线性代数实践matlab(教师班第三讲)
- 格式:ppt
- 大小:3.71 MB
- 文档页数:76
MATLAB中的线性代数运算方法详述导言:线性代数是数学中的一个重要分支,它研究向量空间及其线性变换、线性方程组和矩阵等概念。
在科学计算与工程实践中,线性代数的应用十分广泛。
MATLAB作为一种强大的数值计算软件,提供了丰富的线性代数运算方法,能够帮助用户高效地解决各种与矩阵、向量相关的问题。
本文将详细介绍MATLAB中常用的线性代数运算方法,并且从算法原理到具体函数的使用进行详细说明。
一、矩阵运算在MATLAB中,矩阵是一种重要的数据类型,它可以表示线性系统、图像等多种实际问题。
矩阵的加法和乘法是线性代数运算中最基本的运算,MATLAB提供了相应的函数来进行矩阵的加法和乘法运算。
1.1 矩阵加法MATLAB中的矩阵加法使用“+”操作符进行操作,可以直接对两个矩阵进行加法运算。
例如,给定两个矩阵A和B,可以使用"A + B"来进行矩阵加法运算。
1.2 矩阵乘法MATLAB中的矩阵乘法使用"*"操作符进行操作,可以直接对两个矩阵进行乘法运算。
需要注意的是,矩阵相乘的维度要满足匹配规则,即乘法前一个矩阵的列数要等于后一个矩阵的行数。
例如,给定两个矩阵A和B,可以使用"A * B"来进行矩阵乘法运算。
二、向量运算向量是线性代数中常用的数据结构,它可以表示方向和大小。
在MATLAB中,向量是一种特殊的矩阵,可以使用矩阵运算中的方法进行计算。
2.1 向量点乘向量的点乘是指两个向量对应位置上元素的乘积之和。
MATLAB中可以使用“.*”操作符进行向量的点乘运算。
例如,给定两个向量A和B,可以使用"A .* B"来进行向量点乘运算。
2.2 向量叉乘向量的叉乘是指两个三维向量的运算结果,它得到一个新的向量,该向量与两个原始向量都垂直。
MATLAB中可以使用叉乘函数cross()进行向量的叉乘运算。
例如,给定两个向量A和B,可以使用"cross(A, B)"来进行向量叉乘运算。
实验三使用MATLAB解决线性代数问题学院:数计学院班级:1003班姓名:黄晓丹学号:1051020144实验目的:学习MATLAB有关线性代数运算的指令,主要学习运用MATLAB解决矩阵除法,线性方程组的通解,矩阵相似对角化问题,以及解决投入产出分析等应用问题。
实验内容:矩阵转置:A=[1 2;3 4];B=[4 3;2 1];>> A',B'ans =1 32 4ans =4 33 1矩阵加减:A-Bans=-3 -11 3矩阵乘法:A*B,A.*B(数组乘法)||比较矩阵乘法与数组乘法的区别ans=8 520 13ans=4 66 4矩阵除法:A\B,B./Aans=-6 -55 4ans=4 1.50.6667 0.25特殊矩阵生成:zeros(m,n)||生成m行n列的矩阵ones(m,n)||生成m行n列的元素全为一的矩阵eye(n)||生成n阶单位矩阵rand(m,n)||生成m行n列[0 ,1]上均匀分布随机数矩阵zeros(2,3)ans =0 0 00 0 0>> ones(3,3)ans =1 1 11 1 11 1 1>> eye(3)ans =1 0 00 1 00 0 1>> rand(2,4)ans =Columns 1 through 30.9501 0.6068 0.89130.2311 0.4860 0.7621Column 40.45650.0185矩阵处理:trace(A)||返回矩阵的迹diag(A)||返回矩阵对角线元素构成的向量tril(A)||提取矩阵的下三角部分triu(A)||提取矩阵的上三角部分flipud(A)||矩阵上下翻转fliplr(A)||矩阵左右翻转reshape(A,m,n)||将矩阵的元素重排成m行n列矩阵A=[1 2 3;4 5 6;7 8 9];>> t=trace(A),d=diag(A),u=triu(A)t =15d =159u =1 2 30 5 60 0 9 flipud(A),fliplr(A)ans =7 8 94 5 61 2 3 ans =3 2 16 5 49 8 7矩阵特征值与标准型:[V,D]=eig(A)||返回矩阵特征值与特征向量[V J]=Jordan(A)||返回矩阵的相似变换矩阵和若尔当标准型A=[1 2;3 4];>> [V,D]=eig(A)V =-0.8246 -0.41600.5658 -0.9094D =-0.3723 00 5.3723>> [V,J]=jordan(A)V =0.2389 0.76110.5222 -0.5222J =5.3723 00 -0.3723线性方程组求解A=[1 2 1;3 -2 1];B=[1;4];x=A\B x =1.2500 ||求一特解-0.1250>> A=[1 2;3 -2;1 -1];B=[1;4;2];x=A\Bx = ||求得一最小二乘近似解1.2838-0.1757:方阵的相似对角化及应用:A=[1 1/4 0;0 1/2 0;0 1/4 1];[P,T]=eig(A) P =1.0000 0 -0.40820 0 0.81650 1.0000 -0.4082T =1.0000 0 00 1.0000 00 0 0.5000求得三个特征值1,1,0.5,对应特征向量(1,0,0),(0,0,1),(-0.4028,0.8165,-0.4082),由于三个特征向量线性无关,从而A 可相似对角化,即p-1AP=T.那么A∧n=p[1 0 0;0 1 0;0 0 0]p-1,计算的P*diag([1,1,0])*inv(P)ans =1.0000 0.50000 00 0 00 0.5000 1.0000所以得到近似解。
【关键字】学习用Matlab学习线性代数__行列式实验目的理解行列式的概念、行列式的性质与计算Matlab函数det实验内容前面的四个练习使用整数矩阵,并演示一些本章讨论的行列式的性质。
最后两个练习演示我们使用浮点运算计算行列式时出现的不同。
理论上将,行列式的值应告诉我们矩阵是否是奇异的。
然而,如果矩阵是奇异的,且计算其行列式采用有限位精度运算,那么由于舍入误差,计算出的行列式的值也许不是零。
一个计算得到的行列式的值很接近零,并不能说明矩阵是奇异的甚至是接近奇异的。
此外,一个接近奇异的矩阵,它的行列式值也可能不接近零。
1.用如下方法随机生成整数元素的5阶方阵:A=round(10*rand(5)) 和B=round(20*rand(5))-10用Matlab计算下列每对数。
在每种情况下比较第一个是否等于第二个。
(1)det(A) ==det(A T) (2)det(A+B) ;det(A)+det(B)(3)det(AB)==det(A)det(B) (4)det(ATBT) ==det(AT)det(BT)(5)det(A-1)==1/det(A) (6)det(AB-1)==det(A)/det(B)> A=round(10*rand(5));>> B=round(20*rand(5))-10;>> det(A)ans =5972>> det(A')ans5972>> det(A+B)ans =36495>> det(A)+det(B)ans =26384>> det(A*B)ans =4>> det(A)*det(B)ans =4>> det(A'*B')ans =4>> det(A')*det(B')ans =4>> det(inv(A))ans =0.00016745>> 1/det(A)ans =0.00016745>> det(A*inv(B))ans =0.29257>> det(A)/det(B)ans =0.29257>>2.n阶的幻方阵是否奇异?用Matlab计算n=3、4、5、…、10时的det(magic(n))。
实验三函数式M文件和MA TLAB绘图一、实验目的:1、掌握基本的绘图命令2、掌握各种图形注释方法3、掌握三维图形的绘制方法4、了解一些特殊图形的绘制5、了解图形的高级控制技巧二、相关知识1基本的绘图命令1)、常用绘图命令常用的统计图函数:在MA TLAB 7中,使用plot函数进行二维曲线图的绘制>> x=0:0.1:10;>> y1=sin(x);>> y2=cos(x-2.5);>> y3=sqrt(x);>> plot(x,y1,x,y2,x,y3)3)、极坐标图形的绘制MA TLAB提供了polar(x1,x2,s)函数来在极坐标下绘制图形:(参数1角度,参数2极半径,参数3颜色和线性)>> x= 0:0.01:10;>> y1=sin(x);>> y2 = cos(x-2.5);>> polar(y1,y2,'-r+')4)、多个图形的绘制方法subplot函数可以实现多个图形的绘制:>>x = 0:.1:20;>>subplot(2,2,1)>>plot(x,sin(x));>>subplot(2,2,2);>>plot(x,cos(x))5)、曲线的色彩、线型和数据点型基本的绘图命令都支持使用字符串来给不同的曲线定义不同的线型,颜色和数据点型。
plot(x,sin(x),'-rd')图形注释对图形进行注释的方式A 图形注释“工具栏。
B 图形调色板中的注释工具C insert 菜单中的“注释”命令D 直接使用注释命令Annotation 函数Xlabel ,ylabel ,zlabel 函数 Title 函数 Colorbar 函数 Legend 函数实验内容: 一、 基础练习1、跟我练输入x,y 的值,并将它们的值互换后输出 x=input('Input x please:\n');y=input('Input y please:\n'); echo on z=x; x=y; y=z; disp(x); disp(y);echo off2、练习请求键盘输入命令keyboard ,处理完毕后,键入return ,程序将继续运行 求一元二次方程ax2 +bx+c=0的根。
利用Matlab进行线性代数问题求解的方法与案例引言线性代数是数学的一个重要分支,广泛应用于工程、物理、计算机科学等领域。
而Matlab作为一种功能强大的数值计算软件,提供了各种实用的工具和函数,可以方便地解决线性代数问题。
本文将介绍一些常用的线性代数问题求解方法,并通过具体的案例来展示Matlab在实际应用中的效果。
一、线性方程组的求解线性方程组是线性代数中最基础的问题之一。
Matlab提供了多种求解线性方程组的函数,如“backslash”操作符(\)和“linsolve”函数等。
下面通过一个实例来说明Matlab的线性方程组求解功能。
案例:假设有以下线性方程组需要求解:2x + 3y - 4z = 53x - 2y + z = 8x + 5y - 3z = 7在Matlab中输入以下代码:A = [2 3 -4; 3 -2 1; 1 5 -3];b = [5; 8; 7];x = A\b;通过以上代码,我们可以得到线性方程组的解x=[1; -2; 3]。
这表明在满足以上方程组的条件下,x=1,y=-2,z=3。
可以看出,Matlab在求解线性方程组时,使用简单且高效。
二、矩阵的特征值和特征向量求解矩阵的特征值和特征向量也是线性代数中的重要概念。
利用特征值和特征向量可以得到矩阵的许多性质和信息。
在Matlab中,我们可以通过“eig”函数来求解矩阵的特征值和特征向量。
案例:假设有一个2x2矩阵A,需要求解其特征值和特征向量。
在Matlab中输入以下代码:A = [2 3; 1 4];[V, D] = eig(A);通过以上代码,我们可以得到矩阵A的特征向量矩阵V和特征值矩阵D。
具体结果如下:特征向量矩阵V = [0.8507 -0.5257; 0.5257 0.8507]特征值矩阵D = [1.5858 0; 0 4.4142]由结果可知,矩阵A的特征向量矩阵V和特征值矩阵D可以提供有关该矩阵的很多信息,如相关线性变换、对称性等。
MATLAB软件在线性代数教学中的应用
MATLAB是一个具有强大计算和图形处理功能的数学软件,它广泛应用于各个领域,包括线性代数教学。
在线性代数教学中,MATLAB可以帮助学生更好地理解和应用矩阵和线性方程组等基础概念。
首先,在矩阵的操作方面,MATLAB可以用来进行矩阵的创建、转置、逆矩阵计算、乘法运算、矩阵方程求解等操作。
例如,通过输入命令行“A=[1 2;3 4]”创建一个
$2\times 2$矩阵,通过输入命令行“B=A'”可以得到A的转置矩阵,通过输入命令行
“inv(A)”可以得到A的逆矩阵,通过输入命令行“C=A*B”可以得到A和B的乘积矩阵,在输入命令行“x=A\b”可以求解矩阵方程$Ax=b$。
其次,在解决线性方程组的问题上,MATLAB可以用来求解线性方程组、得到线性方程组解的唯一性和存在性,并且可以比较不同求解方法的效率。
例如,通过输入命令行
“x=A\b”就可以得到线性方程组$Ax=b$的解,通过输入命令行“rank(A)”可以得到矩阵
A的秩,通过输入命令行“cond(A)”可以得到矩阵A的条件数。
此外,在线性代数的复杂问题求解上,MATLAB可以用来进行特征值和特征向量的计算、矩阵的奇异值分解等问题的求解。
例如,通过输入命令行“[V,D]=eig(A)”可以得到矩阵
A的特征值和特征向量,通过输入命令行“[U,S,V]=svd(A)”可以得到矩阵A的奇异值分解。
总之,MATLAB的强大计算和图形处理功能,可以为线性代数教学的理解和应用提供很好的帮助。
通过学生编写MATLAB程序,实现矩阵和线性方程组的数值求解,可以加深对
线性代数基础概念的理解,提高线性代数教学的效果。
西南科技大学本科生课程备课教案计算机技术在安全工程中的应用——Matlab入门及应用授课教师:徐中慧班级:专业:安全技术及工程第三章课型:新授课教具:多媒体教学设备,matlab教学软件一、目标与要求掌握matlab中内置的初等数学函数、三角函数、数据分析函数等函数的运用。
二、教学重点与难点本堂课教学的重点在于引导学生在命令窗口进行一些简单的计算,对matlab初等的数学函数能够熟练运用,并能写一些matlab的简单程序解决实际问题。
三、教学方法本课程主要通过讲授法、演示法、练习法等相结合的方法来引导学生掌控本堂课的学习内容。
四、教学内容一、课程内容回顾上节课主要学习了数据显示格式、复数的运算、算术运算等。
(1)短数据格式和长数据格式之间的显示切换(2)15+16i,求该复数的模和辐角,实部与虚部(3)[1:3;2:4;3:5],求矩阵的转置初等数学函数包括对数函数、指数函数、绝对值函数、四舍五入函数和离散数学中的函数。
我们今天课程的任务就是掌握这些函数的运用。
二、常用的数学函数练 习创建矢量x,在-9到12之间,步长为3 (1)求x 除以2的商 (2)求x 除以2的余数 (3)e x(4)求x 的自然对数ln(x) (5)求x 的常用对数lg(x)(6) 用函数sign 确定矢量x 中哪些元素为正 (7)将显示格式变为rat ,显示x 除以2的结果 Eg: x=-9:3:12;(1) x/2;(2) rem(x,2);(3)exp(x);(4)log(x );(5)log10(x);(6)sign(x);(7)format rat;x/2三、取整函数Matlab 中有几种不同的取整函数。
其中最常用的是四舍五入。
然而取上近似还是取下近似要根据实际情况而定。
例如,在杂货店买水果,苹果0.52美元一个,5美元能买几个?5.009.61540.52/=苹果苹果但是在现实生活中,显然不能买半个苹果,而且也不能四舍五入到10.所以,只能向下取近似值9.四、离散数学中的函数离散数学就是有关数的数学,也就是中学代数里的因式分解、求最大公因数和最小公倍数。
线性代数的MATLAB 软件实验一、实验目的1.熟悉矩阵代数主要MATLAB 指令。
2.掌握矩阵的转置、加、减、乘、除、乘方、除法等MATLAB 运算。
3.掌握特殊矩阵的MATLAB 生成。
4.掌握MATLAB 的矩阵处理方法。
5.掌握MATLAB 的矩阵分析方法。
6.掌握矩阵的特征值与标准形的MATLAB 验算。
7.掌握线性方程组的MATLAB 求解算法。
二、实验原理1.线性方程组 【基本观点】自然科学和工程实践很多问题的解决都涉及线性代数方程组的求解和矩阵运算.一方面,许多问题的数学模型本身就是一个线性方程组,例如结构应力分析问题、电子传输网分析问题和投入产出分析问题;另一方面,有些数值计算方法导致线性方程组求解,如数据拟合,非线性方程组求解和偏微分方程组数值解等.n 个未知量m 个方程的线性方程组一般形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,22112222212111212111m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a (3.1) 令,,,2121212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=m n mn m m n n b b b b x x x x a a a a a aa a a A则得矩阵形式Ax=b. (3.2)若右端b=0,即Ax=0, (3.3)则称方程组为齐次的.方程组(3.1)可能有唯一解,可能有无穷多解,也可能无解,主要取决于系数矩阵A 及增广矩阵(A,b )的秩.若秩(A )=秩(A,b )=n,存在唯一解,其解理论上用Cramer 法则求出,但由于这种方法要计算n+1个n 阶行列式,计算量太大通常并不采用;若秩(A )=秩(A,b )<n,存在无穷多解,其通解可表示为对应齐次方程组(3.3)的一个基础解系与(3.2)的一个特解的叠加;若秩(A )≠秩(A,b ),则无解,这时一般寻求最小二乘近似解,即求x 使向量Ax-b 模最小.P50矩阵左除的数学思维:恒等变形Ax=b 方程两边的左边同时除以A ,得:b AAx A11=,即:b A b Ax 11-==MATLAB 的实现(左除):x=A\b 2.逆矩阵 【基本观点】方阵A 称为可逆的,如果存在方阵B ,使 AB=BA=E,这里E 表示单位阵.并称B 为A 的逆矩阵,记B=1-A .方阵A 可逆的充分必要条件是A 的行列式det A ≠0.求逆矩阵理论上的公式为*1det 1A AA =-, (3.4)这里*A 为A 的伴随矩阵.利用逆矩阵,当A 可逆时,(3.2)的解可表示为b A x 1-=.由于公式(3.4)涉及大量行列式计算,数值计算不采用.求逆矩阵的数值算法一般是基于矩阵分解的方法.3.特征值与特征向量 【基本观点】对于方阵A ,若存在数λ和非零向量x ,使,x Ax λ= (3.5) 则称λ为A 的一个特征值,x 为A 的一个对应于特征值λ的特征向量.特征值计算归结为特征多项式的求根.对于n 阶实数方阵,特征多项式在复数范围内总有n 个根。
关于MATLAB软件在线性代数教学中的应用探讨关于MATLAB软件在线性代数教学中的应用探讨一、引言线性代数作为数学的一个重要分支,在各个领域都有广泛的应用。
线性代数的教学过程中,理论与实践相结合,能够更好地培养学生的分析和解决问题的能力。
而MATLAB软件作为数学建模、仿真和计算的工具,能够为线性代数的教学提供有力的支持。
本文将探讨MATLAB软件在线性代数教学中的应用。
二、MATLAB软件的介绍MATLAB是一种强大的高级计算机语言和交互式环境,该软件提供了丰富的数学、图形和数据分析工具,适用于各种科学与工程计算。
MATLAB在科研领域有广泛的应用,尤其在线性代数、信号处理和图像处理方面具有突出的优势。
三、MATLAB在线性代数教学中的应用1. 线性方程组的求解线性方程组是线性代数的基本内容之一,而MATLAB提供了直接求解线性方程组的工具。
学生可以通过编程的方式输入线性方程组,使用MATLAB求解方程组,并将结果可视化展示。
这样不仅可以加深学生对线性方程组求解方法的理解,还能提高他们的编程能力。
2. 矩阵运算与特征值分解矩阵运算是线性代数的重要内容,而MATLAB提供了丰富的矩阵运算函数。
学生可以通过编写MATLAB程序,实现矩阵的加减乘除、转置和求逆等操作,并进行相应的结果验证。
此外,MATLAB还能够进行特征值分解,对于矩阵的特征向量和特征值进行计算。
通过这些实践操作,学生可以更好地理解矩阵运算的概念和原理,提高解决实际问题的能力。
3. 图形绘制与可视化MATLAB具备强大的图形功能,能够进行二维和三维图形的绘制。
在线性代数教学中,学生可以通过编写MATLAB程序,将矩阵、向量或线性方程组的解表示为图形,从而更直观地展示线性代数的概念和应用。
这种图形化的可视化方式有助于学生理解和记忆线性代数的重要概念,提高他们的学习兴趣和积极性。
四、MATLAB在线性代数教学中的优势1. 提高学生的编程能力MATLAB作为一种编程语言,可以提高学生的编程能力。