第四章 第三节 平面向量的数量积及平面向量应用举例
- 格式:doc
- 大小:208.50 KB
- 文档页数:9
平面向量的数量积及应用举例考纲解读 1.利用向量数量积的定义或坐标求数量积;2.利用向量数量积的运算求向量夹角及模;3.利用数量积的运算研究垂直关系及图形特征.[基础梳理]1.向量的夹角3.设a ,b 都是非零向量,e 是单位向量,θ为a 与b (或e )的夹角.则 ①e ·a =a ·e =|a |cos θ. ②cos θ=a ·b|a ||b |.③a ·b ≤|a ||b |. 4.数量积的运算律 (1)交换律:a ·b =b ·a .(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ). (3)分配律:a ·(b +c )=a ·b +a ·c 5.平面向量数量积的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),向量a 与b 的夹角为θ,则1.设a =(3,1),b =⎝⎛⎭⎫1,-33,则向量a ,b 的夹角为( ) A .30° B .60° C .120° D .150°答案:B2.已知a =(1,2),b =(3,4),若a +k b 与a -k b 互相垂直,则实数k =( ) A. 5 B .5 C .± 5 D .±55答案:D3.已知a =(1,-3),b =(4,6),c =(2,3),则(b ·c )·a 等于( ) A .(26,-78) B .(-28,-42) C .-52 D .-78 答案:A4.(必修4·习题2.4A 组改编)已知|a |=2,|b |=4且a ⊥(a -b ),则a 与b 的夹角是________. 答案:π35.(2017·高考全国卷Ⅰ改编)已知a 与b 的夹角为60°,|a |=2,|b |=1,则|a +b |=__________.答案:7[考点例题]考点一 平面向量数量积的运算|方法突破[例1] (1)(2017·邢台模拟)在△ABC 中,AB =AC =3,∠BAC =30°,CD 是边AB 上的高,则CD →·CB →=( )A .-94B.94C.274D .-274(2)在菱形ABCD 中,对角线AC =4,E 为CD 的中点,则AE →·AC →=( ) A .8 B .10 C .12D .14(3)如图,AB 是半圆O 的直径,C ,D 是弧AB 的三等分点,M ,N 是线段AB 的三等分点,若OA =6,则MC →·ND →=________.[解析] (1)在△ABC 中,AB =AC =3,∠BAC =30°,CD 是边AB 上的高,则有CD =AC ·sin 30°=32.∴CD →·CB →=|CD →|·|CB →|·cos ∠BCD =|CD →|2=94.故选B.(2) (坐标法)特殊化处理,用正方形代替菱形,边长为22,以A 为原点,建立如图所示坐标系,则A (0,0),C (22,22),E (2,22),所以AC →=(22,22),AE →=(2,22),所以AC →·AE →=22×2+22×22=12,故选C.(3)法一:因为MC →·ND →=(MO →+OC →)·(NO →+OD →)=MO →·NO →+MO →·OD →+OC →·NO →+OC →·OD →=|MO →|·|NO →|cos 180°+|MO →|·|OD →|cos 60°+|OC →|·|NO →|·cos 60°+|OC →|·|OD →|·cos 60°=-4+6+6+18=26.法二:以点O 为坐标原点,AB 所在的直线为x 轴,AB 的垂直平分线为y 轴建立平面直角坐标系(图略),则M (-2,0),N (2,0),C (-3,33),D (3,33),所以MC →=(-1,33),ND →=(1,33),MC →·ND →=-1+27=26.[答案] (1)B (2)C (3)26 [方法提升]解决平面向量数量积问题的常用方法技巧 技巧解读适合题型定义法利用定义式a ·b =|a |·|b |cos θ求解.定义式的特点是具有强烈的几何含义,需要明确两个向量的模及夹角,夹角的求解一般通过具体的图形可确定.适用于平面图形中的向量数量积的有关计算问题坐标法利用坐标式a ·b =x 1x 2+y 1y 2解题.坐标式的特点是具有明显的代数特征,解题时需要引入直角坐标系,明确向量的坐标进行求解,即向量问题“坐标化”. 适用于已知相应向量的坐标求解数量积的有关计算问题转化法求较复杂的向量数量积的运算时,可先利用向量数量积的运算律或相关公式进行化简,然后进行计算.适用于直接求解不易,而转化为其他向量的数量积的有关计算问题[母题变式]1.将本例(2)改为: 在边长为1的正方形ABCD 中,E ,F 分别为BC ,DC 的中点,则AE →·AF →=________.解析:法一:因为AE →=AB →+12AD →,AF →=AD →+12AB →,AD →·AB →=0,所以AE →·AF→=⎝⎛⎭⎫AB →+12AD →·⎝⎛⎭⎫AD →+12AB →=12AB 2→+12AD 2→=1. 法二:以A 为原点,AB 为x 轴建立坐标系(图略), 则E ⎝⎛⎭⎫1,12,F ⎝⎛⎭⎫12,1. ∴AE →·AF →=1×12+12×1=1.答案:12.在本例(1)中条件不变,求CA →·AD →. 解析:在Rt △ADC 中,AD =3 cos 30°=332, 而〈CA →,AD →〉=150°,∴CA →·AD →=|CA →|·|AD →|·cos 150°=3×332×⎝⎛⎭⎫-32=-274.考点二 向量的模、夹角、垂直问题|方法突破命题点1 向量的模的计算[例2] (1)平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=( ) A.3 B .23 C .4D .12 (2)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB→+PC →|的最大值为( )A .6B .7C .8D .9[解析] (1)由已知|a |=2,所以|a +2b |2=a 2+4a ·b +4b 2=4+4×2×1×cos 60°+4=12,所以|a +2b |=2 3.(2)由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,知线段AC 为圆的直径,设圆心为O ,故P A →+PC →=2PO →=(-4,0),设B (a ,b ),则a 2+b 2=1且a ∈[-1,1],PB →=(a -2,b ),所以P A →+PB →+PC →=(a -6,b ).故|P A →+PB →+PC →|=-12a +37, 所以当a =-1时,此式有最大值49=7. [答案] (1)B (2)B [方法提升]求向量模的常用方法[跟踪训练]1.(2017·洛阳统考)若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( )A .(3,-6)B .(-3,6)C .(6,-3)D .(-6,3)解析:由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则λ2+4λ2=35,所以λ=-3,b =(3,-6),故选A.答案:A2.已知向量a 与b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________. 解析:由a·b =|a |·|b |cos 〈a ,b 〉=1×3×cos 120°=-32,得|5a -b |=(5a -b )2=25a 2+b 2-10a·b =25+9-10×⎝⎛⎭⎫-32=7. 答案:7命题点2 向量的夹角计算[例3] (1)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4D .π[解析] 设a 与b 的夹角为θ, |a |=223|b |,因为(a -b )⊥(3a +2b ), 所以(a -b )·(3a +2b )=3|a |2-2|b |2-a ·b =83|b |2-2|b |2-223|b |2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. [答案] A(2)(2017·沈阳教学质量监测)已知两个非零向量a ,b 满足a ·(a -b )=0,且2|a |=|b |,则〈a ,b 〉=( )A .30°B .60°C .120°D .150°[解析] 法一:由题知a 2=a ·b ,而cos 〈a ,b 〉=a·b|a |·|b |=|a |22|a |2=12,所以〈a ,b 〉=60°,故选B.(定义法)法二:作OA →=a ,∵a ⊥(a -b ), 作AC →⊥OA →,则CA →=a -b ,∴OC →=b ,又∵|b |=2|a |,即|OC →|=2|OA →|,在Rt △OAC 中,∴∠AOC =60°,即〈a ,b 〉=60°.(数形结合法) [答案] B [方法提升] 求向量夹角的方法方法 解读适合题型 定义法 cos 〈a ,b 〉=a ·b|a ||b |适用于向量的代数运算 数形结合法转化为求三角形的内角适用于向量的几何运算[跟踪训练]3.在典例(1)中,将条件“|a |=223|b |”换成“(2b -3a )⊥b ”,其他不变,则两个向量的夹角θ为__________.解析:由(2b -3a )⊥b 得(2b -3a )·b =0, 所以2b 2-3a ·b =0,① 由(a -b )⊥(3a +2b ),得(a -b )·(3a +2b )=0,即3a 2-a ·b -2b 2=0.② 由①②联立得|a |=223|b |,代入①得 cos θ=22,因为θ∈[0,π],所以θ=π4. 答案:π44.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.解析:由AO →=12(AB →+AC →),可得O 为BC 的中点,故BC 为圆O 的直径,所以AB →与AC →的夹角为90°.答案:90°命题点3 向量的垂直问题[例4] (1)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 (2)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λ AB →+AC →,且AP →⊥BC →,则实数λ的值为__________.[解析] (1)设c =(m ,n ),则a +c =(1+m,2+n ),a +b =(3,-1),因为(c +a )∥b ,则有-3(1+m )=2(2+n );又c ⊥(a +b ),则有3m -n =0,解得m =-79,n =-73.所以c =⎝⎛⎭⎫-79,-73.(2)由AP →⊥BC →,知AP →·BC →=0,即AP →·BC →=(λ AB →+AC →)·(AC →-AB →)=(λ-1)AB →·AC →-λ AB →2+AC →2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [答案] (1)D (2)712[方法提升][跟踪训练]5.(2018·西安质检)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( )A .|b |=1B .a ⊥bC .a·b =1D .(4a +b )⊥BC →解析:由题意,BC →=AC →-AB →=(2a +b )-2a =b, 则|b |=2,故A 错误;|2a |=2|a |=2,所以|a |=1,又AB →·AC →=2a ·(2a +b )=4|a |2+2a·b =2×2cos 60°=2,所以a·b =-1,故B ,C 错误.故应选D.答案:D6.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则|b |=( ) A .3 5 B .32 C .2 5D.10解析:由题意得a -2b =(-2-2k,7), ∵(a -2b )⊥c . ∴(a -2b )·c =0,即(-2-2k,7)·(1,2)=0,-2-2k +14=0,解得k =6, 所以|b |=62+(-3)2=35,选A. 答案:A考点三 向量与三角函数、三角形的综合|模型突破角度1 向量与三角函数的综合[例5] 设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin 2x +m ). (1)求函数f (x )的最小正周期和函数f (x )在[0,π]上的单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π6时,-4<f (x )<4恒成立,求实数m 的取值范围. [解析] (1)因为f (x )=a ·b ,a =(2cos x,1),b =(cos x ,3sin 2x +m ),所以f (x )=2cos 2x +3sin 2x +m =cos 2x +3sin 2x +m +1=2sin ⎝⎛⎭⎫2x +π6+m +1. 所以函数f (x )的最小正周期T =2π2=π.因为0≤x ≤π, 所以π6≤2x +π6≤13π6,由π6≤2x +π6≤π2或3π2≤2x +π6≤13π6, 可得0≤x ≤π6或2π3≤x ≤π.所以函数f (x )在[0,π]上的单调递增区间为⎣⎡⎦⎤0,π6和⎣⎡⎦⎤2π3,π. (2)因为0≤x ≤π6,所以π6≤2x +π6≤π2,所以12≤sin ⎝⎛⎭⎫2x +π6≤1,所以m +2≤f (x )≤m +3. 因为-4<f (x )<4恒成立,所以⎩⎪⎨⎪⎧m +3<4,m +2>-4,解得-6<m <1.所以实数m 的取值范围为(-6,1). [模型解法]角度2 向量与三角形的综合[例6] (1)已知O ,N ,P 在△ABC 所在平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,且P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心 外心 垂心B .重心 外心 内心C .外心 重心 垂心D .外心 重心 内心(注:三角形的三条高线交于一点,此点为三角形的垂心)(2)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3[解析] (1)由|OA →|=|OB →|=|OC →|知,O 为△ABC 的外心;由NA →+NB →+NC →=0知,N 为△ABC 的重心,因为P A →·PB →=PB →·PC →,所以(P A →-PC →)·PB →=0,所以CA →·PB →=0,所以CA →⊥PB →,即CA ⊥PB ,同理AP ⊥BC ,CP ⊥AB ,所以P 为△ABC 的垂心.(2)由m ⊥n 得m ·n =0,即3cos A -sin A =0, 即2cos ⎝⎛⎭⎫A +π6=0, 因为π6<A +π6<7π6,所以A +π6=π2,即A =π3.又a cos B +b cos A =2R sin A cos B +2R sin B cos A=2R sin(A +B )=2R sin C =c (R 为△ABC 外接圆半径),且a cos B +b cos A =c sin C , c =c sin C ,所以sin C =1,又C ∈(0,π),所以C =π2,所以B =π-π3-π2=π6.[答案] (1)C (2)C [模型解法]向量的运算本身就涉及到三角形,解决其交汇问题的关键点: (1)转化,向量的模与三角形边长的转化, 向量的夹角与三角形内角的转化(2)结合,结合向量的运算法则,化为边角关系,结合三角形的正、余弦定理,求解边,角.(3)检验,结论是否符合向量的概念,是否符合三角形的知识.[高考类题](2017·高考全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-1解析: 如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ),所以P A →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2x 2+2⎝⎛⎭⎫y -322-32,当x =0,y =32时,P A →·(PB →+PC →)取得最小值,为-32,选择B. 答案:B[真题感悟]1.[考点一](2017·高考全国卷Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则( )A .a ⊥bB .|a |=|b |C .a ∥bD .|a |>|b |解析:依题意得(a +b )2-(a -b )2=0,即4a ·b =0,a ⊥b ,选A.答案:A2.[考点一、二](2017·高考全国卷Ⅰ)已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________.解析:因为a +b =(m -1,3),a +b 与a 垂直,所以(m -1)×(-1)+3×2=0,解得m =7.答案:73.[考点一、二](2017·高考全国卷Ⅲ)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________.解析:因为a ⊥b ,所以a ·b =-2×3+3m =0,解得m =2.答案:24.[考点三](2017·高考北京卷)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为__________.解析:法一:根据题意作出图象,如图所示,A (-2,0),P (x ,y ).由点P 向x 轴作垂线交x 轴于点Q ,则点Q 的坐标为(x,0).AO →·AP →=|AO →||AP →|cos θ,|AO →|=2,|AP →|=(x +2)2+y 2,cos θ=AQ AP =x +2(x +2)2+y 2, 所以AO →·AP →=2(x +2)=2x +4.点P 在圆x 2+y 2=1上,所以x ∈[-1,1].所以AO →·AP →的最大值为2+4=6.法二:因为点P 在圆x 2+y 2=1上,所以可设P (cos α,sin α)(0≤a <2π),所以AO →=(2,0),AP →=(cos α+2,sin α),AO →·AP →=2cos α+4≤2+4=6,当且仅当cos α=1,即α=0,P (1,0)时“=”号成立.答案:65.[考点一、三](2017·高考天津卷)在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2 DC →,AE →=λ AC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为__________.解析:由题意,知|AB →|=3,|AC →|=2,AB →·AC →=3×2×cos 60°=3,AD →=AB →+BD →=AB →+23BC → =AB →+23(AC →-AB →) =13AB →+23AC →, ∴AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λ AC →-AB →) =λ-23×3-13×32+2λ3×22 =113λ-5=-4, 解得λ=311. 答案:311。
平面向量的数量积和向量积推导平面向量的数量积和向量积是向量运算中常用的两个操作。
它们在几何学、物理学等领域中有广泛的应用。
本文将对平面向量的数量积和向量积进行推导和说明。
一、平面向量的数量积数量积(也称为点积或内积)是两个向量的乘积的数量表示。
设有两个平面向量a和b,它们的数量积为:a ·b = |a| * |b| * cosθ其中,|a|和|b|分别表示向量a和b的模长,θ表示a和b之间的夹角。
由此可见,数量积的结果是一个实数。
它有以下几个性质:1. 交换律:a · b = b · a2. 分配律:(a + b) · c = a · c + b · c3. 数乘结合律:(k * a) · b = k * (a · b) = a · (k * b)二、平面向量的向量积向量积(也称为叉积或外积)是两个向量的乘积的向量表示。
设有两个平面向量a和b,它们的向量积为:a ×b = |a| * |b| * sinθ * n其中,|a|和|b|分别表示向量a和b的模长,θ表示a和b之间的夹角,n表示与a和b均垂直的单位向量。
向量积的结果是一个向量,它的方向垂直于平面,由右手法则确定。
由此可见,向量积具有以下几个性质:1. 反交换律:a × b = - (b × a)2. 分配律:(a + b) × c = a × c + b × c3. 数乘结合律:(k * a) × b = k * (a × b) = a × (k * b)三、数量积和向量积之间的关系数量积和向量积之间存在一个重要的关系,即向量积的模长等于数量积的模长和夹角的正弦值的乘积:|a × b| = |a| * |b| * sinθ此外,还可以通过向量积来求得两个向量之间的夹角θ:cosθ = (a · b) / (|a| * |b|)四、应用举例1. 面积计算:对于平行四边形,以两边为相邻边的一条对角线为底,可以使用向量积求得其面积。
平面向量的数量积讲义一、知识梳理1.向量的夹角已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB 就是向量a 与b 的夹角,向量夹角的范围是[0,π]. 2.平面向量的数量积3.设a ,b 都是非零向量,e 是单位向量,θ为a 与b (或e )的夹角.则 (1)e ·a =a ·e =|a |cos θ. (2)a ⊥b ⇔a ·b =0. (3)当a 与b 同向时,a ·b =|a ||b |; 当a 与b 反向时,a ·b =-|a ||b |.特别地,a ·a =|a |2或|a |(4)cos θ=a ·b |a ||b |.(5)|a ·b |≤|a ||b |.4.平面向量数量积满足的运算律(1)a·b =b·a ;(2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数);(3)(a +b )·c =a·c +b·c . 5.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到(1)若a =(x ,y ),则|a |2=x 2+y 2或|a |(2)设A (x 1,y 1),B (x 2,y 2),则A ,B 两点间的距离|AB |=|AB →| (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0. (4)若a ,b 都是非零向量,θ是a 与b 的夹角,则cos θ=a ·b|a ||b |.注意:1.两个向量a ,b 的夹角为锐角⇔a·b >0且a ,b 不共线; 两个向量a ,b 的夹角为钝角⇔a·b <0且a ,b 不共线. 2.平面向量数量积运算的常用公式(1)(a +b )·(a -b )=a 2-b 2.(2)(a +b )2=a 2+2a·b +b 2. (3)(a -b )2=a 2-2a·b +b 2.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )c =a (b ·c ).( ) (5)两个向量的夹角的范围是]2,0[.( )(6)若a·b >0,则a 和b 的夹角为锐角;若a·b <0,则a 和b 的夹角为钝角.( ) 题组二:教材改编2.已知向量a =(2,1),b =(-1,k ),a·(2a -b )=0,则k =________.3.已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的投影为________. 题组三:易错自纠4.设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于________. 5.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB →在CD →方向上的投影为________. 6.已知△ABC 的三边长均为1,且AB →=c ,BC →=a ,CA →=b ,则a·b +b·c +a·c =________.三、典型例题题型一:平面向量数量积的运算1.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( )A .20 B. 15 C .9 D .62.如图,已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( )A.-58B.18C.14D.118思维升华:平面向量数量积的三种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b =|a ||b |cos 〈a ,b 〉.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)利用数量积的几何意义求解.题型二:平面向量数量积的应用 命题点1:求向量的模典例 (1)平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( ) A .13+6 2 B .25 C.30D.34(2)已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________. 命题点2:求向量的夹角典例 (1)已知向量a ,b 满足(2a -b )·(a +b )=6,且|a |=2,|b |=1,则a 与b 的夹角为______.(2)平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m 等于( ) A .-2 B .-1 C .1 D .2 思维升华:(1)求解平面向量模的方法①写出有关向量的坐标,利用公式|a |=x 2+y 2即可.②当利用向量的线性运算和向量的数量积公式进行求解,|a |=a 2. (2)求平面向量的夹角的方法①定义法:cos θ=a·b|a||b |,注意θ的取值范围为[0,π].②坐标法:若a =(x 1,y 1),b =(x 2,y 2),则cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.③解三角形法:可以把所求两向量的夹角放到三角形中进行求解.跟踪训练 (1)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________.(2)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 题型三:平面向量与三角函数典例 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 思维升华:平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.四、反馈练习1.设非零向量a ,b 满足|a +b |=|a -b |,则( )A .a ⊥bB .|a |=|b |C .a ∥bD .|a |>|b |2.已知向量a ,b 满足a·(a -b )=2,且|a |=1,|b |=2,则a 与b 的夹角为( ) A.π6 B.π2 C.5π6D.2π33.已知向量a =(m,2),b =(2,-1),且a ⊥b ,则|2a -b |a·(a +b )等于( )A .-53B .1C .2D.544.在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →等于( ) A.-32B .-23C.23D.325.在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →等于( ) A.89 B.109 C.259D.2696.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( ) A .正三角形 B .直角三角形 C .等腰三角形D .等腰直角三角形7.已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________. 8.已知向量a ,b 的夹角为3π4,|a |=2,|b |=2,则a·(a -2b )=________.9.已知非零向量a ,b 满足:2a·(2a -b )=b·(b -2a ),|a -2b |=3|a |,则a 与b 的夹角为________. 10.已知a =(λ,2λ),b =(3λ,2),如果a 与b 的夹角为锐角,则λ的取值范围是______________. 11.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.12.已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.13.已知△DEF 的外接圆的圆心为O ,半径R =4,如果OD →+DE →+DF →=0,且|OD →|=|DF →|,则向量EF →在FD →方向上的投影为________.14.在等腰直角△ABC 中,∠ABC =90°,AB =BC =2,M ,N 为AC 边上的两个动点(M ,N 不与A ,C 重合),且满足|MN →|=2,则BM →·BN →的取值范围为________.15.已知平面向量a ,b ,c 满足|a |=|b |=1,a ⊥(a -2b ),(c -2a )·(c -b )=0,则|c |的最大值与最小值的和为( ) A .0 B.3 C. 2D.716.已知在△ABC 所在平面内有两点P ,Q ,满足P A →+PC →=0,QA →+QB →+QC →=BC →,若|AB →|=4,|AC →|=2,S △APQ =23,则AB →·AC →的值为______.。
第03讲平面向量的数量积(精讲)-2023年高考数学一轮复习讲练测(新教材新高考)第03讲平面向量的数量积(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析角度2:平面向量数量积的几何意义高频考点二:平面向量数量积的运算角度1:用定义求数量积角度2:向量模运算角度3:向量的夹角角度4:已知模求数量积角度5:已知模求参数高频考点三:平面向量的综合应用高频考点四:极化恒等式第四部分:高考真题感悟第一部分:知识点精准记忆1、平面向量数量积有关概念1.1向量的夹角已知两个非零向量a 和b ,如图所示,作OA a = ,OB b =,则AOB θ∠=(0θπ≤≤)叫做向量a 与b的夹角,记作,a b <> .(2)范围:夹角θ的范围是[0,]π.当0θ=时,两向量a ,b共线且同向;当2πθ=时,两向量a ,b 相互垂直,记作a b ⊥ ;当θπ=时,两向量a ,b共线但反向.1.2数量积的定义:已知两个非零向量a 与b ,我们把数量||||cos a b θ 叫做a 与b的数量积(或内积),记作a b ⋅ ,即||||cos a b a b θ⋅= ,其中θ是a 与b的夹角,记作:,a b θ=<> .规定:零向量与任一向量的数量积为零.记作:00a ⋅=.1.3向量的投影①定义:在平面内任取一点O ,作OM a ON b ==,.过点M 作直线ON 的垂线,垂足为1M ,则1OM 就是向量a 在向量b 上的投影向量.②投影向量计算公式:当θ为锐角(如图(1))时,1OM 与e 方向相同,1||||cos OM a λθ== ,所以11||||cos OM OM e a e θ== ;当θ为直角(如图(2))时,0λ=,所以10||cos 2OM a e π==;当θ为钝角(如图(3))时,1OM 与e方向相反,所以11||||cos ||cos()||cos OM a MOM a a λπθθ=-=-∠=--= ,即1||cos OM a e θ= .当0θ=时,||a λ=,所以1||||cos0OM a e a e == ;当πθ=时,||a λ=-,所以1||||cosπOM a e a e =-= 综上可知,对于任意的[0π]θ∈,,都有1||cos OM a e θ= .2、平面向量数量积的性质及其坐标表示已知向量1122(,),(,)a x y b x y == ,θ为向量a 和b的夹角:2.1数量积1212=||||cos x x y y a b a b θ⋅=+2.2模:2211||a a x y =⋅=+a 2.3夹角:121222221122cos ||||x x y y a ba b x y x y θ+⋅==++ 2.4非零向量a b ⊥的充要条件:121200a b x x y y ⋅=⇔+= 2.5三角不等式:||||||a b a b ⋅≤ (当且仅当a b∥时等号成立)⇔222212121122x x y y x y x y +≤+⋅+3、平面向量数量积的运算①a b b a⋅=⋅r r r r ②()()a b a b a b λλλ⋅=⋅=⋅ ③()c+⋅=⋅+⋅ a b c a c b 4、极化恒等式①平行四边形形式:若在平行四边形ABCD 中,则221()4AB AD AC DB ⋅=- ②三角形形式:在ABC ∆中,M 为BC 的中点,所以222214AB AC AM MB AM BC⋅=-=- 5、常用结论①22()()a b a b a b+-=- ②222()2a b a a b b+=+⋅+ ③222()2a b a a b b-=-⋅+ 第二部分:课前自我评估测试一、判断题(2022·全国·高一专题练习)1.判断(正确的填“正确”,错误的填“错误”)(1)两个向量的数量积仍然是向量.()(2)若0a b ⋅= ,则0a =或0b = .()(3)a ,b 共线⇔a ·b =|a ||b |.()(4)若a ·b =b ·c ,则一定有a =c.()(5)两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量.()(2021·全国·高二课前预习)2.已知两个向量,NM MP的夹角为60°,则∠NMP =60°.()二、单选题(2022·河南安阳·高一阶段练习)3.已知向量()2,1a t =- ,()1,1b t =- ,若a b ⊥,则t =()A .1B .13-C .1-D .2(2022·全国·模拟预测(文))4.在边长为2的正三角形ABC 中,则AB BC ⋅= ()A .2-B .1-C .1D .2(2022·广东·深圳市龙岗区德琳学校高一期中)5.在ABC 中,若0AB AC ⋅<,则ABC -定是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析例题1.(2022·河北武强中学高一期中)已知向量a ,b满足1a = ,1a b ⋅=- ,则()2a a b ⋅-=()A .0B .2C .3D .4【答案】C22(2)222113a a b a a b a a b ⋅-=-⋅=-⋅=⨯+=.故选:C.例题2.(2022·山西太原·高一期中)给出以下结论,其中正确结论的个数是()①0a b a b ⇒⋅=∥ ②a b b a⋅=⋅r r r r ③()()a b c a b c ⋅⋅=⋅⋅ ④a b a b⋅≤⋅A .1B .2C .3D .4【答案】B由数量积的定义知||||cos a b a b θ⋅=,对于①,若a b∥,则||||a b a b ⋅= 或||||a b a b -⋅= ,0a b ⋅= 不一定成立,①错误对于②,a b b a ⋅=⋅r r r r成立,②正确对于③,()a b c ⋅⋅r r r 与a共线,()a b c ⋅⋅r r r 与c 共线,两向量不一定相等,③错误对于④,||||cos a b a b a b θ⋅=≤⋅,④正确故选:B例题3.(2022·江苏·涟水县第一中学高一阶段练习)在锐角ABC 中,关于向量夹角的说法,正确的是()A .AB 与BC的夹角是锐角B .AC 与BA的夹角是锐角C .AC 与BC的夹角是锐角D .AC 与BC的夹角是钝角【答案】C 如下图所示:对于A 选项,AB 与BC的夹角为ABC π-∠,为钝角,A 错;对于B 选项,AC 与BA的夹角为BAC π-∠,为钝角,B 错;对于CD 选项,AC 与BC的夹角等于ACB ∠,为锐角,C 对D 错;故选:C.例题4.(2022·宁夏·平罗中学模拟预测(理))已知向量,a b 的夹角为23π,且||3,a b ==,则b 在a方向上的投影为___________.【答案】1-由题意得2b = ,则b 在a 方向上的投影为2||cos ,2cos13π=⨯=- b a b .故答案为:1-.角度2:平面向量数量积的几何意义例题1.(2022·江西抚州·高一期中)已知向量()()1121a b ==- ,,,,则a 在b 方向上的投影数量为()A .15B .15-CD.5【答案】D因为()()1121a b ==-,,,,所以cos a b a b a b ⋅〈⋅〉==⋅ ,因此a 在b方向上的投影数量为cos ()105a ab 〈⋅〉=-=-,故选:D例题2.(2022·全国·高三专题练习(理))在圆O 中弦AB 的长度为8,则AO AB ⋅=()A .8B .16C .24D .32【答案】Dcos 8432AO AB AB AO OAB ⋅=⋅∠=⨯=.故选:D例题3.(2022·甘肃·高台县第一中学高一阶段练习)已知8,4a b == ,a 与b 的夹角为120°,则向量b 在a方向上的投影为()A .4B .-4C .2D .-2【答案】D由向量8,4a b == ,且a 与b 的夹角为120°,所以向量b 在a 方向上的投影为cos 4cos1202b θ=⨯=-,故选:D.例题4.(2022·吉林一中高一期中)在ABC中,AB =4BC =,30B =︒,P 为边上AC 的动点,则BC BP ⋅的取值范围是()A .[]6,16B .[]12,16C .[]4,12D .[]6,12【答案】A如图,作AE BC ⊥于E ,作PF BC ⊥于F ,由已知得AE =32BE ==,cos 4BC BP BC BP PBC BF ⋅=∠= ,当P 在线段AC 上运动时地,F 在线段EC 上运动,342BF ≤≤,所以6416BF ≤≤ ,故选:A .例题5.(2022·江西景德镇·三模(理))窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2,若点P 在四个半圆的圆弧上运动,则AB OP ×uu u r uu u r 的取值范围是()A .[]22-,B .⎡⎣-C .⎡-⎣D .[]4,4-【答案】Dcos ,AB OP AB OP AB OP ×=<>uu u r uu u r uu u r uu u r uu u r uu u r ,即AB 与OP 在向量AB方向上的投影的积.由图2知,O 点在直线AB 上的射影是AB 中点,由于2AB =,圆弧直径是2,半径为1,所以OP 向量AB方向上的投影的最大值是2,最小值是-2,因此AB OP ×uu u r uu u r 的最大值是224⨯=,最小值是2(2)4⨯-=-,因此其取值范围为[4,4]-,故选:D .题型归类练(2022·黑龙江·佳木斯一中高一期中)6.已知△ABC 的外接圆圆心为O ,且AO AB AC +=,AO AC = ,则向量BA 在向量BC上的投影向量为()A .14BCB .12BC C .14BC - D .12BC -(2022·内蒙古呼和浩特·二模(理))7.非零向量a ,b ,c 满足()b a c ⊥- ,a 与b 的夹角为6π,3a = ,则c 在b 上的正射影的数量为()A .12-B .2-C .12D .2(2022·北京市第十九中学高一期中)8.如图,已知四边形ABCD 为直角梯形,AB BC ⊥,//AB DC ,AB =1,AD =3,23πBAD ∠=,设点P 为直角梯形ABCD 内一点(不包含边界),则AB AP ⋅的取值范围是()A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .30,2⎛⎫ ⎪⎝⎭D .30,2⎡⎤⎢⎥⎣⎦(2022·全国·高三专题练习)9.在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r ,1AD AB == ,与BC方向相同的单位向量为e ,则向量AB 在BC上的投影向量为()A .12eB .12e- C D .(2022·河南河南·三模(理))10.在△ABC 中,“0AB BC ⋅<”是“△ABC 为钝角三角形”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2022·四川·宜宾市叙州区第一中学校高一期中)11.在圆O 中弦4AB =,则AO AB ⋅=__________.(2022·四川·树德中学高一阶段练习)12.如图,直径4AB =的半圆,D 为圆心,点C 在半圆弧上,3ADC π∠=,线段AC 上有动点P ,则DP BA ⋅的取值范围为_________.高频考点二:平面向量数量积的运算角度1:用定义求数量积例题1.(2022·全国·华中师大一附中模拟预测)正六边形ABCDEF 的边长为2,则CE FD ⋅u u r u u u r=()A .-6B .-C .D .6【答案】A在CDE 中,2CD DE ==,120CDE ∠=︒,所以CE =所以有CE DF == CE 与FD 所成的角为120°,所以(2162CE FD ⎛⎫⋅=⨯-=- ⎪⎝⎭,故选:A .例题2.(2022·广东·东莞市东方明珠学校高一期中)已知正方形ABCD 的边长为2,E 为BC 的中点,则()AB BE BC +⋅=()A .2-B .0C .12D .2【答案】D()AB BE BC +⋅= AB BC BE BC ⋅+⋅0122=+⨯=.故选:D例题3.(2022·北京·中关村中学高一期中)已知12a = ,4b = ,且a ,b的夹角为π3,则⋅=a b ()A .1B .1±C .2D .2±【答案】Aπ||||cos 3a b a b ⋅=⋅⋅114122=⨯⨯=.故选:A例题4.(2022·安徽·高二阶段练习)已知平面向量)1a =-,单位向量b满足20b a b +⋅= ,则向量a 与b夹角为___________.【答案】23π)1a =- ,2a =,由20b a b +⋅= 可知112cos ,0a b +⨯⨯= ,解得1cos ,2a b =- ,所以2,3a b π= .故答案为:23π例题5.(2022·上海奉贤区致远高级中学高一期中)在ABC 中,60,6,5B AB BC ∠=== ,则AB BC ⋅=_______【答案】15-因为60,6,5B AB BC ∠=== ,所以()1cos 1806065152AB BC AB BC ⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭.故答案为:15-.角度2:向量模运算例题1.(2022·山东潍坊·高一期中)已知i ,j是平面内的两个向量,i j ⊥ ,且2,2,34j a i j b i i j ===+=-+,则a b -=r r ()A .B .C .D .【答案】D 【详解】由42a b i j -=-r r r r,则2222(42)1616480a b i j i i j j -=-=-⋅+=r r r r r r r r ,所以a b -=r r 故选:D例题2.(2022·四川绵阳·高一期中)已知向量a 与b 的夹角为2π3,且||2a = ,1b ||=,则|2|a b +=()A .2B .C .4D .12【答案】A∵2π13|s |co b a b a ⋅==- ||则222|2|444a b a a b b +=+⋅+= ,即|2|2a b += 故选:A .例题3.(2022·河南安阳·高一阶段练习)已知向量a 与b的夹角为60︒,且||2,|2|a a b =-= ||b =()AB .1C .2D .4【答案】C解:向量a ,b夹角为60︒,且||2,|2|a a b =-= ∴222(2)44a b a a b b -=-⋅+ 22242||cos604||12b b ︒=-⨯⨯⨯+= ,即2||||20b b --=,解得||2b =或||1b =- (舍),∴||2b =,故选:C例题4.(2022·河南新乡·高一期中)已知向量a =,b ,且a 与b的夹角为6π,则2a b -= ()A .7B C .6D【答案】B2a ==,cos 362a b a b π∴⋅=⋅== ,222244161237a b a a b b ∴-=-⋅+=-+= ,2a b ∴-= 故选:B.例题5.(2022·河南·模拟预测(理))已知平面向量a ,b的夹角为π3,且3a = ,8b = ,则a b -=______.【答案】7因为平面向量a ,b的夹角为π3,且3a = ,8b = ,所以由7a b -====,故答案为:7例题6.(2022·河南·模拟预测(文))已知向量(a = ,4b = ,且向量a 与b 的夹角为34π,则a b -= ______.因为(a = ,所以a =又4b = ,3,4a b π〈〉=,所以34cos124a b π⋅==- 所以2222()218241658a b a b a a b b -=-=-⋅+=++=所以a b -角度3:向量的夹角例题1.(2022·内蒙古赤峰·模拟预测(理))若向量a ,b满足1a = ,2b = ,()235a a b ⋅+= ,则a 与b的夹角为()A .6πB .3πC .23πD .56π【答案】B解:因为1a = ,2b = ,()235a a b ⋅+= ,所以2235a a b +⋅=,即2235a a b +⋅= ,所以1a b ⋅= ,设a 与b的夹角为θ,则1cos 2a b a b θ⋅==⋅ ,因为[]0,θπ∈,所以3πθ=;故选:B例题2.(2022·山东济南·三模)已知单位向量a 、b 、c ,满足a b c +=,则向量a 和b的夹角为()A .2π3B .π2C .π3D .6π【答案】A∵a b c +=,∴()()a b a b c c +⋅+=⋅ ,∴2222a b a b c ++⋅= ,∴12a b ⋅=-r r ,∴1cos ,2a b a b a b ⋅==-⋅,∵[],0,π∈ a b ,∴2π,3a b = .故选:A .例题3.(2022·河北邯郸·二模)若向量a ,b 满足||2a =,b = 3a b ⋅=,则向量b 与b a -夹角的余弦值为().A.2BC.16D.20【答案】D因为b = 3a b ⋅=,所以22()39b b a b b a ⋅-=-⋅=-=,因为b a -==== ,所以向量b 与b a -夹角的余弦值为()20b b a b b a ⋅-==⋅- ,故选:D例题4.(2022·河南·扶沟县第二高中高一阶段练习)已知向量a = ,b 是单位向量,若|2|a b -= a 与b的夹角为_____.【答案】π3##60o由a = 、b为单位向量,|2|a b -= 得:2|23|1-= a b ,即224413a a b b -⋅+= ,由2a = ,=1b 所以cos ,1a b a b a b ⋅=⋅= ,1cos ,2a b = ,所以,a b =π3故答案为:π3例题5.(2022·山东烟台·高一期中)若||a =r ,||2b =,且|2|a b += a 与b的夹角大小为______.【答案】150︒##5π6因为|2|a b + 22447a a b b +⋅+= ,即34447a b +⋅+⨯= ,解得3a b ⋅=- ,所以cos ,2a b a b a b ⋅〈〉===-,而0,πa b ≤〈〉≤ ,所以5π,6a b 〈〉= .故答案为:150︒.例题6.(2022·安徽·巢湖市第一中学模拟预测(文))已知向量()1,2a =-r,()1,b λ= ,则“12λ<”是“a 与b 的夹角为锐角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B当a 与b 的夹角为锐角时,0a b ⋅> 且a 与b不共线,即12020λλ->⎧⎨+≠⎩,∴12λ<且2λ≠-,∴“12λ<”是“a 与b 的夹角为锐角”的必要不充分条件.故选:B.例题7.(2022·辽宁·东北育才学校高一期中)已知向量()1,2a = ,()2,b λ= ,且a 与b的夹角为锐角,则实数λ的取值范围是______.【答案】1λ>-且4λ≠因向量()1,2a = ,()2,b λ= ,且a 与b 的夹角为锐角,于是得0a b ⋅> ,且a 与b 不共线,因此,220λ+>且40λ-≠,解得1λ>-且4λ≠,所以实数λ的取值范围是1λ>-且4λ≠.故答案为:1λ>-且4λ≠例题8.(2022·黑龙江·勃利县高级中学高一期中)已知向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角.则λ的取值范围是______.【答案】12λ>-且2λ≠解:因为向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角,所以0a b ⋅<且两个向量不共线,即240240λλ--<⎧⎨-≠⎩,解得12λ>-且2λ≠.故答案为:12λ>-且2λ≠.例题9.(2022·河北·高一期中)已知向量(),2a λ=- ,()3,4b =- ,若a ,b 的夹角为钝角,则λ的取值范围为______【答案】833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭解:由题意得380a b λ⋅=--< ,且46λ≠,解得83λ>-且32λ≠,即833,,322λ⎛⎫⎛⎫∈-⋃+∞ ⎪ ⎪⎝⎭⎝⎭;故答案为:833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭角度4:已知模求数量积例题1.(2022·吉林长春·模拟预测(文))已知向量a ,b满足2a b == ,a b -=r r ,则⋅=a b ()A .2-B .-C .D .6【答案】A||a b -==4241 2,2a b a b ∴-⋅+=⋅=- 故选:A例题2.(2022·全国·模拟预测(文))已知向量a 、b 满足2a b b ==-=,则a b ⋅= ()A .6B .-C .D .-2【答案】D2244122||21222b a b a b a b a b +--=⇒-=+-⋅=⇒⋅==- .故选:D.例题3.(2022·北京十五中高一期中)若向量,a b满足122a b a b ==-= ,,,则a b ⋅=_____.【答案】12##0.5因为122a b a b ==-= ,,,所以22224a ba ab b-=-⋅+= ,即1244a b -⋅+=,所以12a b ⋅= .故答案为:12.例题4.(2022·安徽马鞍山·三模(文))设向量a ,b满足1a = ,2b = ,a b -= 则a b ⋅=___________.【答案】0解:因为向量a ,b满足1a = ,2b = ,a b -= 所以()22222221225a b a ba ab b a b -=-=-⋅+=+-⋅=,所以0a b ⋅=,故答案为:0.例题5.(2022·贵州贵阳·二模(理))已知向量0a b c ++=,||||||1a b c === ,则a b b c c a ⋅+⋅+⋅=________.【答案】32-##-1.5∵向量0a b c ++=,||||||1a b c === ,∴()()()22222320a b ca b a b b c c a a b b c c c a =⋅+⋅+⋅⋅+++++=+⋅=+⋅+,∴32a b b c c a ⋅+⋅+⋅=- .故答案为:32-.角度5:已知模求参数例题1.(2022·全国·高三专题练习)已知0m ≠,向量(,),(2,)a m n b m ==-,若||||a b a b +=-,则实数n =()A .BC .-2D .2【答案】D 【详解】由||||a b a b +=-可得22()()a b a b +=-2222220a a b b a a b b a b ∴+⋅+=-⋅+∴⋅= 20a b m mn ∴⋅=-+=,因为0m ≠,所以2n =.故选:D例题2.(2022·广东·高一阶段练习)已知单位向量,a b满足12a b ⋅= ,则()a tb t R +∈ 的最小值为()A .2B .34C .12D .14【答案】A 【详解】,a b为单位向量,1a b ∴==,2222221a tb a ta b t b t t ∴+=+⋅+=++,则当12t =-时,()2min314t t ++=,mina tb∴+=.故选:A.例题3.(2022·湖北鄂州·高二期末)已知向量(),2a m = ,()1,1b =r,若a b a += 则实数m =()A .2B .2-C .12D .12-【答案】A因为()1,1b =r,则b = a b a b +=+,等式a b a b +=+ 两边平方可得222222a a b b a a b b +⋅+=+⋅+ ,则a b a b ⋅=⋅ ,故a 与b同向,所以,2m =.故选:A.例题4.(2022·安徽·高二阶段练习(文))已知向量a ,b满足4a =,(b =- ,且0a kb +=,则k 的值为______.【答案】2∵0a kb += ,∴0a kb += ,∴a kb =-,∴a kb k b == ,∵(b =-,∴2b ==.又∵4a =,∴2a k b==.故答案为:2.题型归类练(2022·北京·潞河中学三模)13.已知菱形ABCD 的边长为,60a ABC ∠= ,则DB CD ⋅=()A .232a-B .234a-C .234aD .232a(2022·河南·方城第一高级中学模拟预测(理))14.已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠ ,则a 与b的夹角为()A .6πB .π3C .π2D .2π3(2022·全国·高一单元测试)15.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos 10C =,若92CB CA ⋅= ,则c 的最小值为()A .2B .4CD .17(2022·四川省内江市第六中学高一期中(理))16.如图,ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若AC =3,AB =4,则AP CD ⋅的值为()A .125B .512C .1312D .1213(2022·湖南·长沙市明德中学二模)17.已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-= ,则向量b 与向量a b - 夹角的余弦值为()A .2B .0C .2D .2(2022·广东·模拟预测)18.已知单位向量a ,b 满足()2a a b ⊥- ,则向量a ,b 的夹角为()A .120︒B .60︒C .45︒D .30︒(2022·安徽师范大学附属中学模拟预测(文))19.设,a b 为非零向量,且22a b a b +=- ,则a ,b的夹角为___________.(2022·广东广州·三模)20.已知,a b为单位向量,若2a b -= 2a b += __________.(2022·山东济宁·三模)21.在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP = ________.高频考点三:平面向量的综合应用例题1.(2022·湖南·高二阶段练习)“赵爽弦图”是中国古代数学的图腾,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图,某人仿照赵爽弦图,用四个三角形和一个小的平行四边形拼成一个大平行四边形,其中,,,E F G H 分别是,,,DF AG BH CE 的中点,若AG x AB y AD =+,则xy =()A .625B .625-C .825D .825-【答案】C由题意,可得()11112224AG AB BG AB BH AB BC CH AB BC CE =+=+=++=++ ,因为EFGH 是平行四边形,所以AG CE =-,所以1124AG AB BC AG =+- ,所以4255AG AB BC =+ ,因为AG x AB y AD =+ ,所以42,55x y ==,则4285525xy =⨯=.故选:C.例题2.(2022·河南·唐河县第一高级中学高一阶段练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.已知图①中正三角形的边长为6,则图③中OM ON ⋅的值为()A .24B .6C .D .【答案】A在图③中,以O 为坐标原点建立如图所示的平面直角坐标系,4OM =,(2cos ,2sin )(2,33OM ππ== ,83MP = ,即8(,0)3MP = ,23PN = ,由分形知//PN OM ,所以1(,)33PN = ,所以(5,)3ON OM MP PN =++= ,所以2524OM ON ⋅=⨯+= .故选:A .例题4.(2022·江苏·常州市第二中学高一阶段练习)如图,已知平行四边形ABCD 的对角线相交于点O ,过点O 的直线与,AB AD 所在直线分别交于点M ,N ,满足,,(0,0)AB mAM AN nAD m n ==>> ,若13mn =,则mn 的值为()A .23B .34C .45D .56【答案】B 【详解】因平行四边形ABCD 的对角线相交于点O ,则1122AO AB AD =+,而,,(0,0)AB mAM AN nAD m n ==>>,于是得122m AO AM AN n=+,又点M ,O ,N 共线,因此,1122m n +=,即12mn n +=,又13mn =,解得12,23m n ==,所以34m n =.故选:B例题5.(2022·江苏·常州市第二中学高一阶段练习)在梯形ABCD 中,,2,1,120,,AB CD AB BC CD BCD P Q ===∠=∥ 分别为线段BC ,CD 上的动点.(1)求BC AB ⋅ ;(2)若14BP BC =,求AP ;(3)若1,6BP BC DQ DC μμ== ,求AP BQ ⋅u u u r u u u r 的最小值;【答案】(1)2-76(1)因为,2,120AB CD AB BC BCD ==∠= ∥,所以60ABC ∠= ,所以,180120BC AB ABC =-∠=,所以cos 22cos1202BC AB BC AB BC AB =⨯⨯=⨯⨯=⋅-⋅ .(2)由(1)知,2BC AB -⋅=,因为14BP BC = ,所以14AP AB BP AB BC =+=+ ,所以()222222111111322221146264AP AB AB AB BC BC BC ⎛⎫=+=+⋅+=+⨯-+⨯= ⎪⎝⎭ ,所以AP = .(3)因为BP BC μ= ,16DQ DC μ=,则()()()616AP BQ AB BP BC CQ AB BC BC CD μμμ⎛⎫-⋅=+⋅+=+⋅+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2611666AB BC AB CD BC CB CDμμμμ--=⋅+⋅++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r 261161125221221566236μμμμμμ--⎛⎫=--⨯⨯+⨯+⨯⨯⨯-=+- ⎪⎝⎭,因为011016μμ<≤⎧⎪⎨<≤⎪⎩,解得116μ≤≤,设()125536f μμμ=+-,116μ≤≤,根据对勾函数的单调性可知,()f μ在1,16⎡⎤⎢⎥⎣⎦单调递增,所以当1μ=时,()f μ取得最大值:()125715366f =+-=.22.已知P 是ABC 的外心,且3420PA PB PC +-=uu r uu uu u r r r,则cos C =()A .-4B .-14C.4或-4D .14或-14(2022·河南洛阳·高二阶段练习(文))23.在△ABC 中,点D 满足AD =1162AB AC +,直线AD 与BC 交于点E ,则CE CB的值为()A .12B .13C .14D .15(2022·山东淄博·高一期中)24.如图,1,3,90,2AB AC A CD DB ==∠=︒= ,则AD AB ⋅=_________(2022·湖南·模拟预测)25.在三角形ABC 中,点D 在边BC 上,若2BD D C =,AD AB AC λμ=+ (),λμ∈R ,则λμ-=______.(2022·浙江·高一阶段练习)26.平面内的三个向量(1,1),(2,2),(,3)a b c k =-==.(1)若(2)//()a b c a +-,求实数k 的值;(2)若()()c a c b -⊥-,求实数k 的值.(2022·重庆市二0三中学校高一阶段练习)27.已知平面向量()()1,2,2,a b m =-=.(1)若a b ⊥,求2a b + ;与a夹角的余弦值.28.已知平行四边形ABCD 中,2DE EC = ,0AF DF +=,AE 和BF 交于点P.(1)试用AB,AD 表示向量AP .(2)若BPE 的面积为1S ,APF 的面积为2S ,求12S S 的值.(3)若AB AD AB AD +=- ,0AC BD ⋅= ,求APF ∠的余弦值.(2022·四川省内江市第六中学高一期中(文))29.如图,设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知2AD =,c =1且12sin cos sin sin sin 4c A B a A b B b C =-+.(1)求b 边的长;(2)求△ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且△AEF 的面积为△ABC 面积的一半,求AG EF ⋅的最小值.高频考点四:极化恒等式例题1.(2021·全国·高一课时练习)阅读一下一段文字:2222a b a a b b →→→→→→⎛⎫+=+⋅+ ⎪⎝⎭,2222a b a a b b →→→→→→⎛⎫-=-⋅+ ⎪⎝⎭,两式相减得:22221()44a b a b a b a b a b a b →→→→→→→→→→→→⎡⎤⎛⎫⎛⎫⎛⎫+--=⋅⇒⋅=+--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦,我们把这个等式称作“极化恒等式”,它实现了在没有夹角的参与下将两个向量的数量积运算化为“模”的运算.试根据上面的内容解决以下问题:如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.(1)若6AD =,4BC =,求→→⋅的值;(2)若4AB AC →→⋅=,1FB FC →→⋅=-,求EB EC →→⋅的值.【答案】(1)32;(2)78.【自主解答】解:(1)因为2,AB AC AD AB AC CB →→→→→→+=-=,所以2222113643244AB AC AB AC AB AC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-=-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦.(2)设3AD m =,2(0,0)BC n m n =>>,因为4AB AC →→⋅=,由(1)知222214494AD CB m n →→=⇒-=-①因为2,3FB FC AD FB FC CB →→→→→→+=-=,所以根据2222111494FB FC FB FC FB FC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,又因为1FB FC →→⋅=-,所以2222111194AD CB m n →→-=-⇒-=-②由①②解得258m =,2138n =.所以2222141494EB EC EB EC EB EC AD CB→→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦22201374888m n =-=-=.例题2.(2022·河北唐山·高三期末)ABC 中,D 为BC 的中点,4BC =,3AD =,则AB AC ⋅=______.【答案】5【自主解答】解:因为D 为BC 的中点,4BC =,所以DB DC =-,2DB DC ==,AB AD DB AC AD DC =+=+ ,所AB AC ⋅=()()AD DB AD DC =+⋅+ ()()22945AD DC AD DC AD DC =-⋅+=-=-= 故答案为:5法二:由极化恒等式2211916544AB AC AD BC ⋅=-=-⨯= 例题3.(2022届高三开年摸底联考新高考)已知直线l :10x y +-=与圆C :22()(1)1x a y a -++-=交于A ,B 两点,O 为坐标原点,则OA OB ⋅的最小值为:()A.12-B.D.12【自主解答】如图:圆C 22()(1)1x a y a -++-=的圆心(,1)C a a -,在直线l :10x y +-=上,由极化恒等式,2214OA OB OC BA ⋅=- ,而24BA = ,所以222114OA OB OC BA OC ⋅=-=- ,C是直线l :10x y +-=上的动点,所以||OC的最小值,就是点O 到直线l 的距离d 2min 1()12OA OB d ⋅=-=- .题型归类练30.设向量,a b 满足a b += a b -=r r a b ⋅=A .1B .2C .3D .531.如图,在ABC 中,90,2,2ABC AB BC ∠=== ,M 点是线段AC 上一动点.若以M 为圆心、半径为1的圆与线段AC 交于,P Q 两点,则BP BQ ⋅的最小值为()A .1B .2C .3D .432.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-33.如图放置的边长为1的正方形ABCD 的顶点A,D 分别在x 轴、y 轴正半轴(含原点)滑动,则OB OC ⋅的最大值为__________.第四部分:高考真题感悟(2021·浙江·高考真题)34.已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件(2021·全国·高考真题)35.已知向量0a b c ++= ,1a = ,2b c == ,a b b c c a ⋅+⋅+⋅=_______.(2021·全国·高考真题(文))36.若向量,a b满足3,5,1a a b a b =-=⋅= ,则b = _________.(2021·全国·高考真题(理))37.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥,则k =________.(2021·天津·高考真题)38.在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.(2021·北京·高考真题)39.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅=________;=a b ⋅ ________.参考答案:1.错误错误错误错误正确【分析】根据数量积的相关概念逐一判断即可【详解】对于(1):两个向量的数量积是数量,故错误;对于(2):若0a b ⋅= ,除了0a = 或0b = 之外,还有可能a b ⊥,故错误;对于(3):a ,b 共线a ·b =±|a ||b|,故错误;对于(4):数量积是一个整体,这里面b 不能直接约去,故a 与c无固定关系,故错误;对于(5):两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量,符合向量的运算规律,故正确.2.错误【解析】略3.C【分析】由题可得0a b ⋅=,即可求出.【详解】因为()2,1a t =- ,()1,1b t =- ,a b ⊥,所以()210a b t t ⋅=--=,解得1t =-.故选:C.4.A【分析】根据数量积的定义计算可得;【详解】解:()1cos 2222AB BC AB BC B π⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭故选:A 5.C【分析】根据向量的数量积的运算公式,求得cos 0A <,得到A 为钝角,即可求解.【详解】由向量的数量积的运算公式,可得cos 0AB AC AB AC A ⋅=⋅< ,即cos 0A <,因为(0,)A π∈,所以A 为钝角,所以ABC -定是钝角三角形.故选:C.6.B【分析】由题意作出符合题意的图形,判断出OBAC 为菱形,直接得到向量BA在向量BC 上的投影向量.【详解】如图示:因为△ABC 的外接圆圆心为O ,AO AB AC+=,AO AC = ,所以AO AC CO ==,所以△AOC 为等边三角形,所以OBAC 为菱形,所以OA BC ⊥.所以向量BA 在向量BC 上的投影向量为12BC .故选:B 7.D【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答.【详解】非零向量a ,b ,c 满足()b a c ⊥- ,则()·0b a c a b c b -=⋅-⋅= ,即c b a b ⋅=⋅ ,又a 与b的夹角为6π,3a = ,所以c 在b 上的正射影的数量||cos ,||cos 62||||c ba b c c b a b b π⋅⋅〈〉====.故选:D 8.A【分析】依题意过点D 作DE AB ⊥交BA 的延长线于点E ,即可求出AE ,设AP 与AB的夹角为θ,结合图形即可得到AP 在AB方向上的投影的取值范围,再根据数量积的几何意义计算可得;【详解】解:依题意过点D 作DE AB ⊥交BA 的延长线于点E ,则3cos 602AE AD =︒=,设AP 与AB的夹角为θ,因为点P 为直角梯形ABCD 内一点(不包含边界),所以AP 在AB方向上的投影cos AP θ ,且3cos 12AP θ-<<,所以3cos cos ,12AB AP AB AP AP θθ⎛⎫⋅=⋅=∈- ⎪⎝⎭故选:A 9.B【分析】易知ABD △是等边三角形,再根据BC 方向相同的单位向量为e ,由2cos 3AB e π⋅⋅求解.【详解】在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r,所以D 为BC 的中点,且|AD |=|BD |,又1AD AB ==,所以ABD △是等边三角形,因为BC方向相同的单位向量为e ,所以向量AB 在BC 上的投影向量为21cos 32AB e e π⋅⋅=-,故选:B 10.D【分析】利用充分、必要性的定义,结合向量数量积的定义及钝角三角形的性质判断题设条件间的推出关系,即可知答案.【详解】由||||cos 0AB BC BA BC BA BC B =-=⋅-⋅<,即cos 0B >,又0B π<<,所以02B π<<,不能推出△ABC 为钝角三角形,充分性不成立;△ABC 为钝角三角形时,若2B ππ<<,则||||cos 0AB BC BA BC BA BC B =-=⋅-⋅>,不能推出0AB BC ⋅<,必要性不成立.所以“0AB BC ⋅<”是“△ABC 为钝角三角形”的既不充分也不必要条件.故选:D 11.8【分析】利用向量的数量积、投影的定义即可求解.【详解】过点O 作OC AB ⊥于点C ,则点C 为AB 的中点,12AC AB =,所以2211cos ,4822AO AB AO AB AO AB AB AC AB ⋅=⋅===⨯= ,故答案为:8.12.[]4,8【分析】由数量积的定义求解【详解】过点P 作AB 的垂线,交AB 于点H 可得||||DP BA DH BA ⋅=⋅当P 在C 点时,DP BA ⋅ 取最小值4,当P 在A 点时,DP BA ⋅取最大值8故答案为:[4,8]13.A【分析】将,DB CD 分别用,BA BC表示,再根据数量积的运算律即可得出答案.【详解】解:,DB DA AB BC BA CD BA =+=--=,则()22221322DB CD BC BA BA BC BA BA a a a ⋅=--⋅=-⋅-=--=- .故选:A.14.C【分析】由题干条件平方得到()0a b λ⋅= ,从而得到0a b ⋅= ,得到a 与b 的夹角.【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+ ,因为向量a ,b为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅= .因为0λ≠,所以0a b ⋅= ,即a 与b 的夹角为π2.故选:C 15.C【分析】首先由数量积的定义求出ab ,再由余弦定理及基本不等式求出c 的最小值;【详解】解:∵92CB CA ⋅= ,∴9cos 2a b C ⋅⋅=,∴15ab =,由余弦定理得22232cos 222110c a b ab C ab ab =+-⋅≥-⨯=,当且仅当a b =时取等号,∵0c >,∴c ≥c ,故选:C .16.C【分析】根据,,C P D 三点共线求出14m =,然后把,AB AC 当基底表示出,AP CD ,从而求出AP CD ⋅的值【详解】 2AD DB =,32AB AD∴= ∴1324AP m AC AB m AC AD=+=+ ,,C P D 三点共线,31144m m ∴+=⇒=1142AP AC AB ∴=+,又23CD AD AC AB AC=-=- 112()()423AP CD AC AB AB AC ∴=+- 22111343AB AC AB AC =--22111πcos 3433AB AC AB AC =--1111169433432=⨯-⨯-⨯⨯⨯1312=故选:C 17.A【分析】根据0a b ⋅= ,设(1,0)a = ,(0,)b t = ,根据()()0a b a b +⋅-= 求出21t =,再根据平面向量的夹角公式计算可得解.【详解】因为0a b ⋅=,所以可设(1,0)a = ,(0,)b t = ,则(1,)a b t += ,(1,)a b t -=- ,因为()()0a b a b +⋅-= ,所以210t -=,即21t =.则()cos ,||||b a b b a b b a b ⋅-<->=⋅-2=2=-,故选:A.18.B【分析】利用向量垂直,向量数量积的定义及运算法则可得1cos ,2a b = ,即得.【详解】因为1a b ==r r ,()2a a b ⊥-,所以()22222cos ,12cos ,0a a b a a b a a b a b a b ⋅-=-⋅=-⋅⋅=-=,所以1cos ,2a b = ,又,0,180a b ⎡⎤∈⎣⎦ ,所以向量a ,b的夹角为60°.故选:B .19.2π##90 【分析】由|22a b a b +=- |两边平方化简分析即可【详解】由22a b a b +=- ,平方得到22224444a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅=,所以a ,b 夹角为2π故答案为:2π.20【分析】先由225a b -= 求得0a b ⋅=,再求得22a b +r r 即可求解.【详解】由2a b -= 222244545a b a a b b a b -=-⋅+=-⋅= ,则0a b ⋅=,又2222445a b a a b b +=+⋅+= ,则2a b +21【分析】根据题意得34AP m AC AD =+ ,求出14m =,所以1142AP AC AB =+ ,即AP = .【详解】因为23AD AB = ,所以32AB AD = ,又12AP mAC AB =+ ,即1324AP m AC AB m AC AD =+=+,因为点P 在线段CD 上,所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形,所以222211111cos 60421644AP AC AB AC AC AB AB⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故AP = ..22.B【分析】将234PC PA PB =+uu u r uu r uu r 两边平方得可得4916+24cos 2C =+,从而解出1cos 4C =±,然后由条件可得3455PC AC BC =+uu u r uuu r uu u r ,判断出C 与外心P 在AB 的异侧,从而得出答案.【详解】因为P 是ABC 的外心,所以||||||PA PB PC ==uu r uu r uu u r,由题知234PC PA PB =+uu u r uu r uu r,两边平方得222491624PC PA PB PA PB =++⋅uu u r uu r uu r uu r uu r 即222491624cos 2PC PA PB PA PB C +⋅=+uu u r uu r uu r uu r uu r,即4916+24cos 2C =+,所以221cos 22cos 124C C -==-,则1cos 4C =±,又由23433PC PA PB PC CA =+=++uu u r uu r uu r uu u r uu r44PC CB +uu u r uu r ,得3455PC AC BC =+uu u r uuu r uu u r ,因为34155+>,则C 与外心P 在AB 的异侧,即C 在劣弧上,所以C 为钝角,即1cos 4C =-.故选:B 23.C【分析】根据向量的减法运算及共线向量计算,可得出1144CE AB AC →→→=-即可求解.【详解】设62AE AD AB AC λλλ→→→→==+,则16262CE AE AC AD AC AB AC AC AB AC λλλλλ→→→→→→→→→→⎛⎫=-=-=+-=+-⎪⎝⎭,CB AB AC→→→=-,且CE →,CB →共线,则CE kCB = ,162AB AC λλ→→⎛⎫+-= ⎪⎝⎭()k AB AC →→-所以612k k λλ⎧=⎪⎪⎨⎪-=-⎪⎩所以162λλ=-,解得32λ=,此时1144CE AB AC →→→=-,所以14CE CB →→=,故14CE CB =.故选:C 24.23【分析】先用,AC AB 表示向量AD,再利用向量数量积运算求解.【详解】解:因为1,3,90,2AB AC A CD DB ==∠=︒=,所以()22=+=++==- AD AC CD AC AC CD DB AB AD ,即1233AD AC AB =+ ,所以21212233333⎛⎫⋅=+⋅=⋅+= ⎪⎝⎭AD AB AC AB AB AC AB AB ,故答案为:2325.13-【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD D C =,得()2233BD BC AC AB ==- ,所以()212333A A C AB D AB BD AB A A BC -+===++ ,因为(),AD AB AC λμλμ=+∈R uuu r uu u r uuu r ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-26.(1)15k =(2)0k =或1k =【分析】(1)先求出()()3,512a+2b =,c a =k +,-,再利用向量平行的坐标表示列方程即可求解;(2)先求出(1,2),(2,1)c a k c b k -=+-=- ,再利用向量垂直的坐标表示列方程即可求解;(1)因为(1,1),(2,2),(,3)a b c k =-==,所以()()3,512a+2b =,c a =k +,- .因为(2)//()a b c a +-,所以()32510k ⨯-⨯+=,解得:15k =.(2)因为(1,1),(2,2),(,3)a b c k =-== ,所以(1,2),(2,1)c a k c b k -=+-=-.因为()()c a c b -⊥-,则(1)(2)20k k +⋅-+=,解得:0k =或1k =.27.(1)5;(2)35【分析】(1)利用垂直的坐标表示求出m ,再利用向量线性运算的坐标表示及模的坐标表示计算作答.。
平面向量的数量积及其应用自主梳理1.向量数量积的定义 (1)向量数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量___.|a ||b |cos θ_____叫做a 和b 的数量积(或内积),记作__ a ·b =|a ||b |cos θ_____,其中向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影。
投影的绝对值称为射影;注意 在两向量的夹角定义,两向量必须是同起点的,范围0︒≤θ≤180︒。
规定:零向量与任一向量的数量积为___ 0_____. 即00a ⋅= (2)平面向量数量积的几何意义数量积a·b 等于a 的长度|a |与b 在a 的方向上的投影____|b |cos θ_____的乘积.(3) 平面向量数量积的重要性质: ①如果e 是单位向量,则a·e =e·a =__ |a |cos θ________; ②非零向量a ,b ,a ⊥b ⇔____a·b =0____________; ③当a 与b 同向时,a·b =__|a||b|___;(两个非零向量a 与b 垂直的充要条件是__ a·b =0__) 当a 与b 反向时,a·b =__-|a||b|______,a·a =__ a 2___=_|a |2___,|a |=___a·a ____; (两个非零向量a 与b 平行的充要条件是__ a·b =±|a||b|___)④cos θ=__a·b |a||b|________;⑤|a·b |_≤___|a||b |.2.向量数量积的运算律 (1)交换律:a·b =__ b·a ______; (2)分配律:(a +b )·c =___________ a·c +b·c _____; (3)数乘向量结合律:(λa )·b =__λ(a ·b )______________.3.向量数量积的坐标运算与度量公式(1)两个向量的数量积等于它们对应坐标乘积的和,即若a =(x 1,y 1),b =(x 2,y 2), 则a ·b = x 1x 2+y 1y(2) 设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔ x 1x 2+y 1y 2=0 . (3) 设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则 cos θ=121222221122x y x y +⋅+_____.C(4)若a =(x ,y ),则|a |2= 22x y + 或|a |=x 2+y 2 .(5)若A (x 1,y 1),B (x 2,y 2),则 AB →=______(x 2-x 1,y 2-y 1) ___,所以|AB →|=______222121x -x )+y -y )((_____.点评:1.向量的数量积是一个实数两个向量的数量积是一个数量,这个数量的大小与两个向量的长度及其夹角的余弦值有关,在运用向量的数量积解题时,一定要注意两向量夹角的范围. 2.a·b =0不能推出a =0或b =0,因为a·b =0时,有可能a ⊥b .3.一般地,(a·b )c ≠(b·c )a 即乘法的结合律不成立.因a·b 是一个数量,所以(a·b )c 表示一个与c 共线的向量,同理右边(b·c )a 表示一个与a 共线的向量,而a 与c 不一定共线,故一般情况下(a·b )c ≠(b·c )a .4.a·b =a·c (a ≠0)不能推出b =c ,即消去律不成立.5.向量夹角的概念要领会,比如正三角形ABC 中,〈AB →,BC →〉应为120°,而不是60°.自我检测1.已知向量a 和向量b 的夹角为135°,|a |=2, |b |=3,则向量a 和向量b 的数量积a·b =___-32 _____.2.在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →等于 ( ) A .-16 B .-8 C .8 D .163.已知向量a ,b 满足a·b =0,|a |=1,|b |=2,则|2a -b |= ( ) A .0 B .2 2 C .4 D .8 B 2(22)a b a b -=-=2244a a b b -⋅+=8=2 2.4.已知a ⊥b ,|a |=2,|b |=3,且3a +2b 与λa -b 垂直,则实数λ的值为___32_____.5.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为___655___. 6.设a ,b ,c 是任意的非零向量,且相互不共线,则下列命题正确的有____②④____ ①(a·b )c -(c·a )b =0;②|a |-|b |<|a -b |;③(b·c )a -(a·c )b 不与c 垂直;④(3a +4b )·(3a -4b )=9|a |2-16|b |2.7.平面上有三个点A (-2,y ),B (0,2y ),C (x ,y ),若A B →⊥BC →,则动点C 的轨迹方程为________________.解析 由题意得AB →=⎝⎛⎭⎫2,-y 2, BC →=⎝⎛⎭⎫x ,y 2,又AB →⊥BC →,∴AB →·BC →=0, 即⎝⎛⎭⎫2,-y 2·⎝⎛⎭⎫x ,y 2=0,化简得y 2=8x (x ≠0). 8.若等边△ABC 的边长为23,平面内一点M 满足CM →=16CB →+23CA →,则MA →·MB →=________.解析 合理建立直角坐标系,因为三角形是正三角形,故设C (0,0),A (23,0),B (3,3),这样利用向量关系式,求得MA →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫-32,52,所以MA →·MB →=-2.题型一 平面向量的数量积的运算例1 (1)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是________.2(2)如图,在△ABC 中,AD ⊥AB ,BC →= 3 BD →, |AD →|=1,则AC →·AD →等于( ) A.2 3B.32C.33D . 3解法1基底法: ∵BC →=3BD →,∴AC →=BC →-BA →=3BD →-BA →=3(AD →-AB →)+AB → =3AD →+(1-3)AB →. 又AD ⊥AB ,|AD →|=1.∴AC →·AD →=3AD 2→+(1-3)AB →·AD →= 3.法2定义法设BD =a ,则BC =3a ,作CE ⊥BA 交的延长线于E ,可知∠DAC =∠ACE , 在Rt △ABD 与Rt △BEC 中, Rt △ABD ∽Rt △BEC 中,BD ADBC EC=,CE =3, ∴cos ∠DAC =cos ∠ACE =3AC.∴AD →·AC →=|AD →|·|AC →|cos ∠DAC =|AD →|·|AC →| cos ∠ACE = 3.法3坐标法变式训练1 (1)若向量a 的方向是正南方向,向量b 的方向是正东方向,且|a |=|b |=1,则 (-3a )·(a +b )=___-3___.(2)如下图,在ABC △中,3==BC AB ,︒=∠30ABC ,AD 是边BC 上的高,则AC AD ⋅的值等于 ( ) A .0B .49C .4D .49-【思路点拨】充分利用已知条件的3==BC AB ,︒=∠30ABC ,借助数量积的定义求出. 【答案】B 【解析】因为3==AC AB ,︒=∠30ABC ,AD 是边BC 上的高,23=AD 29cos 4AD AC AD AC CAD AD ⋅=⋅∠==.(3)设向量a ,b ,c 满足|a|=|b|=1,a·b =-12,〈a -c ,b -c 〉=60°,则|c|的最大值等于( )A .2 B.3 C.2 D .1 【解析】 ∵a·b =-12,且|a|=|b|=1,∴cos 〈a ,b 〉=a·b |a|·|b|=-12.∴〈a ,b 〉=120°.如图所示,将a ,b ,c 的起点平移至同一点O ,则a -c =CA →,b -c =CB →,∠ACB =60°,于是四 点A ,O ,B ,C 共圆,即点C 在△AOB 的外接圆上,故当OC 为直径时,|c|取最大值.由余弦定理,得AB =OA 2+OB 2-2·OA·OB·cos 〈a ,b 〉=3,由正弦定理,得2R =ABsin 120°=2,即|c|的最大值为2.题型二 向量的夹角与向量的模例2 已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,(1)求a 与b 的夹角θ; (2)求|a +b |; (3)若AB →=a ,BC →=b ,求△ABC 的面积. 例2 解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a·b -3|b |2=61. 又|a |=4,|b |=3,∴64-4a·b -27=61,∴a·b =-6. ∴cos θ=a·b |a||b |=-64×3=-12.又0≤θ≤π,∴θ=2π3.(2)可先平方转化为向量的数量积.|a +b |2=(a +b )2=|a |2+2a·b +|b |2=42+2×(-6)+32=13, ∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3.变式训练2 (1)已知平面向量α,β,|α|=1,β=(2,0),α⊥(α-2β),求|2α+β|的值; (2)已知三个向量a 、b 、c 两两所夹的角都为120°,|a |=1,|b |=2,|c |=3,求向量a +b +c 与向量a 的夹角.解 (1)∵β=(2,0),∴|β|=2,又α⊥(α-2β), ∴α·(α-2β)=α2-2α·β=1-2α·β=0.∴α·β=12.∴(2α+β)2=4α2+β2+4α·β=4+4+2=10.∴|2α+β|=10.(2)由已知得(a +b +c )·a =a 2+a·b +a·c =1+2cos 120°+3cos 120°=-32,|a +b +c |=a +b +c2=a 2+b 2+c 2+2a·b +2a·c +2b·c=1+4+9+4cos 120°+6cos 120°+12cos 120°= 3.设向量a +b +c 与向量a 的夹角为θ,则cos θ=a +b +c ·a |a +b +c ||a |=-323=-32,即θ=150°,故向量a +b +c 与向量a 的夹角为150°.(3)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,实数λ的取值范围为________.解析 ∵〈a ,b 〉∈(0,π2),∴a ·b >0且a ·b 不同向.即|i |2-2λ|j |2>0,∴λ<12.当a ·b 同向时,由a =k b (k >0)得λ=-2.∴λ<12且λ≠-2.(4)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________解 以D 为原点,分别以DA 、DC 所在直线为x 、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =y .∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,y ), P A →=(2,-y ),PB →=(1,a -y ), ∴P A →+3PB →=(5,3a -4y ), |P A →+3PB →|2=25+(3a -4y )2,∵点P 是腰DC 上的动点,∴0≤y ≤a ,因此当y =34a 时,|P A →+3PB →|2的最小值为25,∴|P A →+3PB →|的最小值为5.题型三 平面向量的垂直问题例3 已知a =(cos α,sin α),b =(cos β,sin β)(0<α<β<π). (1)求证:a +b 与a -b 互相垂直;(2)若k a +b 与a -k b 的模相等,求β-α.(其中k 为非零实数) (1)证明 ∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2 =(cos 2α+sin 2α)-(cos 2β+sin 2β)=0, ∴a +b 与a -b 互相垂直.(2)解 k a +b =(k cos α+cos β,k sin α+sin β), a -k b =(cos α-k cos β,sin α-k sin β),|k a +b ||a -k b |∵|k a +b |=|a -k b |,∴2k cos(β-α)=-2k cos(β-α). 又k ≠0,∴cos(β-α)=0.而0<α<β<π,∴0<β-α<π,∴β-α=π2.变式训练3 (1) 已知平面向量a =(3,-1),b =⎝⎛⎭⎫12,32.①证明:a ⊥b ;② 若存在不同时为零的实数k 和t ,使c =a +(t 2-3)b ,d =-k a +t b ,且c ⊥d ,试求函数关系式k =f (t ).① 证明 ∵a·b =3×12-1×32=0,∴a ⊥b .②解 ∵c =a +(t 2-3)b ,d =-k a +t b ,且c ⊥d ,∴c·d =[a +(t 2-3)b ]·(-k a +t b )=-k a 2+t (t 2-3)b 2+[t -k (t 2-3)]a·b =0, 又a 2=|a |2=4,b 2=|b |2=1,a·b =0,∴c·d =-4k +t 3-3t =0,∴k =f (t )=t 3-3t4(t ≠0).(2) 已知a =(cos α,sin α),b =(cos β,sin β),且k a +b 的长度是a -k b 的长度的3倍(k >0).① 求证:a +b 与a -b 垂直; ②用k 表示a ·b ; ③ 求a ·b 的最小值以及此时a 与b 的夹角θ.点拨: 1.非零向量a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.2.当向量a 与b 是非坐标形式时,要把a 、b 用已知的不共线的向量表示.但要注意运算技巧,有时把向量都用坐标表示,并不一定都能够简化运算,要因题而异.解 ①由题意得,|a |=|b |=1,∴(a +b )·(a -b )=a 2-b 2=0, ∴a +b 与a -b 垂直.②|k a +b |2=k 2a 2+2k a ·b +b 2=k 2+2k a ·b +1, (3|a -k b |)2=3(1+k 2)-6k a ·b .由条件知,k 2+2k a ·b +1=3(1+k 2)-6k a ·b , 从而有,a ·b =1+k 24k (k >0).③由(2)知a ·b =1+k 24k =14(k +1k )≥12,当k =1k时,等号成立,即k =±1.∵k >0,∴k =1.此时cos θ=a ·b |a ||b |=12,而θ∈[0,π],∴θ=π3.故a ·b 的最小值为12,此时θ=π3.(3)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β). ① 若a 与b -2c 垂直,求tan(α+β)的值; ②求|b +c |的最大值;③ 若tan αtan β=16,求证:a ∥b . ① 解 因为a 与b -2c 垂直,所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β =4sin(α+β)-8cos(α+β)=0. 因此tan(α+β)=2.②解 由b +c =(sin β+cos β,4cos β-4sin β), 得|b +c |=22sin cos )(4cos 4sin )ββββ++-( =17-15sin 2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2.③证明 由tan αtan β=16得sin sin 16cos cos αβαβ=即16cos cos sin sin 0αβαβ-=所以a ∥b .(4)如图4-4-1所示,在等腰直角三角形ABC 中,∠ACB =90°,CA =CB ,D 为BC 的中点,E 是AB 上的一点,且AE =2EB .求证:AD ⊥CE . 解 AD →·CE →=(AC →+12CB →)·(CA →+23AB →)=-|AC →|2+12CB →·CA →+23AB →·AC →+13AB →·CB →=-|AC →|2+12|CB →||CA →|cos 90°+223|AC →|2cos 45°+23|AC →|2cos 45°=-|AC →|2+|AC →|2=0, ∴AD →⊥CE →,即AD ⊥CE .,(5) 在△ABC 中,AB =(2, 3),=(1, k ),且△ABC 的一个内角为直角,求k 值解:当A = 90︒时,AB ⋅= 0,∴2×1 +3×k = 0 ∴k =23-当B = 90︒时,AB ⋅= 0,=-AB = (1-2, k -3) = (-1, k -3) ∴2×(-1) +3×(k -3) = 0 ∴k =311当C= 90︒时,⋅= 0,∴-1 + k (k -3) = 0 ∴k =2133±题型四 向量的数量积在三角函数中的应用例4 已知向量a =⎝⎛⎭⎫cos 32x ,sin 32x , b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈⎣⎡⎦⎤-π3,π4. (1)求a·b 及|a +b |; (2)若f (x )=a·b -|a +b |,求f (x )的最大值和最小值.解 (1)a·b =cos 32x cos x 2-sin 32x sin x2=cos 2x ,|a +b |=⎝⎛⎭⎫cos 32x +cos x 22+⎝⎛⎭⎫sin 32x -sin x 22 =2+2cos 2x =2|cos x |, ∵x ∈⎣⎡⎦⎤-π3,π4,∴cos x >0, ∴|a +b |=2cos x .(2)f (x )=cos 2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32. ∵x ∈⎣⎡⎦⎤-π3,π4,∴12≤cos x ≤1, ∴当cos x =12时,f (x )取得最小值-32;当cos x =1时,f (x )取得最大值-1.变式迁移4 (1)已知△ABC 的面积S , 12AB →·AC →=3S ,且cos B =35,求cos C .解 由题意,设△ABC 的角B 、C 的对边分别为b 、c ,则S =12bc sin A12AB →·AC →=12bc cos A =3S =32bc sin A >0, ∴A ∈⎝⎛⎭⎫0,π2,cos A =3sin A . 又sin 2A +cos 2A =1, ∴sin A =1010,cos A =31010. 由题意cos B =35,得sin B =45.∴cos(A +B )=cos A cos B -sin A sin B =1010. ∴cos C =cos[π-(A +B )]=-1010. (2).已知△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,G 是△ABC 的重 心,且56sin A ·GA +40sin B ·GB +35sin C ·GC =0. (1)求角B 的大小;(2)设m =(sin A ,cos 2A ),n =(4k,1)(k >1),m ·n 的最大值为5,求实数k 的值. 解:(1)由G 是△ABC 的重心,得GA +GB +GC =0, ∴GC =-(GA +GB),由正弦定理,可将已知等式转化为GA +40b GB +35c (-GA -GB)=0a ⋅⋅⋅56整理,得(56a -35c )·GA +(40b -35c )·GB =0. ∵GA ,GB 不共线,∴⎩⎪⎨⎪⎧56a -35c =0,40b -35c =0.由此,得a ∶b ∶c =5∶7∶8.不妨设a =5,b =7,c =8,由余弦定理, 得cos B =a 2+c 2-b 22ac =52+82-722×5×8=12.∵0<B <π,∴B =π3.(2)m ·n =4k sin A +cos 2A =-2sin 2A +4k sin A +1,由(1)得B =π3,所以A +C =23π,故得A ∈⎝⎛⎭⎫0,2π3. 设sin A =t ∈(0,1],则m ·n =-2t 2+4kt +1,t ∈(0,1].令f (t )=-2t 2+4kt +1,则可知当t ∈(0,1],且k >1时,f (t )在(0,1]上为增函数,所以,当t =1时,m ·n 取得最大值5.于是有:-2+4k +1=5,解得k =32,符合题意,所以,k =32.(3)已知等边三角形ABC 的边长为2,⊙A 的半径为1,PQ 为⊙A 的任意一条直径,①判断BP CQ AP CB ⋅-⋅的值是否会随点P 的变化而变化,请说明理由;②求BP CQ ⋅的最大值。
第三节平面向量的数量积及平面向量应用举例 1.已知a=(1,sin2x),b=(2,sin2x),其中x∈(0,π).若|a·b|=|a|·|b|,则tanx的值等于 ( ) A.1 B.-1 C.3 D.22 2.在△ABC中,M是BC的中点,AM=1,点P在AM上且满足AP→=2PM→,则PA→·(PB→+PC→)等于 ( ) A.-49 B.-43 C.43 D.49 3.设a、b、c是单位向量,且a·b=0,则(a-c)·(b-c)的最小值为 ( ) A.-2 B.2-2 C.-1 D.1-2 4.一质点受到平面上的三个力F1,F2,F3(单位:牛顿)的作用而处于平衡状态.已知F1,F2成60°角,且F1,F2的大小分别为2和4,则F3的大小为 ( ) A.6 B.2 C.25 D.27 5.已知向量a=(cosθ,sinθ),向量b=(3,-1),则|2a-b|的最大、小值分别是 ( ) A.42,0 B.4,22 C.16,0 D.4,0
6.在△ABC中,(BC→+BA→)·AC→=|AC→ |2,则三角形ABC的形状一定是 ( ) A.等边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形
7.已知向量a=(2,-1),b=(x,-2),c=(3,y),若a∥b,(a+b)⊥(b-c),M(x,y),N(y,x),则向量MN→的模为 . 8.若平面上三点A、B、C满足|AB→ |=3,|BC→ |=4,|CA→ |=5,则AB→ ·BC→+BC→·CA→ +CA→·AB→ 的值等于 . 9.关于平面向量a,b,c,有下列三个命题: ①若a·b=a·c,则b=c. ②若a=(1,k),b=(-2,6),a∥b,则k=-3. ③非零向量a和b满足|a|=|b|=|a-b|,则a与a+b的夹角为60°. 其中真命题的序号为 (写出所有真命题的序号). 10.已知向量a=(1,2),b=(2,-2). (1)设c=4a+b,求(b·c)a;(2)若a+λb与a垂直,求λ的值;(3)求向量a在b方向上的投影.
11.在△ABC中,设内角A,B,C的对边分别为a,b,c,向量m=(cosA,sinA),向量n=(2-sinA,cosA),若|m+n|=2. (1)求角A的大小;(2)若b=42,且c=2a,求△ABC的面积.
12.(2010·临沂模拟)已知向量m=(3sinx4,1),n=(cosx4,cos2x4). (1)若m·n=1,求cos(2π3-x)的值; (2)记f(x)=m·n,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围. 1.A 2.A 3.D 4.D 5.D 6.C 7.82 8.-25 9.② 10.解:(1)∵a=(1,2),b=(2,-2),∴c=4a+b=(4,8)+(2,-2)=(6,6). ∴b·c=2×6-2×6=0,∴(b·c)a=0a=0. (2)a+λb=(1,2)+λ(2,-2)=(2λ+1,2-2λ),由于a+λb与a垂直,
∴2λ+1+2(2-2λ)=0,∴λ=52. (3)设向量a与b的夹角为θ,向量a在b方向上的投影为|a|cosθ. ∴|a|cosθ=a·b|b|=1×2+2×(-2)22+(-2)2=-222=-22.
11.解:∵(1)|m+n|2=(cosA+2-sinA)2+(sinA+cosA)2=4+22(cosA-sinA)=4+4cos(π4+A), ∴4+4cos(π4+A)=4,∴cos(π4+A)=0, ∵A∈(0,π),∴π4+A=π2,∴A=π4. (2)由余弦定理知:a2=b2+c2-2bccosA,即a2=(42)2+(2a)2-2×42×2acosπ4, 解得a=42,∴c=8,∴S△ABC=12bcsinA=12×42×8×22=16. 12.解:(1)∵m·n=1,即3sinx4cosx4+cos2x4=1,即32sinx2+12cosx2+12=1, ∴sin(x2+π6)=12. ∴cos(2π3-x)=cos(x-2π3)=-cos(x+π3)=-[1-2sin2(x2+π6)]=2·( 12 )2-1=-12. (2)∵(2a-c)cosB=bcosC, 由正弦定理得(2sinA-sinC)cosB=sinBcosC. ∴2sinAcosB-cosBsinC=sinBcosC, ∴2sinAcosB=sin(B+C), ∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0,
∴cosB=12,B=π3,∴0<A<2π3.
∴π6<A2+π6<π2,12<sin(A2+π6)<1. 又∵f(x)=m·n=sin(x2+π6)+12, ∴f(A)=sin(A2+π6)+12. 故函数f(A)的取值范围是(1,32).
1.解析:由|a·b|=|a|·|b|知,a∥b. 所以sin2x=2sin2x, 即2sinxcosx=2sin2x,而x∈(0,π),所以sinx=cosx,
即x=π4,故tanx=1. 答案:A 2.解析:PA·(PB+PC)=PA·2PM=23×2×13cosπ=-49. 答案:A 3.解析:(a-c)·(b-c)=a·b-c·(a+b)+c2 =0-|c|·|a+b|·cos〈c,(a+b)〉+1 ≥0-|c||a+b|+1=-(a+b)2+1
=-a2+b2+2a·b+1=-a2+b2+1 =-2+1. 答案:D 4.解析:因为力F是一个向量,由向量加法的平行四边形法则知F3的大小等于以F1、F2为邻边的平行四边形的对角线的长,故|F3|2=|F1|2+|F2|2+2|F1|·|F2|·cos60°=4+16+8=28,∴|F3|=27. 答案:D
5.解析:由于|2a-b|2=4|a|2+|b|2-4a·b=8-4(3cosθ-sinθ)=8-8cos(θ+π6),易知0≤8-8cos(θ+π6)≤16,故|2a-b|的最大值和最小值分别为4和0.
答案:D 6.解析:由2(),BCBAACAC
()0,()0,ACBCBAACACBCBACA得即
∴.20,ACBA∴ACBA⊥ ,∴∠A=90°. 答案:C 7.解析:∵a∥b,∴x=4,∴b=(4,-2), ∴a+b=(6,-3),b-c=(1,-2-y).∵(a+b)⊥(b-c), ∴(a+b)·(b-c)=0,即6-3(-2-y)=0,∴y=-4, 故向量MN=(-8,8),|MN |=82. 答案:82 8.解析:由AB+BC+CA=0可得2()ABBCCA=0, ∴9+16+25+22...()0,ABBCBCCAAB ...
25.ABBCBCCAAB
答案:-25 9.解析:命题①明显错误.由两向量平行的充要条件得1×6+2k=0,k=-3,故命题②正确.由|a|=|b|=|a-b|,再结合平行四边形法则可得a与a+b的夹角为30°,命题③错误. 答案:② 10.解:(1)∵a=(1,2),b=(2,-2), ∴c=4a+b=(4,8)+(2,-2)=(6,6). ∴b·c=2×6-2×6=0, ∴(b·c)a=0a=0. (2)a+λb=(1,2)+λ(2,-2)=(2λ+1,2-2λ), 由于a+λb与a垂直,
∴2λ+1+2(2-2λ)=0,∴λ=52. (3)设向量a与b的夹角为θ, 向量a在b方向上的投影为|a|cosθ.
∴|a|cosθ=a·b|b|=1×2+2×(-2)22+(-2)2
=-222=-22. 11.解:∵(1)|m+n|2 =(cosA+2-sinA)2+(sinA+cosA)2
=4+22(cosA-sinA)=4+4cos(π4+A),
∴4+4cos(π4+A)=4,∴cos(π4+A)=0, ∵A∈(0,π),∴π4+A=π2,∴A=π4. (2)由余弦定理知:a2=b2+c2-2bccosA, 即a2=(42)2+(2a)2-2×42×2acosπ4, 解得a=42,∴c=8, ∴S△ABC=12bcsinA=12×42×8×22=16. 12.解:(1)∵m·n=1,即3sinx4cosx4+cos2x4=1, 即32sinx2+12cosx2+12=1, ∴sin(x2+π6)=12. ∴cos(2π3-x)=cos(x-2π3)=-cos(x+π3) =-[1-2sin2(x2+π6)] =2·( 12 )2-1=-12. (2)∵(2a-c)cosB=bcosC, 由正弦定理得(2sinA-sinC)cosB=sinBcosC. ∴2sinAcosB-cosBsinC=sinBcosC, ∴2sinAcosB=sin(B+C), ∵A+B+C=π, ∴sin(B+C)=sinA,且sinA≠0,
∴cosB=12,B=π3,
∴0<A<2π3. ∴π6<A2+π6<π2,12<sin(A2+π6)<1. 又∵f(x)=m·n=sin(x2+π6)+12, ∴f(A)=sin(A2+π6)+12. 故函数f(A)的取值范围是(1,32).
第四章 第三节平面向量的数量积及平面向量应用举例 课下练兵场 命 题 报 告 难度及题号 知识点 容易题 (题号) 中等题 (题号) 稍难题 (题号) 两平面向量的夹角 11
求平面向量的模 4 5、7 两平面向量的 垂直与平行 1、6 10
向量的数量积 2、3 8、9 12
一、选择题