-∆(5)空间深度感觉眼睛在观察物体时,能够产生远近的感觉,被称为“空间深度感觉”。
近代光学系统设计概论光学系统设计是光学工程中的重要领域,涵盖了光学元件的选择、光学系统的布局和参数优化等方面。
近代光学系统设计概论介绍了光学系统设计的基本原理和方法,旨在帮助读者了解光学系统设计的基本概念和技术,为实际应用提供指导。
一、光学系统设计的基本原理光学系统设计是利用光学原理和光学元件来实现特定功能的系统。
光学系统的设计过程包括确定系统的需求和约束条件、选择合适的光学元件、确定光学元件的参数以及优化整个系统的性能等步骤。
在设计过程中,需要考虑光学元件的色散、畸变、吸收、散射等因素,以及系统的像差、分辨率、透过率、干涉等性能指标。
二、光学系统设计的方法1. 光学系统布局设计:根据系统需求和约束条件,确定光学元件的相对位置和光路。
光学系统的布局设计需要考虑光学元件的尺寸、形状、材料等因素,以及系统的紧凑性、稳定性和可调性等要求。
2. 光学元件选择:根据系统的功能需求和性能指标,选择合适的光学元件。
常见的光学元件包括透镜、棱镜、光栅、滤波器等。
选择光学元件时需要考虑其色散特性、透过率、反射率、损耗等因素,以及成本和制造难度等因素。
3. 光学元件参数确定:确定光学元件的尺寸、曲率、折射率等参数。
光学元件的参数对系统的性能有重要影响,需要通过计算和模拟来确定最佳参数。
常用的方法包括光学设计软件、光学模拟软件等。
4. 系统性能优化:通过调整光学元件的参数和布局来优化系统的性能。
系统性能的优化可以通过改善像差、提高分辨率、增加透过率等方式来实现。
优化过程中需要考虑多个指标之间的权衡和平衡。
三、光学系统设计的应用领域光学系统设计广泛应用于各个领域,包括光学仪器、光通信、光储存、光刻、光学测量等。
例如,在光学仪器中,光学系统的设计是实现高清晰度、大视场、低畸变等性能的关键;在光通信中,光学系统的设计是实现高速传输、低衰减等要求的关键;在光刻中,光学系统的设计是实现高分辨率、高精度的关键。
四、光学系统设计的挑战和发展趋势随着科技的不断进步,光学系统设计也面临着新的挑战和机遇。