用MATLAB做线性代数实验
- 格式:pdf
- 大小:752.25 KB
- 文档页数:24
实验三使用MATLAB解决线性代数问题学院:数计学院班级:1003班姓名:黄晓丹学号:1051020144实验目的:学习MATLAB有关线性代数运算的指令,主要学习运用MATLAB解决矩阵除法,线性方程组的通解,矩阵相似对角化问题,以及解决投入产出分析等应用问题。
实验内容:矩阵转置:A=[1 2;3 4];B=[4 3;2 1];>> A',B'ans =1 32 4ans =4 33 1矩阵加减:A-Bans=-3 -11 3矩阵乘法:A*B,A.*B(数组乘法)||比较矩阵乘法与数组乘法的区别ans=8 520 13ans=4 66 4矩阵除法:A\B,B./Aans=-6 -55 4ans=4 1.50.6667 0.25特殊矩阵生成:zeros(m,n)||生成m行n列的矩阵ones(m,n)||生成m行n列的元素全为一的矩阵eye(n)||生成n阶单位矩阵rand(m,n)||生成m行n列[0 ,1]上均匀分布随机数矩阵zeros(2,3)ans =0 0 00 0 0>> ones(3,3)ans =1 1 11 1 11 1 1>> eye(3)ans =1 0 00 1 00 0 1>> rand(2,4)ans =Columns 1 through 30.9501 0.6068 0.89130.2311 0.4860 0.7621Column 40.45650.0185矩阵处理:trace(A)||返回矩阵的迹diag(A)||返回矩阵对角线元素构成的向量tril(A)||提取矩阵的下三角部分triu(A)||提取矩阵的上三角部分flipud(A)||矩阵上下翻转fliplr(A)||矩阵左右翻转reshape(A,m,n)||将矩阵的元素重排成m行n列矩阵A=[1 2 3;4 5 6;7 8 9];>> t=trace(A),d=diag(A),u=triu(A)t =15d =159u =1 2 30 5 60 0 9 flipud(A),fliplr(A)ans =7 8 94 5 61 2 3 ans =3 2 16 5 49 8 7矩阵特征值与标准型:[V,D]=eig(A)||返回矩阵特征值与特征向量[V J]=Jordan(A)||返回矩阵的相似变换矩阵和若尔当标准型A=[1 2;3 4];>> [V,D]=eig(A)V =-0.8246 -0.41600.5658 -0.9094D =-0.3723 00 5.3723>> [V,J]=jordan(A)V =0.2389 0.76110.5222 -0.5222J =5.3723 00 -0.3723线性方程组求解A=[1 2 1;3 -2 1];B=[1;4];x=A\B x =1.2500 ||求一特解-0.1250>> A=[1 2;3 -2;1 -1];B=[1;4;2];x=A\Bx = ||求得一最小二乘近似解1.2838-0.1757:方阵的相似对角化及应用:A=[1 1/4 0;0 1/2 0;0 1/4 1];[P,T]=eig(A) P =1.0000 0 -0.40820 0 0.81650 1.0000 -0.4082T =1.0000 0 00 1.0000 00 0 0.5000求得三个特征值1,1,0.5,对应特征向量(1,0,0),(0,0,1),(-0.4028,0.8165,-0.4082),由于三个特征向量线性无关,从而A 可相似对角化,即p-1AP=T.那么A∧n=p[1 0 0;0 1 0;0 0 0]p-1,计算的P*diag([1,1,0])*inv(P)ans =1.0000 0.50000 00 0 00 0.5000 1.0000所以得到近似解。
matlab线性代数实验线性代数MATLAB 实验指导书MATLAB 是Matrix Laboratory 的缩写,是⼀个集数值计算、图形处理、符号运算、⽂字处理、数学建模、实时控制、动态仿真和信号处理等功能为⼀体的数学应⽤软件,⽽且该系统的基本数据结构是矩阵,⼜具有数量巨⼤的内部函数和多个⼯具箱,使得该系统迅速普及到各个领域,尤其在⼤学校园⾥,许多学⽣借助它来学习⼤学数学和计算⽅法等课程,并⽤它做数值计算和图形处理等⼯作。
我们在这⾥介绍它的基本功能,并⽤它做与线性代数相关的数学实验。
在正确完成安装MATLAB 软件之后,直接双击系统桌⾯上的MATLAB 图标,启动MATLAB ,进⼊MATLAB 默认的⽤户主界⾯,界⾯有三个主要的窗⼝:命令窗⼝(Commend Window ), 当前⽬录窗⼝(Current Directory ),⼯作间管理窗⼝(Workspace )。
命令窗⼝是和Matlab 编译器连接的主要窗⼝,“>>”为运算提⽰符,表⽰Matlab 处于准备状态,当在提⽰符后输⼊⼀段正确的运算式时,只需按Enter 键,命令窗⼝中就会直接显⽰运算结果。
实验1 矩阵的运算,⾏列式实验名称:矩阵的运算,⾏列式实验⽬的:学习在matlab 中矩阵的输⼊⽅法以及矩阵的相关运算,⾏列式。
实验原理:介绍相关的实验命令和原理(1)⼀般矩阵的输⼊ (2)特殊矩阵的⽣成 (3)矩阵的代数运算(4)矩阵的特征参数运算 (5)数字⾏列式和符号⾏列式的计算实验命令1 矩阵的输⼊ Matlab 是以矩阵为基本变量单元的,因此矩阵的输⼊⾮常⽅便。
输⼊时,矩阵的元素⽤⽅括号括起来,⾏内元素⽤逗号分隔或空格分隔,各⾏之间⽤分号分隔或直接回车。
例1 输⼊矩阵--=654301211A ,可以在命令窗⼝中输⼊>>A=[1 1 2;-1 0 3;4 -5 6]A =1 1 2-1 0 34 -5 62 特殊矩阵的⽣成某些特殊矩阵可以直接调⽤相应的函数得到,例如:zeros(m,n) ⽣成⼀个m ⾏n 列的零矩阵ones(m,n) ⽣成⼀个m ⾏n 列元素都是1的矩阵eye(n) ⽣成⼀个n 阶的单位矩阵rand(m,n) ⽣成⼀个m ⾏n 列的随机矩阵magic(n) ⽣成⼀个n 阶魔⽅矩阵例2 随机⽣成⼀个32?的矩阵。
MATLAB实验指导书线性代数部分浙江海洋学院一、基础知识1.1 常见数学函数ceil(x)= -4 -2 0 2 5 7fix(x) = -4 -2 0 1 4 6floor(x) = -5 -3 -1 1 4 6round(x) = -5 -2 0 1 5 71.2 系统的在线帮助1 help 命令:1.当不知系统有何帮助内容时,可直接输入help以寻求帮助:>>help(回车)2.当想了解某一主题的内容时,如输入:>> help syntax(了解Matlab的语法规定)3.当想了解某一具体的函数或命令的帮助信息时,如输入:>> help sqrt (了解函数sqrt的相关信息)2 lookfor命令现需要完成某一具体操作,不知有何命令或函数可以完成,如输入:>> lookfor line (查找与直线、线性问题有关的函数)1.3 常量与变量系统的变量命名规则:变量名区分字母大小写;变量名必须以字母打头,其后可以是任意字母,数字,或下划线的组合。
此外,系统内部预先定义了几个有特殊意1 数值型向量(矩阵)的输入1.任何矩阵(向量),可以直接按行方式...输入每个元素:同一行中的元素用逗号(,)或者用空格符来分隔;行与行之间用分号(;)分隔。
所有元素处于一方括号([ ])内;例1:>> Time = [11 12 1 2 3 4 5 6 7 8 9 10]>> X_Data = [2.32 3.43;4.37 5.98]2上面函数的具体用法,可以用帮助命令help得到。
如:meshgrid(x,y)输入x=[1 2 3 4]; y=[1 0 5]; [X,Y]=meshgrid(x, y),则X = Y =1 2 3 4 1 1 1 11 2 3 4 0 0 0 01 2 3 4 5 5 5 5目的是将原始数据x,y转化为矩阵数据X,Y。
数学实验报告题目第一次实验题目一、实验目的1MATLAB 的矩阵初等运算;.熟悉2 .掌握求矩阵的秩、逆、化最简阶梯形的命令;3MABLAB 求解线性方程组.会用二、问题求解和程序设计流程344?221????????MATLABA1 B、,已知命令窗口中建立.,在320B???50??3A????????112?153????矩阵并对其进行以下操作:(1) A 的行列式的值计算矩阵?)?Adet((2) 分别计算下列各式:、和、、、、B?A.T112??B?BA?2A ABABAA:解(1)编写程序如下:A=[4 -2 2;-3 0 5;1 5 3];B=[1 3 4;-2 0 -3;2 -1 1];a=det(A)运行结果:a =-158(2)编写程序如下:C=2*A-BD=A*BE=A.*BF=A/BG=A\BH=A*AK=A'运行结果:C =7 -7 0-4 0 13线性代数实验报告0 11 5D =12 10 247 -14 -7-3 0 -8E =4 -6 86 0 -152 -5 3F =0 0 2.0000-2.7143 -8.0000 -8.14292.42863.0000 2.2857G =0.4873 0.4114 1.00000.3671 -0.4304 0-0.1076 0.2468 0H =24 2 4-7 31 9-8 13 36K =4 -3 1-2 0 52 5 32 MATLABrankinv 求下列矩阵的秩:中分别利用矩阵的初等变换及函数.在、函数线性代数实验报告3501??2631?????0012????(1) Rank(A)=? 2求) 求(054A?3??B1??B?????0201??4??1112????2102??解:1 编写程如下:()format rat A=[1 -6 3 2;3 -5 4 0;-1 -11 2 4];rref(A)运行结果:ans =1 0 0 -8/50 1 0 00 0 1 6/5AA3 。
利用Matlab进行线性代数问题求解的方法与案例引言线性代数是数学的一个重要分支,广泛应用于工程、物理、计算机科学等领域。
而Matlab作为一种功能强大的数值计算软件,提供了各种实用的工具和函数,可以方便地解决线性代数问题。
本文将介绍一些常用的线性代数问题求解方法,并通过具体的案例来展示Matlab在实际应用中的效果。
一、线性方程组的求解线性方程组是线性代数中最基础的问题之一。
Matlab提供了多种求解线性方程组的函数,如“backslash”操作符(\)和“linsolve”函数等。
下面通过一个实例来说明Matlab的线性方程组求解功能。
案例:假设有以下线性方程组需要求解:2x + 3y - 4z = 53x - 2y + z = 8x + 5y - 3z = 7在Matlab中输入以下代码:A = [2 3 -4; 3 -2 1; 1 5 -3];b = [5; 8; 7];x = A\b;通过以上代码,我们可以得到线性方程组的解x=[1; -2; 3]。
这表明在满足以上方程组的条件下,x=1,y=-2,z=3。
可以看出,Matlab在求解线性方程组时,使用简单且高效。
二、矩阵的特征值和特征向量求解矩阵的特征值和特征向量也是线性代数中的重要概念。
利用特征值和特征向量可以得到矩阵的许多性质和信息。
在Matlab中,我们可以通过“eig”函数来求解矩阵的特征值和特征向量。
案例:假设有一个2x2矩阵A,需要求解其特征值和特征向量。
在Matlab中输入以下代码:A = [2 3; 1 4];[V, D] = eig(A);通过以上代码,我们可以得到矩阵A的特征向量矩阵V和特征值矩阵D。
具体结果如下:特征向量矩阵V = [0.8507 -0.5257; 0.5257 0.8507]特征值矩阵D = [1.5858 0; 0 4.4142]由结果可知,矩阵A的特征向量矩阵V和特征值矩阵D可以提供有关该矩阵的很多信息,如相关线性变换、对称性等。