线性代数实践matlab(教师班第三讲)
- 格式:ppt
- 大小:3.71 MB
- 文档页数:76
MATLAB中的线性代数运算方法详述导言:线性代数是数学中的一个重要分支,它研究向量空间及其线性变换、线性方程组和矩阵等概念。
在科学计算与工程实践中,线性代数的应用十分广泛。
MATLAB作为一种强大的数值计算软件,提供了丰富的线性代数运算方法,能够帮助用户高效地解决各种与矩阵、向量相关的问题。
本文将详细介绍MATLAB中常用的线性代数运算方法,并且从算法原理到具体函数的使用进行详细说明。
一、矩阵运算在MATLAB中,矩阵是一种重要的数据类型,它可以表示线性系统、图像等多种实际问题。
矩阵的加法和乘法是线性代数运算中最基本的运算,MATLAB提供了相应的函数来进行矩阵的加法和乘法运算。
1.1 矩阵加法MATLAB中的矩阵加法使用“+”操作符进行操作,可以直接对两个矩阵进行加法运算。
例如,给定两个矩阵A和B,可以使用"A + B"来进行矩阵加法运算。
1.2 矩阵乘法MATLAB中的矩阵乘法使用"*"操作符进行操作,可以直接对两个矩阵进行乘法运算。
需要注意的是,矩阵相乘的维度要满足匹配规则,即乘法前一个矩阵的列数要等于后一个矩阵的行数。
例如,给定两个矩阵A和B,可以使用"A * B"来进行矩阵乘法运算。
二、向量运算向量是线性代数中常用的数据结构,它可以表示方向和大小。
在MATLAB中,向量是一种特殊的矩阵,可以使用矩阵运算中的方法进行计算。
2.1 向量点乘向量的点乘是指两个向量对应位置上元素的乘积之和。
MATLAB中可以使用“.*”操作符进行向量的点乘运算。
例如,给定两个向量A和B,可以使用"A .* B"来进行向量点乘运算。
2.2 向量叉乘向量的叉乘是指两个三维向量的运算结果,它得到一个新的向量,该向量与两个原始向量都垂直。
MATLAB中可以使用叉乘函数cross()进行向量的叉乘运算。
例如,给定两个向量A和B,可以使用"cross(A, B)"来进行向量叉乘运算。
实验三使用MATLAB解决线性代数问题学院:数计学院班级:1003班姓名:黄晓丹学号:1051020144实验目的:学习MATLAB有关线性代数运算的指令,主要学习运用MATLAB解决矩阵除法,线性方程组的通解,矩阵相似对角化问题,以及解决投入产出分析等应用问题。
实验内容:矩阵转置:A=[1 2;3 4];B=[4 3;2 1];>> A',B'ans =1 32 4ans =4 33 1矩阵加减:A-Bans=-3 -11 3矩阵乘法:A*B,A.*B(数组乘法)||比较矩阵乘法与数组乘法的区别ans=8 520 13ans=4 66 4矩阵除法:A\B,B./Aans=-6 -55 4ans=4 1.50.6667 0.25特殊矩阵生成:zeros(m,n)||生成m行n列的矩阵ones(m,n)||生成m行n列的元素全为一的矩阵eye(n)||生成n阶单位矩阵rand(m,n)||生成m行n列[0 ,1]上均匀分布随机数矩阵zeros(2,3)ans =0 0 00 0 0>> ones(3,3)ans =1 1 11 1 11 1 1>> eye(3)ans =1 0 00 1 00 0 1>> rand(2,4)ans =Columns 1 through 30.9501 0.6068 0.89130.2311 0.4860 0.7621Column 40.45650.0185矩阵处理:trace(A)||返回矩阵的迹diag(A)||返回矩阵对角线元素构成的向量tril(A)||提取矩阵的下三角部分triu(A)||提取矩阵的上三角部分flipud(A)||矩阵上下翻转fliplr(A)||矩阵左右翻转reshape(A,m,n)||将矩阵的元素重排成m行n列矩阵A=[1 2 3;4 5 6;7 8 9];>> t=trace(A),d=diag(A),u=triu(A)t =15d =159u =1 2 30 5 60 0 9 flipud(A),fliplr(A)ans =7 8 94 5 61 2 3 ans =3 2 16 5 49 8 7矩阵特征值与标准型:[V,D]=eig(A)||返回矩阵特征值与特征向量[V J]=Jordan(A)||返回矩阵的相似变换矩阵和若尔当标准型A=[1 2;3 4];>> [V,D]=eig(A)V =-0.8246 -0.41600.5658 -0.9094D =-0.3723 00 5.3723>> [V,J]=jordan(A)V =0.2389 0.76110.5222 -0.5222J =5.3723 00 -0.3723线性方程组求解A=[1 2 1;3 -2 1];B=[1;4];x=A\B x =1.2500 ||求一特解-0.1250>> A=[1 2;3 -2;1 -1];B=[1;4;2];x=A\Bx = ||求得一最小二乘近似解1.2838-0.1757:方阵的相似对角化及应用:A=[1 1/4 0;0 1/2 0;0 1/4 1];[P,T]=eig(A) P =1.0000 0 -0.40820 0 0.81650 1.0000 -0.4082T =1.0000 0 00 1.0000 00 0 0.5000求得三个特征值1,1,0.5,对应特征向量(1,0,0),(0,0,1),(-0.4028,0.8165,-0.4082),由于三个特征向量线性无关,从而A 可相似对角化,即p-1AP=T.那么A∧n=p[1 0 0;0 1 0;0 0 0]p-1,计算的P*diag([1,1,0])*inv(P)ans =1.0000 0.50000 00 0 00 0.5000 1.0000所以得到近似解。
【关键字】学习用Matlab学习线性代数__行列式实验目的理解行列式的概念、行列式的性质与计算Matlab函数det实验内容前面的四个练习使用整数矩阵,并演示一些本章讨论的行列式的性质。
最后两个练习演示我们使用浮点运算计算行列式时出现的不同。
理论上将,行列式的值应告诉我们矩阵是否是奇异的。
然而,如果矩阵是奇异的,且计算其行列式采用有限位精度运算,那么由于舍入误差,计算出的行列式的值也许不是零。
一个计算得到的行列式的值很接近零,并不能说明矩阵是奇异的甚至是接近奇异的。
此外,一个接近奇异的矩阵,它的行列式值也可能不接近零。
1.用如下方法随机生成整数元素的5阶方阵:A=round(10*rand(5)) 和B=round(20*rand(5))-10用Matlab计算下列每对数。
在每种情况下比较第一个是否等于第二个。
(1)det(A) ==det(A T) (2)det(A+B) ;det(A)+det(B)(3)det(AB)==det(A)det(B) (4)det(ATBT) ==det(AT)det(BT)(5)det(A-1)==1/det(A) (6)det(AB-1)==det(A)/det(B)> A=round(10*rand(5));>> B=round(20*rand(5))-10;>> det(A)ans =5972>> det(A')ans5972>> det(A+B)ans =36495>> det(A)+det(B)ans =26384>> det(A*B)ans =4>> det(A)*det(B)ans =4>> det(A'*B')ans =4>> det(A')*det(B')ans =4>> det(inv(A))ans =0.00016745>> 1/det(A)ans =0.00016745>> det(A*inv(B))ans =0.29257>> det(A)/det(B)ans =0.29257>>2.n阶的幻方阵是否奇异?用Matlab计算n=3、4、5、…、10时的det(magic(n))。
实验三函数式M文件和MA TLAB绘图一、实验目的:1、掌握基本的绘图命令2、掌握各种图形注释方法3、掌握三维图形的绘制方法4、了解一些特殊图形的绘制5、了解图形的高级控制技巧二、相关知识1基本的绘图命令1)、常用绘图命令常用的统计图函数:在MA TLAB 7中,使用plot函数进行二维曲线图的绘制>> x=0:0.1:10;>> y1=sin(x);>> y2=cos(x-2.5);>> y3=sqrt(x);>> plot(x,y1,x,y2,x,y3)3)、极坐标图形的绘制MA TLAB提供了polar(x1,x2,s)函数来在极坐标下绘制图形:(参数1角度,参数2极半径,参数3颜色和线性)>> x= 0:0.01:10;>> y1=sin(x);>> y2 = cos(x-2.5);>> polar(y1,y2,'-r+')4)、多个图形的绘制方法subplot函数可以实现多个图形的绘制:>>x = 0:.1:20;>>subplot(2,2,1)>>plot(x,sin(x));>>subplot(2,2,2);>>plot(x,cos(x))5)、曲线的色彩、线型和数据点型基本的绘图命令都支持使用字符串来给不同的曲线定义不同的线型,颜色和数据点型。
plot(x,sin(x),'-rd')图形注释对图形进行注释的方式A 图形注释“工具栏。
B 图形调色板中的注释工具C insert 菜单中的“注释”命令D 直接使用注释命令Annotation 函数Xlabel ,ylabel ,zlabel 函数 Title 函数 Colorbar 函数 Legend 函数实验内容: 一、 基础练习1、跟我练输入x,y 的值,并将它们的值互换后输出 x=input('Input x please:\n');y=input('Input y please:\n'); echo on z=x; x=y; y=z; disp(x); disp(y);echo off2、练习请求键盘输入命令keyboard ,处理完毕后,键入return ,程序将继续运行 求一元二次方程ax2 +bx+c=0的根。
利用Matlab进行线性代数问题求解的方法与案例引言线性代数是数学的一个重要分支,广泛应用于工程、物理、计算机科学等领域。
而Matlab作为一种功能强大的数值计算软件,提供了各种实用的工具和函数,可以方便地解决线性代数问题。
本文将介绍一些常用的线性代数问题求解方法,并通过具体的案例来展示Matlab在实际应用中的效果。
一、线性方程组的求解线性方程组是线性代数中最基础的问题之一。
Matlab提供了多种求解线性方程组的函数,如“backslash”操作符(\)和“linsolve”函数等。
下面通过一个实例来说明Matlab的线性方程组求解功能。
案例:假设有以下线性方程组需要求解:2x + 3y - 4z = 53x - 2y + z = 8x + 5y - 3z = 7在Matlab中输入以下代码:A = [2 3 -4; 3 -2 1; 1 5 -3];b = [5; 8; 7];x = A\b;通过以上代码,我们可以得到线性方程组的解x=[1; -2; 3]。
这表明在满足以上方程组的条件下,x=1,y=-2,z=3。
可以看出,Matlab在求解线性方程组时,使用简单且高效。
二、矩阵的特征值和特征向量求解矩阵的特征值和特征向量也是线性代数中的重要概念。
利用特征值和特征向量可以得到矩阵的许多性质和信息。
在Matlab中,我们可以通过“eig”函数来求解矩阵的特征值和特征向量。
案例:假设有一个2x2矩阵A,需要求解其特征值和特征向量。
在Matlab中输入以下代码:A = [2 3; 1 4];[V, D] = eig(A);通过以上代码,我们可以得到矩阵A的特征向量矩阵V和特征值矩阵D。
具体结果如下:特征向量矩阵V = [0.8507 -0.5257; 0.5257 0.8507]特征值矩阵D = [1.5858 0; 0 4.4142]由结果可知,矩阵A的特征向量矩阵V和特征值矩阵D可以提供有关该矩阵的很多信息,如相关线性变换、对称性等。