线性代数的matlab实践性课题
- 格式:pdf
- 大小:903.28 KB
- 文档页数:10
MATLAB软件在线性代数教学中的应用【摘要】MATLAB软件在线性代数教学中的应用日益重要。
本文从向量和矩阵运算、线性方程组求解、特征值和特征向量计算、线性代数可视化教学以及矩阵分解和奇异值分解等方面探讨了MATLAB的应用。
通过实际案例展示了MATLAB在教学中的实际应用,有助于学生更好地理解线性代数的概念和应用。
结合结论部分讨论了MATLAB在线性代数教学中的重要性以及未来的发展方向,强调了MATLAB在提升学生学习效果和培养解决实际问题能力方面的巨大潜力。
MATLAB在线性代数教学中的应用有着广阔的发展前景,为教学提供了更加丰富和多样化的教学手段。
【关键词】MATLAB, 线性代数, 教学应用, 向量, 矩阵运算, 线性方程组, 特征值, 特征向量, 可视化教学, 矩阵分解, 奇异值分解, 重要性, 发展方向1. 引言1.1 MATLAB软件在线性代数教学中的应用概述MATLAB是一种强大的数学软件,广泛应用于高等教育领域,尤其在线性代数教学中发挥着重要作用。
在在线性代数教学中,MATLAB可以帮助学生更好地理解抽象的数学概念,提高他们的数学建模和问题求解能力。
通过MATLAB软件,学生可以直观地进行向量和矩阵运算,求解线性方程组,计算特征值和特征向量,进行矩阵分解和奇异值分解等操作。
MATLAB软件提供了丰富的数学函数和工具箱,使得学生可以方便地进行各种数学计算和仿真实验。
通过MATLAB的可视化功能,学生可以直观地观察数学概念的几何意义,加深对数学知识的理解。
MATLAB还支持编程功能,学生可以通过编写脚本和函数来实现复杂的数学运算和算法,培养他们的编程能力。
在线性代数教学中,MATLAB软件的应用不仅可以帮助学生更好地掌握数学知识,提高数学建模和问题求解能力,还可以激发学生的学习兴趣,培养他们的创新思维和实践能力。
MATLAB软件在线性代数教学中的应用具有重要意义,对提升教学效果和培养学生的数学素养具有积极作用。
MATLAB在工程线性代数教学的应用及实践【摘要】利用传统的教学方法进行工科线性代数教学,学生接受起来有一定难度,而且难以应用到实际问题中。
为了解决以上问题,本文将数学软件 MATLAB引入线性代数课堂教学中进行教学改革实践,并进行了相应的课堂教学设计和实验设计,希望能起到更好的教学效果。
【关键词】线性代数MATLAB 教学过程实践教学教学评价一、引言近年来,计算机技术和各种数学软件的飞速开展,给数学教育带来了巨大的影响。
为了提高高校传统数学的教学效果,改变只重理论无视应用的教学弊端,许多高校已在数学教学中引入 MATLAB 数学软件。
线性代数作为高校数学教育的三大根本公共根底课程之一,是培养学生的数学思维能力和计算能力的重要课程。
如何利用计算机技术改革线性代数教学,怎样进行从理论到应用的线性代数教学,是当前线性代数教学改革中的一个十分重要的课题。
MATLAB软件是一种先进的科学计算软件,它是由 MathWorks 公司于 1984 推出。
该软件集成了数据操作的根本单元,并提供了大量的内置函数,包括线性代数、矩阵分析和变换、统计、优化、数值计算等。
因此, MATLAB 软件是线性代数教学中最适合采用的数学软件。
二、教学过程设计长期以来,线性代数的教学中只重视理论和计算,无视了线性代数理论的背景及其应用。
传统的教学方法是黑板上书写定理、概念和习题,这样有利于解释理论的内容,让学生了解每一步的理论来源和逻辑思维过程,但在行列式、逆矩阵、解方程的计算例题讲授中,在黑板上写的篇幅太多而且消耗时间。
虽然“概念、定理、习题〞的教学模式能反映数学的逻辑与推理,但缺乏交互性和实用性,不利于调动学生的主动性和学习兴趣,也不利于培养学生的想象力和创造力。
因此,我们提出了利用多媒体课件和 MATLAB 软件的教学模式。
对于线性代数的理论知识和数值算例,我们仍然使用传统板书的教学方法,并结合 MATLAB数值计算和有绘图功能的多媒体教学,在黑板上逼真地再现抽象的知识和复杂的计算过程,以更生动直观的形象让学生了解解题过程,让学生在课堂内获得更多有用的信息。
实验三使用MATLAB解决线性代数问题学院:数计学院班级:1003班姓名:黄晓丹学号:1051020144实验目的:学习MATLAB有关线性代数运算的指令,主要学习运用MATLAB解决矩阵除法,线性方程组的通解,矩阵相似对角化问题,以及解决投入产出分析等应用问题。
实验内容:矩阵转置:A=[1 2;3 4];B=[4 3;2 1];>> A',B'ans =1 32 4ans =4 33 1矩阵加减:A-Bans=-3 -11 3矩阵乘法:A*B,A.*B(数组乘法)||比较矩阵乘法与数组乘法的区别ans=8 520 13ans=4 66 4矩阵除法:A\B,B./Aans=-6 -55 4ans=4 1.50.6667 0.25特殊矩阵生成:zeros(m,n)||生成m行n列的矩阵ones(m,n)||生成m行n列的元素全为一的矩阵eye(n)||生成n阶单位矩阵rand(m,n)||生成m行n列[0 ,1]上均匀分布随机数矩阵zeros(2,3)ans =0 0 00 0 0>> ones(3,3)ans =1 1 11 1 11 1 1>> eye(3)ans =1 0 00 1 00 0 1>> rand(2,4)ans =Columns 1 through 30.9501 0.6068 0.89130.2311 0.4860 0.7621Column 40.45650.0185矩阵处理:trace(A)||返回矩阵的迹diag(A)||返回矩阵对角线元素构成的向量tril(A)||提取矩阵的下三角部分triu(A)||提取矩阵的上三角部分flipud(A)||矩阵上下翻转fliplr(A)||矩阵左右翻转reshape(A,m,n)||将矩阵的元素重排成m行n列矩阵A=[1 2 3;4 5 6;7 8 9];>> t=trace(A),d=diag(A),u=triu(A)t =15d =159u =1 2 30 5 60 0 9 flipud(A),fliplr(A)ans =7 8 94 5 61 2 3 ans =3 2 16 5 49 8 7矩阵特征值与标准型:[V,D]=eig(A)||返回矩阵特征值与特征向量[V J]=Jordan(A)||返回矩阵的相似变换矩阵和若尔当标准型A=[1 2;3 4];>> [V,D]=eig(A)V =-0.8246 -0.41600.5658 -0.9094D =-0.3723 00 5.3723>> [V,J]=jordan(A)V =0.2389 0.76110.5222 -0.5222J =5.3723 00 -0.3723线性方程组求解A=[1 2 1;3 -2 1];B=[1;4];x=A\B x =1.2500 ||求一特解-0.1250>> A=[1 2;3 -2;1 -1];B=[1;4;2];x=A\Bx = ||求得一最小二乘近似解1.2838-0.1757:方阵的相似对角化及应用:A=[1 1/4 0;0 1/2 0;0 1/4 1];[P,T]=eig(A) P =1.0000 0 -0.40820 0 0.81650 1.0000 -0.4082T =1.0000 0 00 1.0000 00 0 0.5000求得三个特征值1,1,0.5,对应特征向量(1,0,0),(0,0,1),(-0.4028,0.8165,-0.4082),由于三个特征向量线性无关,从而A 可相似对角化,即p-1AP=T.那么A∧n=p[1 0 0;0 1 0;0 0 0]p-1,计算的P*diag([1,1,0])*inv(P)ans =1.0000 0.50000 00 0 00 0.5000 1.0000所以得到近似解。
数学实验报告题目第一次实验题目一、实验目的1MATLAB 的矩阵初等运算;.熟悉2 .掌握求矩阵的秩、逆、化最简阶梯形的命令;3MABLAB 求解线性方程组.会用二、问题求解和程序设计流程344?221????????MATLABA1 B、,已知命令窗口中建立.,在320B???50??3A????????112?153????矩阵并对其进行以下操作:(1) A 的行列式的值计算矩阵?)?Adet((2) 分别计算下列各式:、和、、、、B?A.T112??B?BA?2A ABABAA:解(1)编写程序如下:A=[4 -2 2;-3 0 5;1 5 3];B=[1 3 4;-2 0 -3;2 -1 1];a=det(A)运行结果:a =-158(2)编写程序如下:C=2*A-BD=A*BE=A.*BF=A/BG=A\BH=A*AK=A'运行结果:C =7 -7 0-4 0 13线性代数实验报告0 11 5D =12 10 247 -14 -7-3 0 -8E =4 -6 86 0 -152 -5 3F =0 0 2.0000-2.7143 -8.0000 -8.14292.42863.0000 2.2857G =0.4873 0.4114 1.00000.3671 -0.4304 0-0.1076 0.2468 0H =24 2 4-7 31 9-8 13 36K =4 -3 1-2 0 52 5 32 MATLABrankinv 求下列矩阵的秩:中分别利用矩阵的初等变换及函数.在、函数线性代数实验报告3501??2631?????0012????(1) Rank(A)=? 2求) 求(054A?3??B1??B?????0201??4??1112????2102??解:1 编写程如下:()format rat A=[1 -6 3 2;3 -5 4 0;-1 -11 2 4];rref(A)运行结果:ans =1 0 0 -8/50 1 0 00 0 1 6/5AA3 。
合肥学院2018—2019学年第2学期线性代数及应用 (模块)实验报告实验名称:线性代数MATLAB实验实验类别:综合性 设计性□验证性 专业班级: 17通信工程(2)班实验时间: 9-12周组别:第组人数 3人指导教师:牛欣成绩:完成时间: 2019年 5 月9日一. 小组成员姓名学号具体分工汪蔚蔚(组长) 1705022025 A报告最后的整合,编写,案例四的计算与应用以及案例一的计算与证明陶乐 1 1705022009 C案例二,化学方程式配平问题程赢妹1505022036 A案例三,应用题灰度值的计算问题二. 实验目的1、案例一利用MATLAB进行线性代数计算,求出矩阵B2、案例二利用MATLAB计算出每一个网格数据的值,然后每一个网格数据的值乘以256以后进行归一化处理,根据每个网格中的灰度值,绘制出灰度图像。
3、案例三利用MATLAB完成对化学方程式进行配平的应用4、案例四利用MATLAB求极大线性无关组,并表示出其余向量三. 实验内容1、案例一:0,1,0,=1,0,0,0,0,0A B AB BA A B⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦已知矩阵和矩阵满足乘法交换律,即且求矩阵。
2、案例二配平下列化学方程式:3、案例三:3*320.81.21.70.20.30.6021.61.20.6.1MATLAB2256MATLAB给定一个图像的个方向上的灰度叠加值:沿左上方到右下方的灰度叠加值依次为,,,,;沿右上方到左下方的灰度叠加值依次为,。
,,,)建立可以确定网络数据的线性方程组,并用求解)将网络数据乘以,再取整,用绘制该灰度图像>> X1=B\C1X1 =3.00001.0000-0.0000>> X2=B\C2X2 =-0.50001.00002.5000六.实验结果1、实验一结果我们本来设,,=,,,,a b cB d e fg h i⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦最终得到d=b, e=a, f=c=h=g=0,i=i,即矩阵,,0=,,00,0,a bB d ei⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,其中a=e,b=d.因此B是一个对称矩阵。
线性代数的MATLAB 软件实验一、实验目的1.熟悉矩阵代数主要MATLAB 指令。
2.掌握矩阵的转置、加、减、乘、除、乘方、除法等MATLAB 运算。
3.掌握特殊矩阵的MATLAB 生成。
4.掌握MATLAB 的矩阵处理方法。
5.掌握MATLAB 的矩阵分析方法。
6.掌握矩阵的特征值与标准形的MATLAB 验算。
7.掌握线性方程组的MATLAB 求解算法。
二、实验原理1.线性方程组 【基本观点】自然科学和工程实践很多问题的解决都涉及线性代数方程组的求解和矩阵运算.一方面,许多问题的数学模型本身就是一个线性方程组,例如结构应力分析问题、电子传输网分析问题和投入产出分析问题;另一方面,有些数值计算方法导致线性方程组求解,如数据拟合,非线性方程组求解和偏微分方程组数值解等.n 个未知量m 个方程的线性方程组一般形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,22112222212111212111m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a (3.1) 令,,,2121212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=m n mn m m n n b b b b x x x x a a a a a aa a a A则得矩阵形式Ax=b. (3.2)若右端b=0,即Ax=0, (3.3)则称方程组为齐次的.方程组(3.1)可能有唯一解,可能有无穷多解,也可能无解,主要取决于系数矩阵A 及增广矩阵(A,b )的秩.若秩(A )=秩(A,b )=n,存在唯一解,其解理论上用Cramer 法则求出,但由于这种方法要计算n+1个n 阶行列式,计算量太大通常并不采用;若秩(A )=秩(A,b )<n,存在无穷多解,其通解可表示为对应齐次方程组(3.3)的一个基础解系与(3.2)的一个特解的叠加;若秩(A )≠秩(A,b ),则无解,这时一般寻求最小二乘近似解,即求x 使向量Ax-b 模最小.P50矩阵左除的数学思维:恒等变形Ax=b 方程两边的左边同时除以A ,得:b AAx A11=,即:b A b Ax 11-==MATLAB 的实现(左除):x=A\b 2.逆矩阵 【基本观点】方阵A 称为可逆的,如果存在方阵B ,使 AB=BA=E,这里E 表示单位阵.并称B 为A 的逆矩阵,记B=1-A .方阵A 可逆的充分必要条件是A 的行列式det A ≠0.求逆矩阵理论上的公式为*1det 1A AA =-, (3.4)这里*A 为A 的伴随矩阵.利用逆矩阵,当A 可逆时,(3.2)的解可表示为b A x 1-=.由于公式(3.4)涉及大量行列式计算,数值计算不采用.求逆矩阵的数值算法一般是基于矩阵分解的方法.3.特征值与特征向量 【基本观点】对于方阵A ,若存在数λ和非零向量x ,使,x Ax λ= (3.5) 则称λ为A 的一个特征值,x 为A 的一个对应于特征值λ的特征向量.特征值计算归结为特征多项式的求根.对于n 阶实数方阵,特征多项式在复数范围内总有n 个根。
用matlab解决线性代数问题学号: 82120545 , 姓名: 于珊,1 求解线性方程组实验内容: 用MATLAB求解如下线性方程组Ax = b, 其中A =5600000015600000015600000015600000015600000015600000015600000015⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦, b = [1,4,6,0,7,1,2,4] T.实验目的:1. 了解MATLAB软件, 学会MATLAB软件的一些基本操作;2. 熟悉MATLAB软件的一些数值计算功能;3. 练习编写简单的MATLAB程序。
实验原理:1. 对于满足条件系数矩阵的行列式D=︱A︱≠0的方程组Ax= b,根据克拉默(Gramer)法则,此线性方程组有唯一解:,j=1,2,…,n。
2. 当线性方程组的系数矩阵A是可逆矩阵时, 方程组Ax = b的解为X = A\B。
3. 当系数矩阵A可逆时, 对增广矩阵[A, b]进行初等行变换, 把它化为行最简形矩阵B, 则B的最后一列就是该方程组的解向量。
实验方案: 1. 在MATLAB命令窗口中输入如下命令:>> a_1=[5;1;0;0;0;0;0;0];a_2=[6;5;1;0;0;0;0;0];>> a_3=[0;6;5;1;0;0;0;0];a_4=[0;0;6;5;1;0;0;0];>> a_5=[0;0;0;6;5;1;0;0];a_6=[0;0;0;0;6;5;1;0];>> a_7=[0;0;0;0;0;6;5;1];a_8=[0;0;0;0;0;0;6;5]; %输入矩阵A>> b=[1;4;6;0;7;1;2;4];>> D=det([a_1,a_2,a_3,a_4,a_5,a_6,a_7,a_8]);>> D_1=det([b,a_2,a_3,a_4,a_5,a_6,a_7,a_8]);>> D_2=det([a_1,b,a_3,a_4,a_5,a_6,a_7,a_8]);>> D_3=det([a_1,a_2,b,a_4,a_5,a_6,a_7,a_8]);>> D_4=det([a_1,a_2,a_3,b,a_5,a_6,a_7,a_8]);>> D_5=det([a_1,a_2,a_3,a_4,b,a_6,a_7,a_8]);>> D_6=det([a_1,a_2,a_3,a_4,a_5,b,a_7,a_8]);>> D_7=det([a_1,a_2,a_3,a_4,a_5,a_6,b,a_8]);>> D_8=det([a_1,a_2,a_3,a_4,a_5,a_6,a_7,b]);>> x_1=D_1/D;x_2=D_2/D;x_3=D_3/D;x_4=D_4/D;>> x_5=D_5/D;x_6=D_6/D;x_7=D_7/D;x_8=D_8/D;>> format rat,X=[x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8]%利用克拉默法则求解方程组2. 在MATLAB命令窗口中输入如下命令:>> %把该方程组记为AX=b,则X=A\b>> A=[5,6,0,0,0,0,0,0;1,5,6,0,0,0,0,0;0,1,5,6,0,0,0,0;0,0,1,5,6,0,0,0;0,0,0,1,5,6,0,0;0,0,0,0,1,5,6,0;0,0,0,0,0,1,5,6;0,0,0,0,0,0,1,5]; %输入矩阵A>> b=[1;4;6;0;7;1;2;4]; %输入矩阵b>>format rat,X=A\b%求解方程组3. 在MATLAB命令窗口中输入如下命令:>> A=[5,6,0,0,0,0,0,0;1,5,6,0,0,0,0,0;0,1,5,6,0,0,0,0;0,0,1,5,6,0,0,0;0,0,0,1,5,6,0,0;0,0,0,0,1,5,6,0;0,0,0,0,0,1,5,6;0,0,0,0,0,0,1,5];%输入矩阵A>> b=[1;4;6;0;7;1;2;4]; %输入矩阵b>> B=[A,b];%B为增广矩阵[A,b]>> format rat>> C=rref(B); %用初等行变换把B化为行最简形>> X=C(:,9) %利用高斯消元法求解方程组实验结果:1.方法一的计算结果为:X =Columns 1 through 6-3419/592 727/146 -2543/1009 697/307 -131/89 2033/1009 Columns 7 through 8-835/659 1913/18162方法二的计算结果为:.X =-3419/592727/146-2543/1009697/307-131/892033/1009-835/6591913/18163.方法三的计算结果为:X =-797/138727/146-310/123697/307-131/89542/269-204/161138/131对实验结果的分析:上述3种方案所得的结果不完全一致, 这是因为不同的计算方法在计算机中有不同的精度,导致计算数据结果的不同。